#define _POSIX_C_SOURCE 200112L #define _BSD_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "pcitool/sysinfo.h" #include "pcitool/formaters.h" #include "pci.h" #include "plugin.h" #include "config.h" #include "tools.h" #include "kmem.h" #include "error.h" #include "debug.h" #include "model.h" /* defines */ #define MAX_KBUF 14 //#define BIGBUFSIZE (512*1024*1024) #define BIGBUFSIZE (1024*1024) #define DEFAULT_FPGA_DEVICE "/dev/fpga0" #define LINE_WIDTH 80 #define SEPARATOR_WIDTH 2 #define BLOCK_SEPARATOR_WIDTH 2 #define BLOCK_SIZE 8 #define BENCHMARK_ITERATIONS 128 #define STATUS_MESSAGE_INTERVAL 5 /* seconds */ #define isnumber pcilib_isnumber #define isxnumber pcilib_isxnumber #define isnumber_n pcilib_isnumber_n #define isxnumber_n pcilib_isxnumber_n typedef uint8_t access_t; typedef enum { GRAB_MODE_GRAB = 1, GRAB_MODE_TRIGGER = 2 } GRAB_MODE; typedef enum { MODE_INVALID, MODE_INFO, MODE_LIST, MODE_BENCHMARK, MODE_READ, MODE_READ_REGISTER, MODE_WRITE, MODE_WRITE_REGISTER, MODE_RESET, MODE_GRAB, MODE_START_DMA, MODE_STOP_DMA, MODE_LIST_DMA, MODE_LIST_DMA_BUFFERS, MODE_READ_DMA_BUFFER, MODE_ENABLE_IRQ, MODE_DISABLE_IRQ, MODE_ACK_IRQ, MODE_WAIT_IRQ, MODE_ALLOC_KMEM, MODE_LIST_KMEM, MODE_READ_KMEM, MODE_FREE_KMEM } MODE; typedef enum { ACCESS_BAR, ACCESS_DMA, ACCESS_FIFO, ACCESS_CONFIG } ACCESS_MODE; typedef enum { FLAG_MULTIPACKET = 1, FLAG_WAIT = 2 } FLAGS; typedef enum { FORMAT_DEFAULT = 0, FORMAT_RAW, FORMAT_HEADER, FORMAT_RINGFS } FORMAT; typedef enum { PARTITION_UNKNOWN, PARTITION_RAW, PARTITION_EXT4, PARTITION_NULL } PARTITION; typedef enum { OPT_DEVICE = 'd', OPT_MODEL = 'm', OPT_BAR = 'b', OPT_ACCESS = 'a', OPT_ENDIANESS = 'e', OPT_SIZE = 's', OPT_OUTPUT = 'o', OPT_TIMEOUT = 't', OPT_INFO = 'i', OPT_LIST = 'l', OPT_READ = 'r', OPT_WRITE = 'w', OPT_GRAB = 'g', OPT_QUIETE = 'q', OPT_HELP = 'h', OPT_RESET = 128, OPT_BENCHMARK, OPT_TRIGGER, OPT_DATA_TYPE, OPT_EVENT, OPT_TRIGGER_RATE, OPT_TRIGGER_TIME, OPT_RUN_TIME, OPT_FORMAT, OPT_BUFFER, OPT_THREADS, OPT_LIST_DMA, OPT_LIST_DMA_BUFFERS, OPT_READ_DMA_BUFFER, OPT_START_DMA, OPT_STOP_DMA, OPT_ENABLE_IRQ, OPT_DISABLE_IRQ, OPT_ACK_IRQ, OPT_WAIT_IRQ, OPT_ITERATIONS, OPT_ALLOC_KMEM, OPT_LIST_KMEM, OPT_FREE_KMEM, OPT_READ_KMEM, OPT_BLOCK_SIZE, OPT_ALIGNMENT, OPT_TYPE, OPT_FORCE, OPT_VERIFY, OPT_WAIT, OPT_MULTIPACKET, OPT_VERBOSE } OPTIONS; static struct option long_options[] = { {"device", required_argument, 0, OPT_DEVICE }, {"model", required_argument, 0, OPT_MODEL }, {"bar", required_argument, 0, OPT_BAR }, {"access", required_argument, 0, OPT_ACCESS }, {"endianess", required_argument, 0, OPT_ENDIANESS }, {"size", required_argument, 0, OPT_SIZE }, {"output", required_argument, 0, OPT_OUTPUT }, {"timeout", required_argument, 0, OPT_TIMEOUT }, {"iterations", required_argument, 0, OPT_ITERATIONS }, {"info", no_argument, 0, OPT_INFO }, {"list", no_argument, 0, OPT_LIST }, {"reset", no_argument, 0, OPT_RESET }, {"benchmark", optional_argument, 0, OPT_BENCHMARK }, {"read", optional_argument, 0, OPT_READ }, {"write", optional_argument, 0, OPT_WRITE }, {"grab", optional_argument, 0, OPT_GRAB }, {"trigger", optional_argument, 0, OPT_TRIGGER }, {"data", required_argument, 0, OPT_DATA_TYPE }, {"event", required_argument, 0, OPT_EVENT }, {"run-time", required_argument, 0, OPT_RUN_TIME }, {"trigger-rate", required_argument, 0, OPT_TRIGGER_RATE }, {"trigger-time", required_argument, 0, OPT_TRIGGER_TIME }, {"format", required_argument, 0, OPT_FORMAT }, {"buffer", optional_argument, 0, OPT_BUFFER }, {"threads", optional_argument, 0, OPT_THREADS }, {"start-dma", required_argument, 0, OPT_START_DMA }, {"stop-dma", optional_argument, 0, OPT_STOP_DMA }, {"list-dma-engines", no_argument, 0, OPT_LIST_DMA }, {"list-dma-buffers", required_argument, 0, OPT_LIST_DMA_BUFFERS }, {"read-dma-buffer", required_argument, 0, OPT_READ_DMA_BUFFER }, {"enable-irq", optional_argument, 0, OPT_ENABLE_IRQ }, {"disable-irq", optional_argument, 0, OPT_DISABLE_IRQ }, {"acknowledge-irq", optional_argument, 0, OPT_ACK_IRQ }, {"wait-irq", optional_argument, 0, OPT_WAIT_IRQ }, {"list-kernel-memory", optional_argument, 0, OPT_LIST_KMEM }, {"read-kernel-memory", required_argument, 0, OPT_READ_KMEM }, {"alloc-kernel-memory", required_argument, 0, OPT_ALLOC_KMEM }, {"free-kernel-memory", required_argument, 0, OPT_FREE_KMEM }, {"type", required_argument, 0, OPT_TYPE }, {"block-size", required_argument, 0, OPT_BLOCK_SIZE }, {"alignment", required_argument, 0, OPT_ALIGNMENT }, {"quiete", no_argument, 0, OPT_QUIETE }, {"verbose", optional_argument, 0, OPT_VERBOSE }, {"force", no_argument, 0, OPT_FORCE }, {"verify", no_argument, 0, OPT_VERIFY }, {"multipacket", no_argument, 0, OPT_MULTIPACKET }, {"wait", no_argument, 0, OPT_WAIT }, {"help", no_argument, 0, OPT_HELP }, { 0, 0, 0, 0 } }; void Usage(int argc, char *argv[], const char *format, ...) { if (format) { va_list ap; va_start(ap, format); printf("Error %i: ", errno); vprintf(format, ap); printf("\n"); va_end(ap); printf("\n"); } printf( "Usage:\n" " %s [options] [hex data]\n" " Modes:\n" " -i - Device Info\n" " -l[l] - List (detailed) Data Banks & Registers\n" " -r - Read Data/Register\n" " -w - Write Data/Register\n" " --benchmark - Performance Evaluation\n" " --reset - Reset board\n" " --help - Help message\n" "\n" " Event Modes:\n" " --trigger [event] - Trigger Events\n" " -g [event] - Grab Events\n" "\n" " IRQ Modes:\n" " --enable-irq [type] - Enable IRQs\n" " --disable-irq [type] - Disable IRQs\n" " --acknowledge-irq - Clean IRQ queue\n" " --wait-irq - Wait for IRQ\n" " DMA Modes:\n" " --start-dma [r|w] - Start specified DMA engine\n" " --stop-dma [num[r|w]] - Stop specified engine or DMA subsystem\n" " --list-dma-engines - List active DMA engines\n" " --list-dma-buffers - List buffers for specified DMA engine\n" " --read-dma-buffer - Read the specified buffer\n" "\n" " Kernel Modes:\n" " --list-kernel-memory [use] - List kernel buffers\n" " --read-kernel-memory - Read the specified block of the kernel memory\n" " block is specified as: use:block_number\n" " --alloc-kernel-memory - Allocate kernel buffers (DANGEROUS)\n" " --free-kernel-memory - Cleans lost kernel space buffers (DANGEROUS)\n" " dma - Remove all buffers allocated by DMA subsystem\n" " #number - Remove all buffers with the specified use id\n" "\n" " Addressing:\n" " -d - FPGA device (/dev/fpga0)\n" " -m - Memory model (autodetected)\n" " pci - Plain\n" " ipecamera - IPE Camera\n" " -b - PCI bar, Register bank, or DMA channel\n" "\n" " Options:\n" " -s - Number of words (default: 1)\n" " -a [fifo|dma|config] - Access type and bits per word (default: 32)\n" " -e - Endianess Little/Big (default: host)\n" " -o - Append output to file (default: stdout)\n" " -t - Timeout in microseconds\n" " --check - Verify write operations\n" "\n" " Event Options:\n" " --event - Specifies event for trigger and grab modes\n" " --data - Data type to request for the events\n" " --run-time - Limit time to grab/trigger events\n" " -t - Timeout to stop if no events triggered\n" " --trigger-rate - Generate tps triggers per second\n" " --trigger-time - Specifies delay between triggers (us)\n" " -s - Number of events to grab and trigger\n" " --format [type] - Specifies how event data should be stored\n" " raw - Just write all events sequentially\n" " add_header - Prefix events with 512 bit header:\n" " event(64), data(64), nope(64), size(64)\n" " seqnum(64), offset(64), timestamp(128)\n" //" ringfs - Write to RingFS\n" " --buffer [size] - Request data buffering, size in MB\n" " --threads [num] - Allow multithreaded processing\n" "\n" " DMA Options:\n" " --multipacket - Read multiple packets\n" " --wait - Wait until data arrives\n" "\n" " Kernel Options:\n" " --type - Type of kernel memory to allocate\n" " consistent - Consistent memory\n" " s2c - DMA S2C (write) memory\n" " c2s - DMA C2S (read) memory\n" " --page-size - Size of kernel buffer in bytes (default: page)\n" " -s - Number of buffers to allocate (default: 1)\n" " --allignment - Buffer alignment (default: page)\n" "\n" " Information:\n" " --verbose [level] - Announce details of ongoing operations\n" " -q - Quiete mode (suppress warnings)\n" "\n" " Data:\n" " Data can be specified as sequence of hexdecimal number or\n" " a single value prefixed with '*'. In this case it will be\n" " replicated the specified amount of times\n" "\n\n", argv[0]); exit(0); } static int StopFlag = 0; static void signal_exit_handler(int signo) { if (++StopFlag > 2) exit(-1); } void LogError(void *arg, const char *file, int line, pcilib_log_priority_t prio, const char *format, va_list ap) { vprintf(format, ap); if (prio == PCILIB_LOG_ERROR) { if (errno) printf("\nerrno: %i (%s)", errno, strerror(errno)); } printf("\n"); if (prio == PCILIB_LOG_ERROR) { printf("Exiting at [%s:%u]\n\n", file, line); exit(-1); } } void ErrorInternal(void *arg, const char *file, int line, pcilib_log_priority_t prio, const char *format, ...) { va_list ap; va_start(ap, format); LogError(arg, file, line, prio, format, ap); va_end(ap); } #define Error(...) ErrorInternal(NULL, __FILE__, __LINE__, PCILIB_LOG_ERROR, __VA_ARGS__) void List(pcilib_t *handle, const pcilib_model_description_t *model_info, const char *bank, int details) { int i,j; const pcilib_register_bank_description_t *banks; const pcilib_register_description_t *registers; const pcilib_event_description_t *events; const pcilib_event_data_type_description_t *types; const pcilib_board_info_t *board_info = pcilib_get_board_info(handle); const pcilib_dma_description_t *dma_info = pcilib_get_dma_description(handle); for (i = 0; i < PCILIB_MAX_BARS; i++) { if (board_info->bar_length[i] > 0) { printf(" BAR %d - ", i); switch ( board_info->bar_flags[i]&IORESOURCE_TYPE_BITS) { case IORESOURCE_IO: printf(" IO"); break; case IORESOURCE_MEM: printf("MEM"); break; case IORESOURCE_IRQ: printf("IRQ"); break; case IORESOURCE_DMA: printf("DMA"); break; } if (board_info->bar_flags[i]&IORESOURCE_MEM_64) printf("64"); else printf("32"); printf(", Start: 0x%08lx, Length: 0x%8lx, Flags: 0x%08lx\n", board_info->bar_start[i], board_info->bar_length[i], board_info->bar_flags[i] ); } } printf("\n"); if ((dma_info)&&(dma_info->engines)) { printf("DMA Engines: \n"); for (i = 0; dma_info->engines[i].addr_bits; i++) { const pcilib_dma_engine_description_t *engine = &dma_info->engines[i]; printf(" DMA %2d ", engine->addr); switch (engine->direction) { case PCILIB_DMA_FROM_DEVICE: printf("C2S"); break; case PCILIB_DMA_TO_DEVICE: printf("S2C"); break; case PCILIB_DMA_BIDIRECTIONAL: printf("BI "); break; } printf(" - Type: "); switch (engine->type) { case PCILIB_DMA_TYPE_BLOCK: printf("Block"); break; case PCILIB_DMA_TYPE_PACKET: printf("Packet"); break; default: printf("Unknown"); } printf(", Address Width: %02lu bits\n", engine->addr_bits); } printf("\n"); } if ((bank)&&(bank != (char*)-1)) banks = NULL; else banks = model_info->banks; if (banks) { printf("Banks: \n"); for (i = 0; banks[i].access; i++) { printf(" 0x%02x %s", banks[i].addr, banks[i].name); if ((banks[i].description)&&(banks[i].description[0])) { printf(": %s", banks[i].description); } printf("\n"); } printf("\n"); } if (bank == (char*)-1) registers = NULL; else registers = model_info->registers; if (registers) { pcilib_register_bank_addr_t bank_addr = 0; if (bank) { pcilib_register_bank_t bank_id = pcilib_find_register_bank(handle, bank); const pcilib_register_bank_description_t *b = model_info->banks + bank_id; bank_addr = b->addr; if (b->description) printf("%s:\n", b->description); else if (b->name) printf("Registers of bank %s:\n", b->name); else printf("Registers of bank 0x%x:\n", b->addr); } else { printf("Registers: \n"); } for (i = 0; registers[i].bits; i++) { const char *mode; if ((bank)&&(registers[i].bank != bank_addr)) continue; if (registers[i].type == PCILIB_REGISTER_BITS) { if (!details) continue; if (registers[i].bits > 1) { printf(" [%2u:%2u] - %s\n", registers[i].offset, registers[i].offset + registers[i].bits, registers[i].name); } else { printf(" [ %2u] - %s\n", registers[i].offset, registers[i].name); } continue; } if (registers[i].mode == PCILIB_REGISTER_RW) mode = "RW"; else if (registers[i].mode == PCILIB_REGISTER_R) mode = "R "; else if (registers[i].mode == PCILIB_REGISTER_W) mode = " W"; else mode = " "; printf(" 0x%02x (%2i %s) %s", registers[i].addr, registers[i].bits, mode, registers[i].name); if ((details > 0)&&(registers[i].description)&&(registers[i].description[0])) { printf(": %s", registers[i].description); } printf("\n"); } printf("\n"); } if (bank == (char*)-1) events = NULL; else { events = model_info->events; types = model_info->data_types; } if (events) { printf("Events: \n"); for (i = 0; events[i].name; i++) { printf(" %s", events[i].name); if ((events[i].description)&&(events[i].description[0])) { printf(": %s", events[i].description); } if (types) { for (j = 0; types[j].name; j++) { if (types[j].evid & events[i].evid) { printf("\n %s", types[j].name); if ((types[j].description)&&(types[j].description[0])) { printf(": %s", types[j].description); } } } } } printf("\n"); } } void Info(pcilib_t *handle, const pcilib_model_description_t *model_info) { int i, j; DIR *dir; void *plugin; const char *path; struct dirent *entry; const pcilib_model_description_t *info = NULL; const pcilib_board_info_t *board_info = pcilib_get_board_info(handle); path = getenv("PCILIB_PLUGIN_DIR"); if (!path) path = PCILIB_PLUGIN_DIR; printf("Vendor: %x, Device: %x, Bus: %x, Slot: %x, Function: %x, Model: %s\n", board_info->vendor_id, board_info->device_id, board_info->bus, board_info->slot, board_info->func, handle->model); printf(" Interrupt - Pin: %i, Line: %i\n", board_info->interrupt_pin, board_info->interrupt_line); List(handle, model_info, (char*)-1, 0); printf("\n"); printf("Available models:\n"); dir = opendir(path); if (dir) { while ((entry = readdir(dir))) { const char *suffix = strstr(entry->d_name, ".so"); if ((!suffix)||(strlen(suffix) != 3)) continue; plugin = pcilib_plugin_load(entry->d_name); if (plugin) { info = pcilib_get_plugin_model(handle, plugin, 0, 0, NULL); if (info) { printf(" %s\n", entry->d_name); for (j = 0; info[j].name; j++) { pcilib_version_t version = info[j].api->version; printf(" %-12s %u.%u.%u - %s\n", info[j].name, PCILIB_VERSION_GET_MAJOR(version), PCILIB_VERSION_GET_MINOR(version), PCILIB_VERSION_GET_MICRO(version), info[j].description?info[j].description:""); } } pcilib_plugin_close(plugin); } else { const char *msg = dlerror(); if (msg) printf(" %s: %s\n", entry->d_name, msg); } } closedir(dir); } // printf(" XML\n"); printf(" Internal Models\n"); for (i = 0; pcilib_dma[i].api; i++) printf(" %-12s - %s\n", pcilib_dma[i].name, pcilib_dma[i].description?pcilib_dma[i].description:""); printf(" %-12s - Plain PCI-access model\n\n", "pci"); } #define BENCH_MAX_DMA_SIZE 4 * 1024 * 1024 #define BENCH_MAX_FIFO_SIZE 1024 * 1024 int Benchmark(pcilib_t *handle, ACCESS_MODE mode, pcilib_dma_engine_addr_t dma, pcilib_bar_t bar, uintptr_t addr, size_t n, access_t access, size_t iterations) { int err; int i, j, errors; void *data, *buf, *check; void *fifo = NULL; struct timeval start, end; unsigned long time; size_t size, min_size, max_size; double mbs_in, mbs_out, mbs; size_t irqs; const pcilib_board_info_t *board_info = pcilib_get_board_info(handle); if (mode == ACCESS_CONFIG) Error("No benchmarking of configuration space acess is allowed"); if (mode == ACCESS_DMA) { if (n) { min_size = n * access; max_size = n * access; } else { min_size = 1024; max_size = BENCH_MAX_DMA_SIZE; } for (size = min_size; size <= max_size; size *= 4) { mbs_in = pcilib_benchmark_dma(handle, dma, addr, size, iterations, PCILIB_DMA_FROM_DEVICE); mbs_out = pcilib_benchmark_dma(handle, dma, addr, size, iterations, PCILIB_DMA_TO_DEVICE); mbs = pcilib_benchmark_dma(handle, dma, addr, size, iterations, PCILIB_DMA_BIDIRECTIONAL); err = pcilib_wait_irq(handle, 0, 0, &irqs); if (err) irqs = 0; printf("%8zu KB - ", size / 1024); printf("RW: "); if (mbs < 0) printf("failed ... "); else printf("%8.2lf MB/s", mbs); printf(", R: "); if (mbs_in < 0) printf("failed ... "); else printf("%8.2lf MB/s", mbs_in); printf(", W: "); if (mbs_out < 0) printf("failed ... "); else printf("%8.2lf MB/s", mbs_out); if (irqs) { printf(", IRQs: %lu", irqs); } printf("\n"); } return 0; } if (bar == PCILIB_BAR_INVALID) { unsigned long maxlength = 0; for (i = 0; i < PCILIB_MAX_REGISTER_BANKS; i++) { if ((addr >= board_info->bar_start[i])&&((board_info->bar_start[i] + board_info->bar_length[i]) >= (addr + access))) { bar = i; break; } if (board_info->bar_length[i] > maxlength) { maxlength = board_info->bar_length[i]; bar = i; } } if (bar < 0) Error("Data banks are not available"); } if (n) { if ((mode == ACCESS_BAR)&&(n * access > board_info->bar_length[bar])) Error("The specified size (%i) exceeds the size of bar (%i)", n * access, board_info->bar_length[bar]); min_size = n * access; max_size = n * access; } else { min_size = access; if (mode == ACCESS_BAR) max_size = board_info->bar_length[bar]; else max_size = BENCH_MAX_FIFO_SIZE; } err = posix_memalign( (void**)&buf, 256, max_size ); if (!err) err = posix_memalign( (void**)&check, 256, max_size ); if ((err)||(!buf)||(!check)) Error("Allocation of %i bytes of memory have failed", max_size); data = pcilib_map_bar(handle, bar); if (!data) Error("Can't map bar %i", bar); if (mode == ACCESS_FIFO) { fifo = data + (addr - board_info->bar_start[bar]) + (board_info->bar_start[bar] & pcilib_get_page_mask()); // pcilib_resolve_register_address(handle, bar, addr); if (!fifo) Error("Can't resolve address (%lx) in bar (%u)", addr, bar); } if (mode == ACCESS_FIFO) printf("Transfer time (Bank: %i, Fifo: %lx):\n", bar, addr); else printf("Transfer time (Bank: %i):\n", bar); for (size = min_size ; size < max_size; size *= 8) { gettimeofday(&start,NULL); if (mode == ACCESS_BAR) { for (i = 0; i < BENCHMARK_ITERATIONS; i++) { pcilib_memcpy(buf, data, size); } } else { for (i = 0; i < BENCHMARK_ITERATIONS; i++) { for (j = 0; j < (size/access); j++) { pcilib_memcpy(buf + j * access, fifo, access); } } } gettimeofday(&end,NULL); time = (end.tv_sec - start.tv_sec)*1000000 + (end.tv_usec - start.tv_usec); printf("%8zu bytes - read: %8.2lf MB/s", size, 1000000. * size * BENCHMARK_ITERATIONS / (time * 1024. * 1024.)); fflush(0); gettimeofday(&start,NULL); if (mode == ACCESS_BAR) { for (i = 0; i < BENCHMARK_ITERATIONS; i++) { pcilib_memcpy(data, buf, size); } } else { for (i = 0; i < BENCHMARK_ITERATIONS; i++) { for (j = 0; j < (size/access); j++) { pcilib_memcpy(fifo, buf + j * access, access); } } } gettimeofday(&end,NULL); time = (end.tv_sec - start.tv_sec)*1000000 + (end.tv_usec - start.tv_usec); printf(", write: %8.2lf MB/s\n", 1000000. * size * BENCHMARK_ITERATIONS / (time * 1024. * 1024.)); } pcilib_unmap_bar(handle, bar, data); printf("\n\nOpen-Transfer-Close time: \n"); for (size = 4 ; size < max_size; size *= 8) { gettimeofday(&start,NULL); if (mode == ACCESS_BAR) { for (i = 0; i < BENCHMARK_ITERATIONS; i++) { pcilib_read(handle, bar, 0, size, buf); } } else { for (i = 0; i < BENCHMARK_ITERATIONS; i++) { pcilib_read_fifo(handle, bar, addr, access, size / access, buf); } } gettimeofday(&end,NULL); time = (end.tv_sec - start.tv_sec)*1000000 + (end.tv_usec - start.tv_usec); printf("%8zu bytes - read: %8.2lf MB/s", size, 1000000. * size * BENCHMARK_ITERATIONS / (time * 1024. * 1024.)); fflush(0); gettimeofday(&start,NULL); if (mode == ACCESS_BAR) { for (i = 0; i < BENCHMARK_ITERATIONS; i++) { pcilib_write(handle, bar, 0, size, buf); } } else { for (i = 0; i < BENCHMARK_ITERATIONS; i++) { pcilib_write_fifo(handle, bar, addr, access, size / access, buf); } } gettimeofday(&end,NULL); time = (end.tv_sec - start.tv_sec)*1000000 + (end.tv_usec - start.tv_usec); printf(", write: %8.2lf MB/s", 1000000. * size * BENCHMARK_ITERATIONS / (time * 1024. * 1024.)); if (mode == ACCESS_BAR) { gettimeofday(&start,NULL); for (i = 0, errors = 0; i < BENCHMARK_ITERATIONS; i++) { pcilib_write(handle, bar, 0, size, buf); pcilib_read(handle, bar, 0, size, check); if (memcmp(buf, check, size)) ++errors; } gettimeofday(&end,NULL); time = (end.tv_sec - start.tv_sec)*1000000 + (end.tv_usec - start.tv_usec); printf(", write-verify: %8.2lf MB/s", 1000000. * size * BENCHMARK_ITERATIONS / (time * 1024. * 1024.)); if (errors) printf(", errors: %u of %u", errors, BENCHMARK_ITERATIONS); } printf("\n"); } printf("\n\n"); free(check); free(buf); return 0; } #define pci2host16(endianess, value) endianess? /* typedef struct { size_t size; void *data; size_t pos; int multi_mode; } DMACallbackContext; static int DMACallback(void *arg, pcilib_dma_flags_t flags, size_t bufsize, void *buf) { DMACallbackContext *ctx = (DMACallbackContext*)arg; if ((ctx->pos + bufsize > ctx->size)||(!ctx->data)) { ctx->size *= 2; ctx->data = realloc(ctx->data, ctx->size); if (!ctx->data) { Error("Allocation of %i bytes of memory have failed", ctx->size); return 0; } } memcpy(ctx->data + ctx->pos, buf, bufsize); ctx->pos += bufsize; if (flags & PCILIB_DMA_FLAG_EOP) return 0; return 1; } */ int ReadData(pcilib_t *handle, ACCESS_MODE mode, FLAGS flags, pcilib_dma_engine_addr_t dma, pcilib_bar_t bar, uintptr_t addr, size_t n, access_t access, int endianess, size_t timeout, FILE *o) { void *buf; int i, err; size_t ret, bytes; size_t size = n * abs(access); int block_width, blocks_per_line; int numbers_per_block, numbers_per_line; pcilib_dma_engine_t dmaid; pcilib_dma_flags_t dma_flags = 0; int fd; char stmp[256]; struct stat st; const pcilib_board_info_t *board_info; numbers_per_block = BLOCK_SIZE / access; block_width = numbers_per_block * ((access * 2) + SEPARATOR_WIDTH); blocks_per_line = (LINE_WIDTH - 10) / (block_width + BLOCK_SEPARATOR_WIDTH); if ((blocks_per_line > 1)&&(blocks_per_line % 2)) --blocks_per_line; numbers_per_line = blocks_per_line * numbers_per_block; if (size) { buf = malloc(size); if (!buf) Error("Allocation of %zu bytes of memory has failed", size); } else { buf = NULL; } switch (mode) { case ACCESS_DMA: if (timeout == (size_t)-1) timeout = PCILIB_DMA_TIMEOUT; dmaid = pcilib_find_dma_by_addr(handle, PCILIB_DMA_FROM_DEVICE, dma); if (dmaid == PCILIB_DMA_ENGINE_INVALID) Error("Invalid DMA engine (%lu) is specified", dma); if (flags&FLAG_MULTIPACKET) dma_flags |= PCILIB_DMA_FLAG_MULTIPACKET; if (flags&FLAG_WAIT) dma_flags |= PCILIB_DMA_FLAG_WAIT; if (size) { err = pcilib_read_dma_custom(handle, dmaid, addr, size, dma_flags, timeout, buf, &bytes); if (err) Error("Error (%i) is reported by DMA engine", err); } else { dma_flags |= PCILIB_DMA_FLAG_IGNORE_ERRORS; size = 2048; bytes = 0; do { size *= 2; buf = realloc(buf, size); if (!buf) Error("Allocation of %zu bytes of memory has failed", size); err = pcilib_read_dma_custom(handle, dmaid, addr, size - bytes, dma_flags, timeout, buf + bytes, &ret); bytes += ret; if ((!err)&&(flags&FLAG_MULTIPACKET)) { err = PCILIB_ERROR_TOOBIG; if ((flags&FLAG_WAIT)==0) timeout = 0; } } while (err == PCILIB_ERROR_TOOBIG); } if ((err)&&(err != PCILIB_ERROR_TIMEOUT)) { Error("Error (%i) during DMA read", err); } if (bytes <= 0) { pcilib_warning("No data is returned by DMA engine"); return -1; } size = bytes; n = bytes / abs(access); addr = 0; break; case ACCESS_FIFO: pcilib_read_fifo(handle, bar, addr, access, n, buf); addr = 0; break; case ACCESS_CONFIG: board_info = pcilib_get_board_info(handle); sprintf(stmp, "/sys/bus/pci/devices/0000:%02x:%02x.