diff options
author | Willem Jan Palenstijn <wjp@usecode.org> | 2018-07-18 11:46:05 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2018-07-18 11:46:05 +0200 |
commit | 93612c333d6aa0f7d80bd286d9983ce5047a0fd8 (patch) | |
tree | e78ac8d69f659b7c9c59e121f7dfb9cba8e5004f | |
parent | 0d06afc38d7a8443a079d25d72ec4b4b15353974 (diff) | |
parent | 4d741fc8e6c7930f7a8e27f54c55e0ad4949ed07 (diff) | |
download | astra-93612c333d6aa0f7d80bd286d9983ce5047a0fd8.tar.gz astra-93612c333d6aa0f7d80bd286d9983ce5047a0fd8.tar.bz2 astra-93612c333d6aa0f7d80bd286d9983ce5047a0fd8.tar.xz astra-93612c333d6aa0f7d80bd286d9983ce5047a0fd8.zip |
Merge pull request #160 from wjp/FBP_filters
Custom filter support for CPU FBP
-rw-r--r-- | astra_vc14.vcxproj | 3 | ||||
-rw-r--r-- | astra_vc14.vcxproj.filters | 9 | ||||
-rw-r--r-- | build/linux/Makefile.in | 1 | ||||
-rw-r--r-- | build/msvc/gen.py | 3 | ||||
-rw-r--r-- | cuda/2d/fbp.cu | 55 | ||||
-rw-r--r-- | cuda/2d/fft.cu | 396 | ||||
-rw-r--r-- | cuda/3d/fdk.cu | 6 | ||||
-rw-r--r-- | include/astra/CudaFilteredBackProjectionAlgorithm.h | 9 | ||||
-rw-r--r-- | include/astra/FilteredBackProjectionAlgorithm.h | 5 | ||||
-rw-r--r-- | include/astra/Filters.h (renamed from include/astra/cuda/2d/fbp_filters.h) | 43 | ||||
-rw-r--r-- | include/astra/cuda/2d/astra.h | 1 | ||||
-rw-r--r-- | include/astra/cuda/2d/fbp.h | 6 | ||||
-rw-r--r-- | include/astra/cuda/2d/fft.h | 10 | ||||
-rw-r--r-- | samples/matlab/s023_FBP_filters.m | 96 | ||||
-rw-r--r-- | samples/python/s023_FBP_filters.py | 116 | ||||
-rw-r--r-- | src/CudaFDKAlgorithm3D.cpp | 4 | ||||
-rw-r--r-- | src/CudaFilteredBackProjectionAlgorithm.cpp | 199 | ||||
-rw-r--r-- | src/FilteredBackProjectionAlgorithm.cpp | 137 | ||||
-rw-r--r-- | src/Filters.cpp | 608 |
19 files changed, 1050 insertions, 657 deletions
diff --git a/astra_vc14.vcxproj b/astra_vc14.vcxproj index 64c08ee..893305f 100644 --- a/astra_vc14.vcxproj +++ b/astra_vc14.vcxproj @@ -509,6 +509,7 @@ <ClCompile Include="src\FanFlatProjectionGeometry2D.cpp" /> <ClCompile Include="src\FanFlatVecProjectionGeometry2D.cpp" /> <ClCompile Include="src\FilteredBackProjectionAlgorithm.cpp" /> + <ClCompile Include="src\Filters.cpp" /> <ClCompile Include="src\Float32Data.cpp" /> <ClCompile Include="src\Float32Data2D.cpp" /> <ClCompile Include="src\Float32Data3D.cpp" /> @@ -596,6 +597,7 @@ <ClInclude Include="include\astra\FanFlatProjectionGeometry2D.h" /> <ClInclude Include="include\astra\FanFlatVecProjectionGeometry2D.h" /> <ClInclude Include="include\astra\FilteredBackProjectionAlgorithm.h" /> + <ClInclude Include="include\astra\Filters.h" /> <ClInclude Include="include\astra\Float32Data.h" /> <ClInclude Include="include\astra\Float32Data2D.h" /> <ClInclude Include="include\astra\Float32Data3D.h" /> @@ -656,7 +658,6 @@ <ClInclude