%1x/config", board_info->bus, board_info->slot, board_info->func); fd = open(stmp, O_RDONLY); if ((!fd)||(fstat(fd, &st))) Error("Can't open %s", stmp); if (st.st_size < addr) Error("Access beyond the end of PCI configuration space"); if (st.st_size < (addr + size)) { n = (st.st_size - addr) / abs(access); size = n * abs(access); if (!n) Error("Access beyond the end of PCI configuration space"); } lseek(fd, addr, SEEK_SET); ret = read(fd, buf, size); if (ret == (size_t)-1) Error("Error reading %s", stmp); if (ret < size) { size = ret; n = ret / abs(access); } close(fd); break; default: pcilib_read(handle, bar, addr, size, buf); } if (endianess) pcilib_swap(buf, buf, abs(access), n); if (o) { printf("Writting output (%zu bytes) to file (append to the end)...\n", n * abs(access)); fwrite(buf, abs(access), n, o); } else { for (i = 0; i < n; i++) { if (i) { if (i%numbers_per_line == 0) printf("\n"); else { printf("%*s", SEPARATOR_WIDTH, ""); if (i%numbers_per_block == 0) printf("%*s", BLOCK_SEPARATOR_WIDTH, ""); } } if (i%numbers_per_line == 0) printf("%8lx: ", addr + i * abs(access)); switch (access) { case 1: printf("%0*hhx", access * 2, ((uint8_t*)buf)[i]); break; case 2: printf("%0*hx", access * 2, ((uint16_t*)buf)[i]); break; case 4: printf("%0*x", access * 2, ((uint32_t*)buf)[i]); break; case 8: printf("%0*lx", access * 2, ((uint64_t*)buf)[i]); break; } } printf("\n\n"); } free(buf); return 0; } int ReadRegister(pcilib_t *handle, const pcilib_model_description_t *model_info, const char *bank, const char *reg) { int i; int err; const char *format; pcilib_register_bank_t bank_id; pcilib_register_bank_addr_t bank_addr = 0; pcilib_register_value_t value; if (reg) { pcilib_register_t regid = pcilib_find_register(handle, bank, reg); bank_id = pcilib_find_register_bank_by_addr(handle, model_info->registers[regid].bank); format = model_info->banks[bank_id].format; if (!format) format = "%lu"; err = pcilib_read_register_by_id(handle, regid, &value); // err = pcilib_read_register(handle, bank, reg, &value); if (err) printf("Error reading register %s\n", reg); else { printf("%s = ", reg); printf(format, value); printf("\n"); } } else { // Adding DMA registers pcilib_get_dma_description(handle); if (model_info->registers) { if (bank) { bank_id = pcilib_find_register_bank(handle, bank); bank_addr = model_info->banks[bank_id].addr; } printf("Registers:\n"); for (i = 0; model_info->registers[i].bits; i++) { if ((model_info->registers[i].mode & PCILIB_REGISTER_R)&&((!bank)||(model_info->registers[i].bank == bank_addr))&&(model_info->registers[i].type != PCILIB_REGISTER_BITS)) { bank_id = pcilib_find_register_bank_by_addr(handle, model_info->registers[i].bank); format = model_info->banks[bank_id].format; if (!format) format = "%lu"; err = pcilib_read_register_by_id(handle, i, &value); if (err) printf(" %s = error reading value", model_info->registers[i].name); else { printf(" %s = ", model_info->registers[i].name); printf(format, value); } printf(" ["); printf(format, model_info->registers[i].defvalue); printf("]"); printf("\n"); } } } else { printf("No registers"); } printf("\n"); } return 0; } #define WRITE_REGVAL(buf, n, access, o) {\ uint##access##_t tbuf[n]; \ for (i = 0; i < n; i++) { \ tbuf[i] = (uint##access##_t)buf[i]; \ } \ fwrite(tbuf, access/8, n, o); \ } int ReadRegisterRange(pcilib_t *handle, const pcilib_model_description_t *model_info, const char *bank, uintptr_t addr, long addr_shift, size_t n, FILE *o) { int err; int i; const pcilib_register_bank_description_t *banks = model_info->banks; pcilib_register_bank_t bank_id = pcilib_find_register_bank(handle, bank); if (bank_id == PCILIB_REGISTER_BANK_INVALID) { if (bank) Error("Invalid register bank is specified (%s)", bank); else Error("Register bank should be specified"); } int access = banks[bank_id].access / 8; // int size = n * abs(access); int block_width, blocks_per_line; int numbers_per_block, numbers_per_line; numbers_per_block = BLOCK_SIZE / access; block_width = numbers_per_block * ((access * 2) + SEPARATOR_WIDTH); blocks_per_line = (LINE_WIDTH - 6) / (block_width + BLOCK_SEPARATOR_WIDTH); if ((blocks_per_line > 1)&&(blocks_per_line % 2)) --blocks_per_line; numbers_per_line = blocks_per_line * numbers_per_block; pcilib_register_value_t buf[n]; err = pcilib_read_register_space(handle, bank, addr, n, buf); if (err) Error("Error reading register space for bank \"%s\" at address %lx, size %lu", bank?bank:"default", addr, n); if (o) { printf("Writting output (%zu bytes) to file (append to the end)...\n", n * abs(access)); switch (access) { case 1: WRITE_REGVAL(buf, n, 8, o) break; case 2: WRITE_REGVAL(buf, n, 16, o) break; case 4: WRITE_REGVAL(buf, n, 32, o) break; case 8: WRITE_REGVAL(buf, n, 64, o) break; } } else { for (i = 0; i < n; i++) { if (i) { if (i%numbers_per_line == 0) printf("\n"); else { printf("%*s", SEPARATOR_WIDTH, ""); if (i%numbers_per_block == 0) printf("%*s", BLOCK_SEPARATOR_WIDTH, ""); } } if (i%numbers_per_line == 0) printf("%4lx: ", addr + 4 * i - addr_shift); printf("%0*lx", access * 2, (unsigned long)buf[i]); } printf("\n\n"); } return 0; } int WriteData(pcilib_t *handle, ACCESS_MODE mode, pcilib_dma_engine_addr_t dma, pcilib_bar_t bar, uintptr_t addr, size_t n, access_t access, int endianess, char ** data, int verify) { int read_back = 0; void *buf, *check; int res = 0, i, err; int size = n * abs(access); size_t ret; pcilib_dma_engine_t dmaid; if (mode == ACCESS_CONFIG) Error("Writting to PCI configuration space is not supported"); err = posix_memalign( (void**)&buf, 256, size ); if (!err) err = posix_memalign( (void**)&check, 256, size ); if ((err)||(!buf)||(!check)) Error("Allocation of %i bytes of memory have failed", size); for (i = 0; i < n; i++) { switch (access) { case 1: res = sscanf(data[i], "%hhx", ((uint8_t*)buf)+i); break; case 2: res = sscanf(data[i], "%hx", ((uint16_t*)buf)+i); break; case 4: res = sscanf(data[i], "%x", ((uint32_t*)buf)+i); break; case 8: res = sscanf(data[i], "%lx", ((uint64_t*)buf)+i); break; default: Error("Unexpected data size (%lu)", access); } if ((res != 1)||(!isxnumber(data[i]))) Error("Can't parse data value at poition %i, (%s) is not valid hex number", i, data[i]); } if (endianess) pcilib_swap(buf, buf, abs(access), n); switch (mode) { case ACCESS_DMA: dmaid = pcilib_find_dma_by_addr(handle, PCILIB_DMA_TO_DEVICE, dma); if (dmaid == PCILIB_DMA_ENGINE_INVALID) Error("Invalid DMA engine (%lu) is specified", dma); err = pcilib_write_dma(handle, dmaid, addr, size, buf, &ret); if ((err)||(ret != size)) { if (err == PCILIB_ERROR_TIMEOUT) Error("Timeout writting the data to DMA"); else if (err) Error("DMA engine returned a error while writing the data"); else if (!ret) Error("No data is written by DMA engine"); else Error("Only %lu bytes of %lu is written by DMA engine", ret, size); } break; case ACCESS_FIFO: pcilib_write_fifo(handle, bar, addr, access, n, buf); break; default: pcilib_write(handle, bar, addr, size, buf); if (verify) { pcilib_read(handle, bar, addr, size, check); read_back = 1; } } if ((read_back)&&(memcmp(buf, check, size))) { printf("Write failed: the data written and read differ, the foolowing is read back:\n"); if (endianess) pcilib_swap(check, check, abs(access), n); ReadData(handle, mode, 0, dma, bar, addr, n, access, endianess, (size_t)-1, NULL); exit(-1); } free(check); free(buf); return 0; } int WriteRegisterRange(pcilib_t *handle, const pcilib_model_description_t *model_info, const char *bank, uintptr_t addr, long addr_shift, size_t n, char ** data) { pcilib_register_value_t *buf, *check; int res, i, err; unsigned long value; int size = n * sizeof(pcilib_register_value_t); err = posix_memalign( (void**)&buf, 256, size ); if (!err) err = posix_memalign( (void**)&check, 256, size ); if ((err)||(!buf)||(!check)) Error("Allocation of %i bytes of memory have failed", size); for (i = 0; i < n; i++) { res = sscanf(data[i], "%lx", &value); if ((res != 1)||(!isxnumber(data[i]))) Error("Can't parse data value at poition %i, (%s) is not valid hex number", i, data[i]); buf[i] = value; } err = pcilib_write_register_space(handle, bank, addr, n, buf); if (err) Error("Error writting register space for bank \"%s\" at address %lx, size %lu", bank?bank:"default", addr, n); err = pcilib_read_register_space(handle, bank, addr, n, check); if (err) Error("Error reading register space for bank \"%s\" at address %lx, size %lu", bank?bank:"default", addr, n); if (memcmp(buf, check, size)) { printf("Write failed: the data written and read differ, the foolowing is read back:\n"); ReadRegisterRange(handle, model_info, bank, addr, addr_shift, n, NULL); exit(-1); } free(check); free(buf); return 0; } int WriteRegister(pcilib_t *handle, const pcilib_model_description_t *model_info, const char *bank, const char *reg, char ** data) { int err; unsigned long val; pcilib_register_value_t value; const char *format = NULL; pcilib_register_t regid = pcilib_find_register(handle, bank, reg); if (regid == PCILIB_REGISTER_INVALID) Error("Can't find register (%s) from bank (%s)", reg, bank?bank:"autodetected"); /* pcilib_register_bank_t bank_id; pcilib_register_bank_addr_t bank_addr; bank_id = pcilib_find_bank_by_addr(handle, model_info->registers[regid].bank); if (bank_id == PCILIB_REGISTER_BANK_INVALID) Error("Can't find bank of the register (%s)", reg); format = model_info->banks[bank_id].format; if (!format) format = "%lu"; */ if (isnumber(*data)) { if (sscanf(*data, "%li", &val) != 1) { Error("Can't parse data value (%s) is not valid decimal number", *data); } format = "%li"; } else if (isxnumber(*data)) { if (sscanf(*data, "%lx", &val) != 1) { Error("Can't parse data value (%s) is not valid decimal number", *data); } format = "0x%lx"; } else { Error("Can't parse data value (%s) is not valid decimal number", *data); } value = val; err = pcilib_write_register(handle, bank, reg, value); if (err) Error("Error writting register %s\n", reg); if ((model_info->registers[regid].mode&PCILIB_REGISTER_RW) == PCILIB_REGISTER_RW) { err = pcilib_read_register(handle, bank, reg, &value); if (err) Error("Error reading back register %s for verification\n", reg); if (val != value) { Error("Failed to write register %s: %lu is written and %lu is read back", reg, val, value); } else { printf("%s = ", reg); printf(format, value); printf("\n"); } } else { printf("%s is written\n ", reg); } return 0; } typedef struct { pcilib_t *handle; pcilib_event_t event; pcilib_event_data_type_t data; fastwriter_t *writer; int verbose; pcilib_timeout_t timeout; size_t run_time; size_t trigger_time; size_t max_triggers; pcilib_event_flags_t flags; FORMAT format; volatile int event_pending; /**< Used to detect that we have read previously triggered event */ volatile int trigger_thread_started; /**< Indicates that trigger thread is ready and we can't procced to start event recording */ volatile int started; /**< Indicates that recording is started */ volatile int run_flag; volatile int writing_flag; struct timeval first_frame; struct timeval last_frame; size_t last_num; size_t trigger_failed; size_t trigger_count; size_t event_count; size_t incomplete_count; size_t broken_count; size_t missing_count; size_t storage_count; struct timeval start_time; struct timeval stop_time; } GRABContext; int GrabCallback(pcilib_event_id_t event_id, pcilib_event_info_t *info, void *user) { int err = 0; void *data; size_t size; GRABContext *ctx = (GRABContext*)user; pcilib_t *handle = ctx->handle; gettimeofday(&ctx->last_frame, NULL); if (!ctx->event_count) { memcpy(&ctx->first_frame, &ctx->last_frame, sizeof(struct timeval)); } ctx->event_pending = 0; ctx->event_count++; if (ctx->last_num) { size_t missing_count = (info->seqnum - ctx->last_num) - 1; ctx->missing_count += missing_count; #ifdef PCILIB_DEBUG_MISSING_EVENTS if (missing_count) pcilib_debug(MISSING_EVENTS, "%zu missing events between %zu and %zu", missing_count, ctx->last_num, info->seqnum); #endif /* PCILIB_DEBUG_MISSING_EVENTS */ } ctx->last_num = info->seqnum; if (info->flags&PCILIB_EVENT_INFO_FLAG_BROKEN) { ctx->incomplete_count++; return PCILIB_STREAMING_CONTINUE; } switch (ctx->format) { case FORMAT_DEFAULT: data = pcilib_get_data(handle, event_id, PCILIB_EVENT_DATA, &size); break; default: data = pcilib_get_data(handle, event_id, PCILIB_EVENT_RAW_DATA, &size); } if (!data) { ctx->broken_count++; return PCILIB_STREAMING_CONTINUE; } if (ctx->format == FORMAT_HEADER) { uint64_t header[8]; header[0] = info->type; header[1] = ctx->data; header[2] = 0; header[3] = size; header[4] = info->seqnum; header[5] = info->offset; memcpy(header + 6, &info->timestamp, 16); err = fastwriter_push(ctx->writer, 64, header); } if (!err) err = fastwriter_push(ctx->writer, size, data); if (err) { fastwriter_cancel(ctx->writer); if (err != EWOULDBLOCK) Error("Storage error %i", err); ctx->storage_count++; pcilib_return_data(handle, event_id, ctx->data, data); return PCILIB_STREAMING_CONTINUE; } err = pcilib_return_data(handle, event_id, ctx->data, data); if (err) { ctx->missing_count++; fastwriter_cancel(ctx->writer); return PCILIB_STREAMING_CONTINUE; } err = fastwriter_commit(ctx->writer); if (err) Error("Error commiting data to storage, Error: %i", err); return PCILIB_STREAMING_CONTINUE; } int raw_data(pcilib_event_id_t event_id, pcilib_event_info_t *info, pcilib_event_flags_t flags, size_t size, void *data, void *user) { int err; GRABContext *ctx = (GRABContext*)user; // pcilib_t *handle = ctx->handle; if ((info)&&(info->seqnum != ctx->last_num)) { gettimeofday(&ctx->last_frame, NULL); if (!ctx->event_count) { memcpy(&ctx->first_frame, &ctx->last_frame, sizeof(struct timeval)); } ctx->event_count++; if (ctx->last_num) { size_t missing_count = (info->seqnum - ctx->last_num) - 1; ctx->missing_count += missing_count; #ifdef PCILIB_DEBUG_MISSING_EVENTS if (missing_count) pcilib_debug(MISSING_EVENTS, "%zu missing events between %zu and %zu", missing_count, ctx->last_num, info->seqnum); #endif /* PCILIB_DEBUG_MISSING_EVENTS */ } ctx->last_num = info->seqnum; } err = fastwriter_push_data(ctx->writer, size, data); if (err) { if (err == EWOULDBLOCK) Error("Storage is not able to handle the data stream, buffer overrun"); Error("Storage error %i", err); } return PCILIB_STREAMING_CONTINUE; } void *Trigger(void *user) { int err; struct timeval start; GRABContext *ctx = (GRABContext*)user; size_t trigger_time = ctx->trigger_time; size_t max_triggers = ctx->max_triggers; ctx->trigger_thread_started = 1; ctx->event_pending = 1; while (!ctx->started) ; gettimeofday(&start, NULL); do { err = pcilib_trigger(ctx->handle, ctx->event, 0, NULL); if (err) ctx->trigger_failed++; if ((++ctx->trigger_count == max_triggers)&&(max_triggers)) break; if (trigger_time) { pcilib_add_timeout(&start, trigger_time); if ((ctx->stop_time.tv_sec)&&(pcilib_timecmp(&start, &ctx->stop_time)>0)) break; pcilib_sleep_until_deadline(&start); } else { while ((ctx->event_pending)&&(ctx->run_flag)) usleep(10); ctx->event_pending = 1; } } while (ctx->run_flag); ctx->trigger_thread_started = 0; return NULL; } void GrabStats(GRABContext *ctx, struct timeval *end_time) { int verbose; pcilib_timeout_t duration, fps_duration; struct timeval cur; double fps = 0, good_fps = 0; size_t total, good, pending = 0; verbose = ctx->verbose; if (end_time) { if (verbose++) { printf("-------------------------------------------------------------------------------\n"); } } else { gettimeofday(&cur, NULL); end_time = &cur; } // if ((ctx->event_count + ctx->missing_count) == 0) // return; duration = pcilib_timediff(&ctx->start_time, end_time); fps_duration = pcilib_timediff(&ctx->first_frame, &ctx->last_frame); if (ctx->trigger_count) { total = ctx->trigger_count; pending = ctx->trigger_count - ctx->event_count - ctx->missing_count - ctx->trigger_failed; } else { total = ctx->event_count + ctx->missing_count; } good = ctx->event_count - ctx->broken_count - ctx->incomplete_count - ctx->storage_count; if (ctx->event_count > 1) { fps = (ctx->event_count - 1) / (1.*fps_duration/1000000); } if (good > 1) { good_fps = (good - 1) / (1.*fps_duration/1000000); } printf("Run: "); PrintTime(duration); if (ctx->trigger_count) { printf(", Triggers: "); PrintNumber(ctx->trigger_count); } printf(", Captured: "); PrintNumber(ctx->event_count); printf(" FPS %5.0lf", fps); if ((ctx->flags&PCILIB_EVENT_FLAG_RAW_DATA_ONLY) == 0) { printf(", Stored: "); PrintNumber(good); printf(" FPS %5.0lf", good_fps); } printf("\n"); if (verbose > 2) { if (ctx->trigger_count) { printf("Trig: "); PrintNumber(ctx->trigger_count); printf(" Issued: "); PrintNumber(ctx->trigger_count - ctx->trigger_failed); printf(" ("); PrintPercent(ctx->trigger_count - ctx->trigger_failed, ctx->trigger_count); printf("%%) Failed: "); PrintNumber(ctx->trigger_failed); printf( " ("); PrintPercent(ctx->trigger_failed, ctx->trigger_count); printf( "%%); Pending: "); PrintNumber(pending); printf( " ("); PrintPercent(pending, ctx->trigger_count); printf( "%%)\n"); } if (ctx->flags&PCILIB_EVENT_FLAG_RAW_DATA_ONLY) { printf("Captured: "); PrintNumber(good); } else { printf("Good: "); PrintNumber(good); printf(", Dropped: "); PrintNumber(ctx->storage_count); printf(", Bad: "); PrintNumber(ctx->incomplete_count); printf(", Empty: "); PrintNumber(ctx->broken_count); } printf(", Lost: "); PrintNumber(ctx->missing_count); printf("\n"); } if (verbose > 1) { if (ctx->flags&PCILIB_EVENT_FLAG_RAW_DATA_ONLY) { printf("Captured: "); PrintPercent(good, total); } else { printf("Good: "); PrintPercent(good, total); printf("%% Dropped: "); PrintPercent(ctx->storage_count, total); printf("%% Bad: "); PrintPercent(ctx->incomplete_count, total); printf("%% Empty: "); PrintPercent(ctx->broken_count, total); } printf("%% Lost: "); PrintPercent(ctx->missing_count, total); printf("%%"); printf("\n"); } } void StorageStats(GRABContext *ctx) { int err; fastwriter_stats_t st; pcilib_timeout_t duration; struct timeval cur; gettimeofday(&cur, NULL); duration = pcilib_timediff(&ctx->start_time, &cur); err = fastwriter_get_stats(ctx->writer, &st); if (err) return; printf("Wrote "); PrintSize(st.written); printf(" of "); PrintSize(st.commited); printf(" at "); PrintSize(1000000.*st.written / duration); printf("/s, %6.2lf%% ", 100.*st.buffer_used / st.buffer_size); printf(" of "); PrintSize(st.buffer_size); printf(" buffer (%6.2lf%% max)\n", 100.*st.buffer_max / st.buffer_size); } void *Monitor(void *user) { struct timeval deadline; struct timeval nextinfo; GRABContext *ctx = (GRABContext*)user; int verbose = ctx->verbose; pcilib_timeout_t timeout = ctx->timeout; if (timeout == PCILIB_TIMEOUT_INFINITE) timeout = 0; // while (!ctx->started); if (timeout) { memcpy(&deadline, (struct timeval*)&ctx->last_frame, sizeof(struct timeval)); pcilib_add_timeout(&deadline, timeout); } if (verbose > 0) { pcilib_calc_deadline(&nextinfo, STATUS_MESSAGE_INTERVAL*1000000); } while (ctx->run_flag) { if (StopFlag) { pcilib_stop(ctx->handle, PCILIB_EVENT_FLAG_STOP_ONLY); break; } if (timeout) { if (pcilib_calc_time_to_deadline(&deadline) == 0) { memcpy(&deadline, (struct timeval*)&ctx->last_frame, sizeof(struct timeval)); pcilib_add_timeout(&deadline, timeout); if (pcilib_calc_time_to_deadline(&deadline) == 0) { pcilib_stop(ctx->handle, PCILIB_EVENT_FLAG_STOP_ONLY); break; } } } if (verbose > 0) { if (pcilib_calc_time_to_deadline(&nextinfo) == 0) { GrabStats(ctx, NULL); StorageStats(ctx); pcilib_calc_deadline(&nextinfo, STATUS_MESSAGE_INTERVAL*1000000); } } usleep(100000); } pcilib_calc_deadline(&nextinfo, STATUS_MESSAGE_INTERVAL*1000000); while (ctx->writing_flag) { if (pcilib_calc_time_to_deadline(&nextinfo) == 0) { if (verbose >= 0) StorageStats(ctx); pcilib_calc_deadline(&nextinfo, STATUS_MESSAGE_INTERVAL*1000000); } usleep(100000); } return NULL; } int TriggerAndGrab(pcilib_t *handle, GRAB_MODE grab_mode, const char *evname, const char *data_type, size_t num, size_t run_time, size_t trigger_time, pcilib_timeout_t timeout, PARTITION partition, FORMAT format, size_t buffer_size, size_t threads, int verbose, const char *output) { int err; GRABContext ctx; // void *data = NULL; // size_t size, written; pcilib_event_t event; pcilib_event_t listen_events; pcilib_event_data_type_t data; pthread_t monitor_thread; pthread_t trigger_thread; pthread_attr_t attr; struct sched_param sched; struct timeval end_time; pcilib_event_flags_t flags; if (evname) { event = pcilib_find_event(handle, evname); if (event == PCILIB_EVENT_INVALID) Error("Can't find event (%s)", evname); listen_events = event; } else { listen_events = PCILIB_EVENTS_ALL; event = PCILIB_EVENT0; } if (data_type) { data = pcilib_find_event_data_type(handle, event, data_type); if (data == PCILIB_EVENT_DATA_TYPE_INVALID) Error("Can't find data type (%s)", data_type); } else { data = PCILIB_EVENT_DATA; } memset(&ctx, 0, sizeof(GRABContext)); ctx.handle = handle; ctx.event = event; ctx.data = data; ctx.run_time = run_time; ctx.timeout = timeout; ctx.format = format; if (grab_mode&GRAB_MODE_GRAB) ctx.verbose = verbose; else ctx.verbose = 0; if (grab_mode&GRAB_MODE_GRAB) { ctx.writer = fastwriter_init(output, 0); if (!ctx.writer) Error("Can't initialize fastwritter library"); fastwriter_set_buffer_size(ctx.writer, buffer_size); err = fastwriter_open(ctx.writer, output, 0); if (err) Error("Error opening file (%s), Error: %i\n", output, err); ctx.writing_flag = 1; } ctx.run_flag = 1; flags = PCILIB_EVENT_FLAGS_DEFAULT; if (data == PCILIB_EVENT_RAW_DATA) { if (format == FORMAT_RAW) { flags |= PCILIB_EVENT_FLAG_RAW_DATA_ONLY; } } else { flags |= PCILIB_EVENT_FLAG_PREPROCESS; } ctx.flags = flags; // printf("Limits: %lu %lu %lu\n", num, run_time, timeout); pcilib_configure_autostop(handle, num, run_time); if (flags&PCILIB_EVENT_FLAG_RAW_DATA_ONLY) { pcilib_configure_rawdata_callback(handle, &raw_data, &ctx); } if (flags&PCILIB_EVENT_FLAG_PREPROCESS) { pcilib_configure_preprocessing_threads(handle, threads); } if (grab_mode&GRAB_MODE_TRIGGER) { if (trigger_time) { if ((timeout)&&(trigger_time * 2 > timeout)) { timeout = 2 * trigger_time; ctx.timeout = timeout; } } else { // Otherwise, we will trigger next event after previous one is read if (((grab_mode&GRAB_MODE_GRAB) == 0)||(flags&PCILIB_EVENT_FLAG_RAW_DATA_ONLY)) trigger_time = PCILIB_TRIGGER_TIMEOUT; } ctx.max_triggers = num; ctx.trigger_count = 0; ctx.trigger_time = trigger_time; // We don't really care if RT priority is imposible pthread_attr_init(&attr); if (!pthread_attr_setschedpolicy(&attr, SCHED_FIFO)) { sched.sched_priority = sched_get_priority_min(SCHED_FIFO); pthread_attr_setschedparam(&attr, &sched); } // Start triggering thread and wait until it is schedulled if (pthread_create(&trigger_thread, &attr, Trigger, (void*)&ctx)) Error("Error spawning trigger thread"); while (!ctx.trigger_thread_started) usleep(10); } gettimeofday(&ctx.start_time, NULL); if (grab_mode&GRAB_MODE_GRAB) { err = pcilib_start(handle, listen_events, flags); if (err) Error("Failed to start event engine, error %i", err); } ctx.started = 1; if (run_time) { ctx.stop_time.tv_usec = ctx.start_time.tv_usec + run_time%1000000; if (ctx.stop_time.tv_usec > 999999) { ctx.stop_time.tv_usec -= 1000000; __sync_synchronize(); ctx.stop_time.tv_sec = ctx.start_time.tv_sec + 1 + run_time / 1000000; } else { __sync_synchronize(); ctx.stop_time.tv_sec = ctx.start_time.tv_sec + run_time / 1000000; } } memcpy(&ctx.last_frame, &ctx.start_time, sizeof(struct timeval)); if (pthread_create(&monitor_thread, NULL, Monitor, (void*)&ctx)) Error("Error spawning monitoring thread"); if (grab_mode&GRAB_MODE_GRAB) { err = pcilib_stream(handle, &GrabCallback, &ctx); if (err) Error("Error streaming events, error %i", err); } ctx.run_flag = 0; if (grab_mode&GRAB_MODE_TRIGGER) { while (ctx.trigger_thread_started) usleep(10); } if (grab_mode&GRAB_MODE_GRAB) { pcilib_stop(handle, PCILIB_EVENT_FLAGS_DEFAULT); } gettimeofday(&end_time, NULL); if (grab_mode&GRAB_MODE_TRIGGER) { pthread_join(trigger_thread, NULL); } if (grab_mode&GRAB_MODE_GRAB) { if (verbose >= 0) printf("Grabbing is finished, flushing results....\n"); err = fastwriter_close(ctx.writer); if (err) Error("Storage problems, error %i", err); } ctx.writing_flag = 0; pthread_join(monitor_thread, NULL); if ((grab_mode&GRAB_MODE_GRAB)&&(verbose>=0)) { GrabStats(&ctx, &end_time); StorageStats(&ctx); } fastwriter_destroy(ctx.writer); return 0; } int StartStopDMA(pcilib_t *handle, const pcilib_model_description_t *model_info, pcilib_dma_engine_addr_t dma, pcilib_dma_direction_t dma_direction, int start) { int err; pcilib_dma_engine_t dmaid; if (dma == PCILIB_DMA_ENGINE_ADDR_INVALID) { const pcilib_dma_description_t *dma_info = pcilib_get_dma_description(handle); if (start) Error("DMA engine should be specified"); for (dmaid = 0; dma_info->engines[dmaid].addr_bits; dmaid++) { err = pcilib_start_dma(handle, dmaid, 0); if (err) Error("Error starting DMA Engine (%s %i)", ((dma_info->engines[dmaid].direction == PCILIB_DMA_FROM_DEVICE)?"C2S":"S2C"), dma_info->engines[dmaid].addr); err = pcilib_stop_dma(handle, dmaid, PCILIB_DMA_FLAG_PERSISTENT); if (err) Error("Error stopping DMA Engine (%s %i)", ((dma_info->engines[dmaid].direction == PCILIB_DMA_FROM_DEVICE)?"C2S":"S2C"), dma_info->engines[dmaid].addr); } return 0; } if (dma_direction&PCILIB_DMA_FROM_DEVICE) { dmaid = pcilib_find_dma_by_addr(handle, PCILIB_DMA_FROM_DEVICE, dma); if (dmaid == PCILIB_DMA_ENGINE_INVALID) Error("Invalid DMA engine (C2S %lu) is specified", dma); if (start) { err = pcilib_start_dma(handle, dmaid, PCILIB_DMA_FLAG_PERSISTENT); if (err) Error("Error starting DMA engine (C2S %lu)", dma); } else { err = pcilib_start_dma(handle, dmaid, 0); if (err) Error("Error starting DMA engine (C2S %lu)", dma); err = pcilib_stop_dma(handle, dmaid, PCILIB_DMA_FLAG_PERSISTENT); if (err) Error("Error stopping DMA engine (C2S %lu)", dma); } } if (dma_direction&PCILIB_DMA_TO_DEVICE) { dmaid = pcilib_find_dma_by_addr(handle, PCILIB_DMA_TO_DEVICE, dma); if (dmaid == PCILIB_DMA_ENGINE_INVALID) Error("Invalid DMA engine (S2C %lu) is specified", dma); if (start) { err = pcilib_start_dma(handle, dmaid, PCILIB_DMA_FLAG_PERSISTENT); if (err) Error("Error starting DMA engine (S2C %lu)", dma); } else { err = pcilib_start_dma(handle, dmaid, 0); if (err) Error("Error starting DMA engine (S2C %lu)", dma); err = pcilib_stop_dma(handle, dmaid, PCILIB_DMA_FLAG_PERSISTENT); if (err) Error("Error stopping DMA engine (S2C %lu)", dma); } } return 0; } typedef struct { pcilib_kmem_use_t use; int referenced; int hw_lock; int reusable; int persistent; int open; size_t count; size_t size; } kmem_use_info_t; #define MAX_USES 64 pcilib_kmem_use_t ParseUse(const char *use) { unsigned long utmp; if (use) { if ((!isxnumber(use))||(sscanf(use, "%lx", &utmp) != 1)) Error("Invalid use (%s) is specified", use); if (strlen(use) < 5) return PCILIB_KMEM_USE(PCILIB_KMEM_USE_USER,utmp); else return utmp; } Error("Kernel memory use is not specified"); return 0; } size_t FindUse(size_t *n_uses, kmem_use_info_t *uses, pcilib_kmem_use_t use) { size_t i, n = *n_uses; if (uses[n - 1].use == use) return n - 1; for (i = 1; i < (n - 1); i++) { if (uses[i].use == use) return i; } if (n == MAX_USES) return 0; memset(&uses[n], 0, sizeof(pcilib_kmem_use_t)); uses[n].use = use; return (*n_uses)++; } kmem_use_info_t *GetUse(size_t n_uses, kmem_use_info_t *uses, pcilib_kmem_use_t use) { size_t i; for (i = 0; i < n_uses; i++) { if (uses[i].use == use) { if (uses[i].count) return uses + i; else return NULL; } } return NULL; } int ParseKMEM(pcilib_t *handle, const char *device, size_t *uses_number, kmem_use_info_t *uses) { DIR *dir; struct dirent *entry; const char *pos; char sysdir[256]; char fname[256]; char info[256]; size_t useid, n_uses = 1; // Use 0 is for others memset(uses, 0, sizeof(kmem_use_info_t)); pos = strrchr(device, '/'); if (pos) ++pos; else pos = device; snprintf(sysdir, 255, "/sys/class/fpga/%s", pos); dir = opendir(sysdir); if (!dir) Error("Can't open directory (%s)", sysdir); while ((entry = readdir(dir)) != NULL) { FILE *f; unsigned long use = 0; unsigned long size = 0; unsigned long refs = 0; unsigned long mode = 0; unsigned long hwref = 0; if (strncmp(entry->d_name, "kbuf", 4)) continue; if (!isnumber(entry->d_name+4)) continue; snprintf(fname, 255, "%s/%s", sysdir, entry->d_name); f = fopen(fname, "r"); if (!f) Error("Can't access file (%s)", fname); while(!feof(f)) { if (!fgets(info, 256, f)) break; if (!strncmp(info, "use:", 4)) use = strtoul(info+4, NULL, 16); if (!strncmp(info, "size:", 5)) size = strtoul(info+5, NULL, 10); if (!strncmp(info, "refs:", 5)) refs = strtoul(info+5, NULL, 10); if (!strncmp(info, "mode:", 5)) mode = strtoul(info+5, NULL, 16); if (!strncmp(info, "hw ref:", 7)) hwref = strtoul(info+7, NULL, 10); } fclose(f); useid = FindUse(&n_uses, uses, use); uses[useid].count++; uses[useid].size += size; if (refs) uses[useid].referenced = 1; if (hwref) uses[useid].hw_lock = 1; if (mode&KMEM_MODE_REUSABLE) uses[useid].reusable = 1; if (mode&KMEM_MODE_PERSISTENT) uses[useid].persistent = 1; if (mode&KMEM_MODE_COUNT) uses[useid].open = 1; } closedir(dir); *uses_number = n_uses; return 0; } int ListKMEM(pcilib_t *handle, const char *device) { int err; char stmp[256]; size_t i, useid, n_uses; kmem_use_info_t uses[MAX_USES]; err = ParseKMEM(handle, device, &n_uses, uses); if (err) Error("Failed to parse kernel memory information provided through sysfs"); if ((n_uses == 1)&&(uses[0].count == 0)) { printf("No kernel memory is allocated\n"); return 0; } printf("Use Type Count Total Size REF Mode \n"); printf("--------------------------------------------------------------------------------\n"); for (useid = 0; useid < n_uses; useid++) { if (useid + 1 == n_uses) { if (!uses[0].count) continue; i = 0; } else i = useid + 1; printf("%08x ", uses[i].use); if (!i) printf("All Others "); else if ((uses[i].use >> 16) == PCILIB_KMEM_USE_DMA_RING) printf("DMA%u %s Ring ", uses[i].use&0x7F, ((uses[i].use&0x80)?"S2C":"C2S")); else if ((uses[i].use >> 16) == PCILIB_KMEM_USE_DMA_PAGES) printf("DMA%u %s Pages ", uses[i].use&0x7F, ((uses[i].use&0x80)?"S2C":"C2S")); else if ((uses[i].use >> 16) == PCILIB_KMEM_USE_USER) printf("User %04x ", uses[i].use&0xFFFF); else printf (" "); printf(" "); printf("%6zu", uses[i].count); printf(" "); printf("%10s", GetPrintSize(stmp, uses[i].size)); printf(" "); if (uses[i].referenced&&uses[i].hw_lock) printf("HW+SW"); else if (uses[i].referenced) printf(" SW"); else if (uses[i].hw_lock) printf("HW "); else printf(" - "); printf(" "); if (uses[i].persistent) printf("Persistent"); else if (uses[i].open) printf("Open "); else if (uses[i].reusable) printf("Reusable "); else printf("Closed "); printf("\n"); } printf("--------------------------------------------------------------------------------\n"); printf("REF - Software/Hardware Reference, MODE - Reusable/Persistent/Open\n"); return 0; } int DetailKMEM(pcilib_t *handle, const char *device, const char *use, size_t block) { int err; size_t i, n; pcilib_kmem_handle_t *kbuf; pcilib_kmem_use_t useid = ParseUse(use); size_t n_uses; kmem_use_info_t uses[MAX_USES]; kmem_use_info_t *use_info; if (block == (size_t)-1) { err = ParseKMEM(handle, device, &n_uses, uses); if (err) Error("Failed to parse kernel memory information provided through sysfs"); use_info = GetUse(n_uses, uses, useid); if (!use_info) Error("No kernel buffers is allocated for the specified use (%lx)", useid); i = 0; n = use_info->count; } else { i = block; n = block + 1; } kbuf = pcilib_alloc_kernel_memory(handle, 0, n, 0, 0, useid, PCILIB_KMEM_FLAG_REUSE|PCILIB_KMEM_FLAG_TRY); if (!kbuf) { Error("Allocation of kernel buffer (use %lx, count %lu) is failed\n", useid, n); return 0; } printf("Buffer Address Hardware Address Bus Address\n"); printf("--------------------------------------------------------------------------------\n"); for (; i < n; i++) { void *data = pcilib_kmem_get_block_ua(handle, kbuf, i); uintptr_t pa = pcilib_kmem_get_block_pa(handle, kbuf, i); uintptr_t ba = pcilib_kmem_get_block_ba(handle, kbuf, i); printf("%6lu %16p %16lx %16lx\n", i, data, pa, ba); } printf("\n"); pcilib_free_kernel_memory(handle, kbuf, KMEM_FLAG_REUSE); return 0; } int ReadKMEM(pcilib_t *handle, const char *device, pcilib_kmem_use_t useid, size_t block, size_t max_size, FILE *o) { int err; void *data; size_t size; pcilib_kmem_handle_t *kbuf; if (block == (size_t)-1) block = 0; kbuf = pcilib_alloc_kernel_memory(handle, 0, block + 1, 0, 0, useid, PCILIB_KMEM_FLAG_REUSE|PCILIB_KMEM_FLAG_TRY); if (!kbuf) { Error("The specified kernel buffer is not allocated\n"); return 0; } err = pcilib_kmem_sync_block(handle, kbuf, PCILIB_KMEM_SYNC_FROMDEVICE, block); if (err) { pcilib_free_kernel_memory(handle, kbuf, KMEM_FLAG_REUSE); Error("The synchronization of kernel buffer has failed\n"); return 0; } data = pcilib_kmem_get_block_ua(handle, kbuf, block); if (data) { size = pcilib_kmem_get_block_size(handle, kbuf, block); if ((max_size)&&(size > max_size)) size = max_size; fwrite(data, 1, size, o?o:stdout); } else { pcilib_free_kernel_memory(handle, kbuf, KMEM_FLAG_REUSE); Error("The specified block is not existing\n"); return 0; } pcilib_free_kernel_memory(handle, kbuf, KMEM_FLAG_REUSE); return 0; } int AllocKMEM(pcilib_t *handle, const char *device, const char *use, const char *type, size_t size, size_t block_size, size_t alignment) { pcilib_kmem_type_t ktype = PCILIB_KMEM_TYPE_PAGE; pcilib_kmem_flags_t flags = KMEM_FLAG_REUSE; pcilib_kmem_handle_t *kbuf; pcilib_kmem_use_t useid = ParseUse(use); long page_size = sysconf(_SC_PAGESIZE); if (type) { if (!strcmp(type, "consistent")) ktype = PCILIB_KMEM_TYPE_CONSISTENT; else if (!strcmp(type, "c2s")) ktype = PCILIB_KMEM_TYPE_DMA_C2S_PAGE; else if (!strcmp(type, "s2c")) ktype = PCILIB_KMEM_TYPE_DMA_S2C_PAGE; else Error("Invalid memory type (%s) is specified", type); } if ((block_size)&&(ktype != PCILIB_KMEM_TYPE_CONSISTENT)) Error("Selected memory type does not allow custom size"); kbuf = pcilib_alloc_kernel_memory(handle, ktype, size, (block_size?block_size:page_size), (alignment?alignment:page_size), useid, flags|KMEM_FLAG_PERSISTENT); if (!kbuf) Error("Allocation of kernel memory has failed"); pcilib_free_kernel_memory(handle, kbuf, flags); return 0; } int FreeKMEM(pcilib_t *handle, const char *device, const char *use, int force) { int err; int i; pcilib_kmem_use_t useid; pcilib_kmem_flags_t flags = PCILIB_KMEM_FLAG_HARDWARE|PCILIB_KMEM_FLAG_PERSISTENT|PCILIB_KMEM_FLAG_EXCLUSIVE; if (force) flags |= PCILIB_KMEM_FLAG_FORCE; // this will ignore mmap locks as well. if (!strcasecmp(use, "dma")) { for (i = 0; i < PCILIB_MAX_DMA_ENGINES; i++) { err = pcilib_clean_kernel_memory(handle, PCILIB_KMEM_USE(PCILIB_KMEM_USE_DMA_RING, i), flags); if (err) Error("Error cleaning DMA%i C2S Ring buffer", i); err = pcilib_clean_kernel_memory(handle, PCILIB_KMEM_USE(PCILIB_KMEM_USE_DMA_RING, 0x80|i), flags); if (err) Error("Error cleaning DMA%i S2C Ring buffer", i); err = pcilib_clean_kernel_memory(handle, PCILIB_KMEM_USE(PCILIB_KMEM_USE_DMA_PAGES, i), flags); if (err) Error("Error cleaning DMA%i C2S Page buffers", i); err = pcilib_clean_kernel_memory(handle, PCILIB_KMEM_USE(PCILIB_KMEM_USE_DMA_PAGES, 0x80|i), flags); if (err) Error("Error cleaning DMA%i S2C Page buffers", i); } return 0; } useid = ParseUse(use); err = pcilib_clean_kernel_memory(handle, useid, flags); if (err) Error("Error cleaning kernel buffers for use (0x%lx)", useid); return 0; } int ListDMA(pcilib_t *handle, const char *device, const pcilib_model_description_t *model_info) { int err; DIR *dir; struct dirent *entry; const char *pos; char sysdir[256]; char fname[256]; char info[256]; char stmp[256]; pcilib_dma_engine_t dmaid; pcilib_dma_engine_status_t status; pos = strrchr(device, '/'); if (pos) ++pos; else pos = device; snprintf(sysdir, 255, "/sys/class/fpga/%s", pos); dir = opendir(sysdir); if (!dir) Error("Can't open directory (%s)", sysdir); printf("DMA Engine Status Total Size Buffer Ring (1st used - 1st free)\n"); printf("--------------------------------------------------------------------------------\n"); while ((entry = readdir(dir)) != NULL) { FILE *f; unsigned long use = 0; // unsigned long size = 0; // unsigned long refs = 0; unsigned long mode = 0; // unsigned long hwref = 0; if (strncmp(entry->d_name, "kbuf", 4)) continue; if (!isnumber(entry->d_name+4)) continue; snprintf(fname, 255, "%s/%s", sysdir, entry->d_name); f = fopen(fname, "r"); if (!f) Error("Can't access file (%s)", fname); while(!feof(f)) { if (!fgets(info, 256, f)) break; if (!strncmp(info, "use:", 4)) use = strtoul(info+4, NULL, 16); // if (!strncmp(info, "size:", 5)) size = strtoul(info+5, NULL, 10); // if (!strncmp(info, "refs:", 5)) refs = strtoul(info+5, NULL, 10); if (!strncmp(info, "mode:", 5)) mode = strtoul(info+5, NULL, 16); // if (!strncmp(info, "hw ref:", 7)) hwref = strtoul(info+7, NULL, 10); } fclose(f); if ((mode&(KMEM_MODE_REUSABLE|KMEM_MODE_PERSISTENT|KMEM_MODE_COUNT)) == 0) continue; // closed if ((use >> 16) != PCILIB_KMEM_USE_DMA_RING) continue; if (use&0x80) { dmaid = pcilib_find_dma_by_addr(handle, PCILIB_DMA_TO_DEVICE, use&0x7F); } else { dmaid = pcilib_find_dma_by_addr(handle, PCILIB_DMA_FROM_DEVICE, use&0x7F); } if (dmaid == PCILIB_DMA_ENGINE_INVALID) continue; printf("DMA%lu %s ", use&0x7F, (use&0x80)?"S2C":"C2S"); err = pcilib_start_dma(handle, dmaid, 0); if (err) { printf("-- Wrong state, start is failed\n"); continue; } err = pcilib_get_dma_status(handle, dmaid, &status, 0, NULL); if (err) { printf("-- Wrong state, failed to obtain status\n"); pcilib_stop_dma(handle, dmaid, 0); continue; } pcilib_stop_dma(handle, dmaid, 0); if (status.started) printf("S"); else printf(" "); if (status.ring_head == status.ring_tail) printf(" "); else printf("D"); printf(" "); printf("%10s", GetPrintSize(stmp, status.ring_size * status.buffer_size)); printf(" "); printf("%zu - %zu (of %zu)", status.ring_tail, status.ring_head, status.ring_size); printf("\n"); } closedir(dir); printf("--------------------------------------------------------------------------------\n"); printf("S - Started, D - Data in buffers\n"); return 0; } int ListBuffers(pcilib_t *handle, const char *device, const pcilib_model_description_t *model_info, pcilib_dma_engine_addr_t dma, pcilib_dma_direction_t dma_direction) { int err; size_t i; pcilib_dma_engine_t dmaid; pcilib_dma_engine_status_t status; pcilib_dma_buffer_status_t *buffer; char stmp[256]; dmaid = pcilib_find_dma_by_addr(handle, dma_direction, dma); if (dmaid == PCILIB_DMA_ENGINE_INVALID) Error("The specified DMA engine is not found"); err = pcilib_start_dma(handle, dmaid, 0); if (err) Error("Error starting the specified DMA engine"); err = pcilib_get_dma_status(handle, dmaid, &status, 0, NULL); if (err) Error("Failed to obtain status of the specified DMA engine"); buffer = (pcilib_dma_buffer_status_t*)malloc(status.ring_size*sizeof(pcilib_dma_buffer_status_t)); if (!buffer) Error("Failed to allocate memory for status buffer"); err = pcilib_get_dma_status(handle, dmaid, &status, status.ring_size, buffer); if (err) Error("Failed to obtain extended status of the specified DMA engine"); printf("Buffer Status Total Size \n"); printf("--------------------------------------------------------------------------------\n"); for (i = 0; i < status.ring_size; i++) { printf("%8zu ", i); printf("%c%c %c%c ", buffer[i].used?'U':' ', buffer[i].error?'E':' ', buffer[i].first?'F':' ', buffer[i].last?'L':' '); printf("%10s", GetPrintSize(stmp, buffer[i].size)); printf("\n"); } printf("--------------------------------------------------------------------------------\n"); printf("U - Used, E - Error, F - First block, L - Last Block\n"); free(buffer); pcilib_stop_dma(handle, dmaid, 0); return 0; } int ReadBuffer(pcilib_t *handle, const char *device, const pcilib_model_description_t *model_info, pcilib_dma_engine_addr_t dma, pcilib_dma_direction_t dma_direction, size_t block, FILE *o) { int err; pcilib_dma_engine_t dmaid; pcilib_dma_engine_status_t status; pcilib_dma_buffer_status_t *buffer; size_t size; dmaid = pcilib_find_dma_by_addr(handle, dma_direction, dma); if (dmaid == PCILIB_DMA_ENGINE_INVALID) Error("The specified DMA engine is not found"); err = pcilib_start_dma(handle, dmaid, 0); if (err) Error("Error starting the specified DMA engine"); err = pcilib_get_dma_status(handle, dmaid, &status, 0, NULL); if (err) Error("Failed to obtain status of the specified DMA engine"); buffer = (pcilib_dma_buffer_status_t*)malloc(status.ring_size*sizeof(pcilib_dma_buffer_status_t)); if (!buffer) Error("Failed to allocate memory for status buffer"); err = pcilib_get_dma_status(handle, dmaid, &status, status.ring_size, buffer); if (err) Error("Failed to obtain extended status of the specified DMA engine"); if (block == (size_t)-1) { // get current } size = buffer[block].size; free(buffer); pcilib_stop_dma(handle, dmaid, 0); return ReadKMEM(handle, device, ((dma&0x7F)|((dma_direction == PCILIB_DMA_TO_DEVICE)?0x80:0x00))|(PCILIB_KMEM_USE_DMA_PAGES<<16), block, size, o); } int EnableIRQ(pcilib_t *handle, const pcilib_model_description_t *model_info, pcilib_irq_type_t irq_type) { int err; err = pcilib_enable_irq(handle, irq_type, 0); if (err) { if ((err != PCILIB_ERROR_NOTSUPPORTED)&&(err != PCILIB_ERROR_NOTAVAILABLE)) Error("Error enabling IRQs"); } return err; } int DisableIRQ(pcilib_t *handle, const pcilib_model_description_t *model_info, pcilib_irq_type_t irq_type) { int err; err = pcilib_disable_irq(handle, 0); if (err) { if ((err != PCILIB_ERROR_NOTSUPPORTED)&&(err != PCILIB_ERROR_NOTAVAILABLE)) Error("Error disabling IRQs"); } return err; } int AckIRQ(pcilib_t *handle, const pcilib_model_description_t *model_info, pcilib_irq_hw_source_t irq_source) { pcilib_clear_irq(handle, irq_source); return 0; } int WaitIRQ(pcilib_t *handle, const pcilib_model_description_t *model_info, pcilib_irq_hw_source_t irq_source, pcilib_timeout_t timeout) { int err; size_t count; err = pcilib_wait_irq(handle, irq_source, timeout, &count); if (err) { if (err == PCILIB_ERROR_TIMEOUT) Error("Timeout waiting for IRQ"); else Error("Error waiting for IRQ"); } return 0; } int main(int argc, char **argv) { int err = 0; int i; long itmp; size_t ztmp; unsigned char c; const char *stmp; const char *num_offset; int details = 0; int verbose = 0; int quiete = 0; int force = 0; int verify = 0; pcilib_log_priority_t log_priority; const char *model = NULL; const pcilib_model_description_t *model_info; const pcilib_dma_description_t *dma_info; MODE mode = MODE_INVALID; GRAB_MODE grab_mode = 0; size_t trigger_time = 0; size_t run_time = 0; size_t buffer = 0; size_t threads = 1; FORMAT format = FORMAT_DEFAULT; PARTITION partition = PARTITION_UNKNOWN; FLAGS flags = 0; const char *atype = NULL; const char *type = NULL; ACCESS_MODE amode = ACCESS_BAR; const char *fpga_device = DEFAULT_FPGA_DEVICE; pcilib_bar_t bar = PCILIB_BAR_DETECT; const char *addr = NULL; const char *reg = NULL; const char *bank = NULL; char **data = NULL; const char *event = NULL; const char *data_type = NULL; const char *dma_channel = NULL; const char *use = NULL; size_t block = (size_t)-1; pcilib_irq_type_t irq_type = PCILIB_IRQ_TYPE_ALL; pcilib_irq_hw_source_t irq_source = PCILIB_IRQ_SOURCE_DEFAULT; pcilib_dma_direction_t dma_direction = PCILIB_DMA_BIDIRECTIONAL; pcilib_kmem_use_t useid = 0; pcilib_dma_engine_addr_t dma = PCILIB_DMA_ENGINE_ADDR_INVALID; long addr_shift = 0; uintptr_t start = -1; size_t block_size = 0; size_t size = 1; access_t access = 4; // int skip = 0; int endianess = 0; size_t timeout = 0; size_t alignment = 0; const char *output = NULL; FILE *ofile = NULL; size_t iterations = BENCHMARK_ITERATIONS; pcilib_t *handle; int size_set = 0; int timeout_set = 0; // int run_time_set = 0; struct sched_param sched_param = {0}; while ((c = getopt_long(argc, argv, "hqilr::w::g::d:m:t:b:a:s:e:o:", long_options, NULL)) != (unsigned char)-1) { extern int optind; switch (c) { case OPT_HELP: Usage(argc, argv, NULL); break; case OPT_INFO: if (mode != MODE_INVALID) Usage(argc, argv, "Multiple operations are not supported"); mode = MODE_INFO; break; case OPT_LIST: if (mode == MODE_LIST) details++; else if (mode != MODE_INVALID) Usage(argc, argv, "Multiple operations are not supported"); mode = MODE_LIST; break; case OPT_RESET: if (mode != MODE_INVALID) Usage(argc, argv, "Multiple operations are not supported"); mode = MODE_RESET; break; case OPT_BENCHMARK: if (mode != MODE_INVALID) Usage(argc, argv, "Multiple operations are not supported"); mode = MODE_BENCHMARK; if (optarg) addr = optarg; else if ((optind < argc)&&(argv[optind][0] != '-')) addr = argv[optind++]; break; case OPT_READ: if (mode != MODE_INVALID) Usage(argc, argv, "Multiple operations are not supported"); mode = MODE_READ; if (optarg) addr = optarg; else if ((optind < argc)&&(argv[optind][0] != '-')) addr = argv[optind++]; break; case OPT_WRITE: if (mode != MODE_INVALID) Usage(argc, argv, "Multiple operations are not supported"); mode = MODE_WRITE; if (optarg) addr = optarg; else if ((optind < argc)&&(argv[optind][0] != '-')) addr = argv[optind++]; break; case OPT_GRAB: if ((mode != MODE_INVALID)&&((mode != MODE_GRAB)||(grab_mode&GRAB_MODE_GRAB))) Usage(argc, argv, "Multiple operations are not supported"); mode = MODE_GRAB; grab_mode |= GRAB_MODE_GRAB; stmp = NULL; if (optarg) stmp = optarg; else if ((optind < argc)&&(argv[optind][0] != '-')) stmp = argv[optind++]; if (stmp) { if ((event)&&(strcasecmp(stmp,event))) Usage(argc, argv, "Redefinition of considered event"); event = stmp; } break; case OPT_TRIGGER: if ((mode != MODE_INVALID)&&((mode != MODE_GRAB)||(grab_mode&GRAB_MODE_TRIGGER))) Usage(argc, argv, "Multiple operations are not supported"); mode = MODE_GRAB; grab_mode |= GRAB_MODE_TRIGGER; stmp = NULL; if (optarg) stmp = optarg; else if ((optind < argc)&&(argv[optind][0] != '-')) stmp = argv[optind++]; if (stmp) { if ((event)&&(strcasecmp(stmp,event))) Usage(argc, argv, "Redefinition of considered event"); event = stmp; } break; case OPT_LIST_DMA: if (mode != MODE_INVALID) Usage(argc, argv, "Multiple operations are not supported"); mode = MODE_LIST_DMA; break; case OPT_LIST_DMA_BUFFERS: if (mode != MODE_INVALID) Usage(argc, argv, "Multiple operations are not supported"); mode = MODE_LIST_DMA_BUFFERS; dma_channel = optarg; break; case OPT_READ_DMA_BUFFER: if (mode != MODE_INVALID) Usage(argc, argv, "Multiple operations are not supported"); mode = MODE_READ_DMA_BUFFER; num_offset = strchr(optarg, ':'); if (num_offset) { if (sscanf(num_offset + 1, "%zu", &block) != 1) Usage(argc, argv, "Invalid buffer is specified (%s)", num_offset + 1); *(char*)num_offset = 0; } else block = (size_t)-1; dma_channel = optarg; break; case OPT_START_DMA: if (mode != MODE_INVALID) Usage(argc, argv, "Multiple operations are not supported"); mode = MODE_START_DMA; if (optarg) dma_channel = optarg; else if ((optind < argc)&&(argv[optind][0] != '-')) dma_channel = argv[optind++]; break; case OPT_STOP_DMA: if (mode != MODE_INVALID) Usage(argc, argv, "Multiple operations are not supported"); mode = MODE_STOP_DMA; if (optarg) dma_channel = optarg; else if ((optind < argc)&&(argv[optind][0] != '-')) dma_channel = argv[optind++]; break; case OPT_ENABLE_IRQ: if (mode != MODE_INVALID) Usage(argc, argv, "Multiple operations are not supported"); mode = MODE_ENABLE_IRQ; if (optarg) num_offset = optarg; else if ((optind < argc)&&(argv[optind][0] != '-')) num_offset = argv[optind++]; else num_offset = NULL; if (num_offset) { if ((!isnumber(num_offset))||(sscanf(num_offset, "%li", &itmp) != 1)) Usage(argc, argv, "Invalid IRQ source is specified (%s)", num_offset); irq_type = itmp; } break; case OPT_DISABLE_IRQ: if (mode != MODE_INVALID) Usage(argc, argv, "Multiple operations are not supported"); mode = MODE_DISABLE_IRQ; if (optarg) num_offset = optarg; else if ((optind < argc)&&(argv[optind][0] != '-')) num_offset = argv[optind++]; else num_offset = NULL; if (num_offset) { if ((!isnumber(num_offset))||(sscanf(num_offset, "%li", &itmp) != 1)) Usage(argc, argv, "Invalid IRQ source is specified (%s)", num_offset); irq_type = itmp; } break; case OPT_ACK_IRQ: if (mode != MODE_INVALID) Usage(argc, argv, "Multiple operations are not supported"); mode = MODE_ACK_IRQ; if (optarg) num_offset = optarg; else if ((optind < argc)&&(argv[optind][0] != '-')) num_offset = argv[optind++]; else num_offset = NULL; if (num_offset) { if ((!isnumber(num_offset))||(sscanf(num_offset, "%li", &itmp) != 1)) Usage(argc, argv, "Invalid IRQ source is specified (%s)", num_offset); irq_source = itmp; } break; case OPT_WAIT_IRQ: if (mode != MODE_INVALID) Usage(argc, argv, "Multiple operations are not supported"); mode = MODE_WAIT_IRQ; if (optarg) num_offset = optarg; else if ((optind < argc)&&(argv[optind][0] != '-')) num_offset = argv[optind++]; else num_offset = NULL; if (num_offset) { if ((!isnumber(num_offset))||(sscanf(num_offset, "%li", &itmp) != 1)) Usage(argc, argv, "Invalid IRQ source is specified (%s)", num_offset); irq_source = itmp; } break; case OPT_LIST_KMEM: if (mode != MODE_INVALID) Usage(argc, argv, "Multiple operations are not supported"); mode = MODE_LIST_KMEM; if (optarg) use = optarg; else if ((optind < argc)&&(argv[optind][0] != '-')) use = argv[optind++]; else use = NULL; if (use) { num_offset = strchr(use, ':'); if (num_offset) { if (sscanf(num_offset + 1, "%zu", &block) != 1) Usage(argc, argv, "Invalid block number is specified (%s)", num_offset + 1); *(char*)num_offset = 0; } } break; case OPT_READ_KMEM: if (mode != MODE_INVALID) Usage(argc, argv, "Multiple operations are not supported"); mode = MODE_READ_KMEM; num_offset = strchr(optarg, ':'); if (num_offset) { if (sscanf(num_offset + 1, "%zu", &block) != 1) Usage(argc, argv, "Invalid block number is specified (%s)", num_offset + 1); *(char*)num_offset = 0; } use = optarg; useid = ParseUse(use); break; case OPT_ALLOC_KMEM: if (mode != MODE_INVALID) Usage(argc, argv, "Multiple operations are not supported"); mode = MODE_ALLOC_KMEM; if (optarg) use = optarg; else if ((optind < argc)&&(argv[optind][0] != '-')) use = argv[optind++]; break; case OPT_FREE_KMEM: if (mode != MODE_INVALID) Usage(argc, argv, "Multiple operations are not supported"); mode = MODE_FREE_KMEM; if (optarg) use = optarg; else if ((optind < argc)&&(argv[optind][0] != '-')) use = argv[optind++]; break; case OPT_DEVICE: fpga_device = optarg; break; case OPT_MODEL: model = optarg; /* if (!strcasecmp(optarg, "pci")) model = PCILIB_MODEL_PCI; else if (!strcasecmp(optarg, "ipecamera")) model = PCILIB_MODEL_IPECAMERA; else if (!strcasecmp(optarg, "kapture")) model = PCILIB_MODEL_KAPTURE; else Usage(argc, argv, "Invalid memory model (%s) is specified", optarg);*/ break; case OPT_BAR: bank = optarg; // if ((sscanf(optarg,"%li", &itmp) != 1)||(itmp < 0)||(itmp >= PCILIB_MAX_BANKS)) Usage(argc, argv, "Invalid data bank (%s) is specified", optarg); // else bar = itmp; break; case OPT_ALIGNMENT: if ((!isnumber(optarg))||(sscanf(optarg, "%zu", &alignment) != 1)) { Usage(argc, argv, "Invalid alignment is specified (%s)", optarg); } break; case OPT_ACCESS: if (!strncasecmp(optarg, "fifo", 4)) { atype = "fifo"; num_offset = optarg + 4; amode = ACCESS_FIFO; } else if (!strncasecmp(optarg, "dma", 3)) { atype = "dma"; num_offset = optarg + 3; amode = ACCESS_DMA; } else if (!strncasecmp(optarg, "bar", 3)) { atype = "plain"; num_offset = optarg + 3; amode = ACCESS_BAR; } else if (!strncasecmp(optarg, "config", 6)) { atype = "config"; num_offset = optarg + 6; amode = ACCESS_CONFIG; } else if (!strncasecmp(optarg, "plain", 5)) { atype = "plain"; num_offset = optarg + 5; amode = ACCESS_BAR; } else { num_offset = optarg; } if (*num_offset) { if ((!isnumber(num_offset))||(sscanf(num_offset, "%li", &itmp) != 1)) Usage(argc, argv, "Invalid access type (%s) is specified", optarg); switch (itmp) { case 8: access = 1; break; case 16: access = 2; break; case 32: access = 4; break; case 64: access = 8; break; default: Usage(argc, argv, "Invalid data width (%s) is specified", num_offset); } } break; case OPT_SIZE: if ((!isnumber(optarg))||(sscanf(optarg, "%zu", &size) != 1)) { if (strcasecmp(optarg, "unlimited")) Usage(argc, argv, "Invalid size is specified (%s)", optarg); else size = 0;//(size_t)-1; } size_set = 1; break; case OPT_BLOCK_SIZE: if ((!isnumber(optarg))||(sscanf(optarg, "%zu", &block_size) != 1)) { Usage(argc, argv, "Invalid size is specified (%s)", optarg); } break; case OPT_ENDIANESS: if ((*optarg == 'b')||(*optarg == 'B')) { if (ntohs(1) == 1) endianess = 0; else endianess = 1; } else if ((*optarg == 'l')||(*optarg == 'L')) { if (ntohs(1) == 1) endianess = 1; else endianess = 0; } else Usage(argc, argv, "Invalid endianess is specified (%s)", optarg); break; case OPT_TIMEOUT: if ((!isnumber(optarg))||(sscanf(optarg, "%zu", &timeout) != 1)) { if (strcasecmp(optarg, "unlimited")) Usage(argc, argv, "Invalid timeout is specified (%s)", optarg); else timeout = PCILIB_TIMEOUT_INFINITE; } timeout_set = 1; break; case OPT_OUTPUT: output = optarg; break; case OPT_ITERATIONS: if ((!isnumber(optarg))||(sscanf(optarg, "%zu", &iterations) != 1)) Usage(argc, argv, "Invalid number of iterations is specified (%s)", optarg); break; case OPT_EVENT: event = optarg; break; case OPT_TYPE: type = optarg; break; case OPT_DATA_TYPE: data_type = optarg; break; case OPT_RUN_TIME: if ((!isnumber(optarg))||(sscanf(optarg, "%zu", &run_time) != 1)) { if (strcasecmp(optarg, "unlimited")) Usage(argc, argv, "Invalid run-time is specified (%s)", optarg); else run_time = 0; } // run_time_set = 1; break; case OPT_TRIGGER_TIME: if ((!isnumber(optarg))||(sscanf(optarg, "%zu", &trigger_time) != 1)) Usage(argc, argv, "Invalid trigger-time is specified (%s)", optarg); break; case OPT_TRIGGER_RATE: if ((!isnumber(optarg))||(sscanf(optarg, "%zu", &ztmp) != 1)) Usage(argc, argv, "Invalid trigger-rate is specified (%s)", optarg); trigger_time = (1000000 / ztmp) + ((1000000 % ztmp)?1:0); break; case OPT_BUFFER: if (optarg) num_offset = optarg; else if ((optind < argc)&&(argv[optind][0] != '-')) num_offset = argv[optind++]; else num_offset = NULL; if (num_offset) { if ((!isnumber(num_offset))||(sscanf(num_offset, "%zu", &buffer) != 1)) Usage(argc, argv, "Invalid buffer size is specified (%s)", num_offset); buffer *= 1024 * 1024; } else { buffer = get_free_memory(); if (buffer < 256) Error("Not enough free memory (%lz MB) for buffering", buffer / 1024 / 1024); buffer -= 128 + buffer/16; } break; case OPT_THREADS: if (optarg) num_offset = optarg; else if ((optind < argc)&&(argv[optind][0] != '-')) num_offset = argv[optind++]; else num_offset = NULL; if (num_offset) { if ((!isnumber(num_offset))||(sscanf(num_offset, "%zu", &threads) != 1)) Usage(argc, argv, "Invalid threads number is specified (%s)", num_offset); } else { threads = 0; } break; case OPT_FORMAT: if (!strcasecmp(optarg, "raw")) format = FORMAT_RAW; else if (!strcasecmp(optarg, "add_header")) format = FORMAT_HEADER; // else if (!strcasecmp(optarg, "ringfs")) format = FORMAT_RINGFS; else if (strcasecmp(optarg, "default")) Error("Invalid format (%s) is specified", optarg); break; case OPT_QUIETE: quiete = 1; verbose = -1; break; case OPT_VERBOSE: if (optarg) num_offset = optarg; else if ((optind < argc)&&(argv[optind][0] != '-')) num_offset = argv[optind++]; else num_offset = NULL; if (num_offset) { if ((!isnumber(num_offset))||(sscanf(num_offset, "%i", &verbose) != 1)) Usage(argc, argv, "Invalid verbosity level is specified (%s)", num_offset); } else { verbose = 1; } break; case OPT_FORCE: force = 1; break; case OPT_VERIFY: verify = 1; break; case OPT_MULTIPACKET: flags |= FLAG_MULTIPACKET; break; case OPT_WAIT: flags |= FLAG_WAIT; break; default: Usage(argc, argv, "Unknown option (%s) with argument (%s)", optarg?argv[optind-2]:argv[optind-1], optarg?optarg:"(null)"); } } if (mode == MODE_INVALID) { if (argc > 1) Usage(argc, argv, "Operation is not specified"); else Usage(argc, argv, NULL); } if (verbose) log_priority = PCILIB_LOG_INFO; else if (quiete) log_priority = PCILIB_LOG_ERROR; else log_priority = PCILIB_LOG_WARNING; pcilib_set_logger(log_priority, &LogError, NULL); handle = pcilib_open(fpga_device, model); if (handle < 0) Error("Failed to open FPGA device: %s", fpga_device); model_info = pcilib_get_model_description(handle); dma_info = pcilib_get_dma_description(handle); switch (mode) { case MODE_WRITE: if (((argc - optind) == 1)&&(*argv[optind] == '*')) { int vallen = strlen(argv[optind]); if (vallen > 1) { data = (char**)malloc(size * (vallen + sizeof(char*))); if (!data) Error("Error allocating memory for data array"); for (i = 0; i < size; i++) { data[i] = ((char*)data) + size * sizeof(char*) + i * vallen; strcpy(data[i], argv[optind] + 1); } } else { data = (char**)malloc(size * (9 + sizeof(char*))); if (!data) Error("Error allocating memory for data array"); for (i = 0; i < size; i++) { data[i] = ((char*)data) + size * sizeof(char*) + i * 9; sprintf(data[i], "%x", i); } } } else if ((argc - optind) == size) data = argv + optind; else Usage(argc, argv, "The %i data values is specified, but %i required", argc - optind, size); case MODE_READ: if (!addr) { if (((!dma_info)||(!dma_info->api))&&(!model_info->api)) { // if (model == PCILIB_MODEL_PCI) { if ((amode != ACCESS_DMA)&&(amode != ACCESS_CONFIG)) Usage(argc, argv, "The address is not specified"); } else ++mode; } break; case MODE_START_DMA: case MODE_STOP_DMA: case MODE_LIST_DMA_BUFFERS: case MODE_READ_DMA_BUFFER: if ((dma_channel)&&(*dma_channel)) { itmp = strlen(dma_channel) - 1; if (dma_channel[itmp] == 'r') dma_direction = PCILIB_DMA_FROM_DEVICE; else if (dma_channel[itmp] == 'w') dma_direction = PCILIB_DMA_TO_DEVICE; if (dma_direction != PCILIB_DMA_BIDIRECTIONAL) itmp--; if (strncmp(dma_channel, "dma", 3)) num_offset = dma_channel; else { num_offset = dma_channel + 3; itmp -= 3; } if (bank) { if (strncmp(num_offset, bank, itmp)) Usage(argc, argv, "Conflicting DMA channels are specified in mode parameter (%s) and bank parameter (%s)", dma_channel, bank); } if (!isnumber_n(num_offset, itmp)) Usage(argc, argv, "Invalid DMA channel (%s) is specified", dma_channel); dma = atoi(num_offset); } break; default: if (argc > optind) Usage(argc, argv, "Invalid non-option parameters are supplied"); } if (addr) { if ((!strncmp(addr, "dma", 3))&&((addr[3]==0)||isnumber(addr+3))) { if ((atype)&&(amode != ACCESS_DMA)) Usage(argc, argv, "Conflicting access modes, the DMA read is requested, but access type is (%s)", type); if (bank) { if ((addr[3] != 0)&&(strcmp(addr + 3, bank))) Usage(argc, argv, "Conflicting DMA channels are specified in read parameter (%s) and bank parameter (%s)", addr + 3, bank); } else { if (addr[3] == 0) Usage(argc, argv, "The DMA channel is not specified"); } dma = atoi(addr + 3); amode = ACCESS_DMA; addr = NULL; } else if ((!strncmp(addr, "bar", 3))&&((addr[3]==0)||isnumber(addr+3))) { if ((atype)&&(amode != ACCESS_BAR)) Usage(argc, argv, "Conflicting access modes, the plain PCI read is requested, but access type is (%s)", type); if ((addr[3] != 0)&&(strcmp(addr + 3, bank))) Usage(argc, argv, "Conflicting PCI bars are specified in read parameter (%s) and bank parameter (%s)", addr + 3, bank); bar = atoi(addr + 3); amode = ACCESS_BAR; addr = NULL; } else if (!strcmp(addr, "config")) { if ((atype)&&(amode != ACCESS_CONFIG)) Usage(argc, argv, "Conflicting access modes, the read of PCI configurataion space is requested, but access type is (%s)", type); amode = ACCESS_CONFIG; addr = NULL; } else if ((isxnumber(addr))&&(sscanf(addr, "%lx", &start) == 1)) { // check if the address in the register range const pcilib_register_range_t *ranges = model_info->ranges; if (ranges) { for (i = 0; ranges[i].start != ranges[i].end; i++) if ((start >= ranges[i].start)&&(start <= ranges[i].end)) break; // register access in plain mode if (ranges[i].start != ranges[i].end) { pcilib_register_bank_t regbank = pcilib_find_register_bank_by_addr(handle, ranges[i].bank); if (regbank == PCILIB_REGISTER_BANK_INVALID) Error("Configuration error: register bank specified in the address range is not found"); bank = model_info->banks[regbank].name; start += ranges[i].addr_shift; addr_shift = ranges[i].addr_shift; ++mode; } } } else { if (pcilib_find_register(handle, bank, addr) == PCILIB_REGISTER_INVALID) { Usage(argc, argv, "Invalid address (%s) is specified", addr); } else { reg = addr; ++mode; } } } if (mode == MODE_GRAB) { if (output) { char fsname[128]; if (!get_file_fs(output, 127, fsname)) { if (!strcmp(fsname, "ext4")) partition = PARTITION_EXT4; else if (!strcmp(fsname, "raw")) partition = PARTITION_RAW; } } else { output = "/dev/null"; partition = PARTITION_NULL; } if (!timeout_set) { if (run_time) timeout = PCILIB_TIMEOUT_INFINITE; else timeout = PCILIB_EVENT_TIMEOUT; } if (!size_set) { if (run_time) size = 0; } } if (mode != MODE_GRAB) { if (size == (size_t)-1) Usage(argc, argv, "Unlimited size is not supported in selected operation mode"); } if ((bank)&&(amode == ACCESS_DMA)) { if ((!isnumber(bank))||(sscanf(bank,"%li", &itmp) != 1)||(itmp < 0)) Usage(argc, argv, "Invalid DMA channel (%s) is specified", bank); else dma = itmp; } else if (bank) { switch (mode) { case MODE_BENCHMARK: case MODE_READ: case MODE_WRITE: if ((!isnumber(bank))||(sscanf(bank,"%li", &itmp) != 1)||(itmp < 0)||(itmp >= PCILIB_MAX_REGISTER_BANKS)) Usage(argc, argv, "Invalid data bank (%s) is specified", bank); else bar = itmp; break; default: if (pcilib_find_register_bank(handle, bank) == PCILIB_REGISTER_BANK_INVALID) Usage(argc, argv, "Invalid data bank (%s) is specified", bank); } } signal(SIGINT, signal_exit_handler); if ((mode != MODE_GRAB)&&(output)) { ofile = fopen(output, "a+"); if (!ofile) { Error("Failed to open file \"%s\"", output); } } // Requesting real-time priority when needed switch (mode) { case MODE_READ: case MODE_WRITE: if (amode != ACCESS_DMA) break; case MODE_BENCHMARK: case MODE_GRAB: sched_param.sched_priority = sched_get_priority_min(SCHED_FIFO); err = sched_setscheduler(0, SCHED_FIFO, &sched_param); if (err) pcilib_info("Failed to acquire real-time priority (errno: %i)", errno); break; default: ; } switch (mode) { case MODE_INFO: Info(handle, model_info); break; case MODE_LIST: List(handle, model_info, bank, details); break; case MODE_BENCHMARK: Benchmark(handle, amode, dma, bar, start, size_set?size:0, access, iterations); break; case MODE_READ: if (amode == ACCESS_DMA) { err = ReadData(handle, amode, flags, dma, bar, start, size_set?size:0, access, endianess, timeout_set?timeout:(size_t)-1, ofile); } else if (amode == ACCESS_CONFIG) { err = ReadData(handle, amode, flags, dma, bar, addr?start:0, (addr||size_set)?size:(256/abs(access)), access, endianess, (size_t)-1, ofile); } else if (addr) { err = ReadData(handle, amode, flags, dma, bar, start, size, access, endianess, (size_t)-1, ofile); } else { Error("Address to read is not specified"); } break; case MODE_READ_REGISTER: if ((reg)||(!addr)) ReadRegister(handle, model_info, bank, reg); else ReadRegisterRange(handle, model_info, bank, start, addr_shift, size, ofile); break; case MODE_WRITE: WriteData(handle, amode, dma, bar, start, size, access, endianess, data, verify); break; case MODE_WRITE_REGISTER: if (reg) WriteRegister(handle, model_info, bank, reg, data); else WriteRegisterRange(handle, model_info, bank, start, addr_shift, size, data); break; case MODE_RESET: pcilib_reset(handle); break; case MODE_GRAB: TriggerAndGrab(handle, grab_mode, event, data_type, size, run_time, trigger_time, timeout, partition, format, buffer, threads, verbose, output); break; case MODE_LIST_DMA: ListDMA(handle, fpga_device, model_info); break; case MODE_LIST_DMA_BUFFERS: ListBuffers(handle, fpga_device, model_info, dma, dma_direction); break; case MODE_READ_DMA_BUFFER: ReadBuffer(handle, fpga_device, model_info, dma, dma_direction, block, ofile); break; case MODE_START_DMA: StartStopDMA(handle, model_info, dma, dma_direction, 1); break; case MODE_STOP_DMA: StartStopDMA(handle, model_info, dma, dma_direction, 0); break; case MODE_ENABLE_IRQ: EnableIRQ(handle, model_info, irq_type); break; case MODE_DISABLE_IRQ: DisableIRQ(handle, model_info, irq_type); break; case MODE_ACK_IRQ: AckIRQ(handle, model_info, irq_source); break; case MODE_WAIT_IRQ: WaitIRQ(handle, model_info, irq_source, timeout); break; case MODE_LIST_KMEM: if (use) DetailKMEM(handle, fpga_device, use, block); else ListKMEM(handle, fpga_device); break; case MODE_READ_KMEM: ReadKMEM(handle, fpga_device, useid, block, 0, ofile); break; case MODE_ALLOC_KMEM: AllocKMEM(handle, fpga_device, use, type, size, block_size, alignment); break; case MODE_FREE_KMEM: FreeKMEM(handle, fpga_device, use, force); break; case MODE_INVALID: break; } if (ofile) fclose(ofile); pcilib_close(handle); if (data != argv + optind) free(data); return err; }