Include="include\astra\cuda\2d\fan_bp.h" /> <ClInclude Include="include\astra\cuda\2d\fan_fp.h" /> <ClInclude Include="include\astra\cuda\2d\fbp.h" /> - <ClInclude Include="include\astra\cuda\2d\fbp_filters.h" /> <ClInclude Include="include\astra\cuda\2d\fft.h" /> <ClInclude Include="include\astra\cuda\2d\par_bp.h" /> <ClInclude Include="include\astra\cuda\2d\par_fp.h" /> diff --git a/astra_vc14.vcxproj.filters b/astra_vc14.vcxproj.filters index 3e9ff9a..fef6a8a 100644 --- a/astra_vc14.vcxproj.filters +++ b/astra_vc14.vcxproj.filters @@ -168,6 +168,9 @@ <ClCompile Include="src\Config.cpp"> <Filter>Global & Other\source</Filter> </ClCompile> + <ClCompile Include="src\Filters.cpp"> + <Filter>Global & Other\source</Filter> + </ClCompile> <ClCompile Include="src\Fourier.cpp"> <Filter>Global & Other\source</Filter> </ClCompile> @@ -434,6 +437,9 @@ <ClInclude Include="include\astra\Config.h"> <Filter>Global & Other\headers</Filter> </ClInclude> + <ClInclude Include="include\astra\Filters.h"> + <Filter>Global & Other\headers</Filter> + </ClInclude> <ClInclude Include="include\astra\Fourier.h"> <Filter>Global & Other\headers</Filter> </ClInclude> @@ -638,9 +644,6 @@ <ClInclude Include="include\astra\cuda\2d\fan_fp.h"> <Filter>CUDA\cuda headers</Filter> </ClInclude> - <ClInclude Include="include\astra\cuda\2d\fbp_filters.h"> - <Filter>CUDA\cuda headers</Filter> - </ClInclude> <ClInclude Include="include\astra\cuda\2d\fbp.h"> <Filter>CUDA\cuda headers</Filter> </ClInclude> diff --git a/build/linux/Makefile.in b/build/linux/Makefile.in index 1627a2e..0b90bd9 100644 --- a/build/linux/Makefile.in +++ b/build/linux/Makefile.in @@ -142,6 +142,7 @@ BASE_OBJECTS=\ src/FanFlatProjectionGeometry2D.lo \ src/FanFlatVecProjectionGeometry2D.lo \ src/FilteredBackProjectionAlgorithm.lo \ + src/Filters.lo \ src/Float32Data2D.lo \ src/Float32Data3D.lo \ src/Float32Data3DMemory.lo \ diff --git a/build/msvc/gen.py b/build/msvc/gen.py index fcc12d2..47e7440 100644 --- a/build/msvc/gen.py +++ b/build/msvc/gen.py @@ -214,6 +214,7 @@ P_astra["filters"]["Global & Other\\source"] = [ "src\\AstraObjectManager.cpp", "src\\CompositeGeometryManager.cpp", "src\\Config.cpp", +"src\\Filters.cpp", "src\\Fourier.cpp", "src\\Globals.cpp", "src\\Logging.cpp", @@ -292,7 +293,6 @@ P_astra["filters"]["CUDA\\cuda headers"] = [ "include\\astra\\cuda\\2d\\em.h", "include\\astra\\cuda\\2d\\fan_bp.h", "include\\astra\\cuda\\2d\\fan_fp.h", -"include\\astra\\cuda\\2d\\fbp_filters.h", "include\\astra\\cuda\\2d\\fbp.h", "include\\astra\\cuda\\2d\\fft.h", "include\\astra\\cuda\\2d\\par_bp.h", @@ -354,6 +354,7 @@ P_astra["filters"]["Global & Other\\headers"] = [ "include\\astra\\clog.h", "include\\astra\\CompositeGeometryManager.h", "include\\astra\\Config.h", +"include\\astra\\Filters.h", "include\\astra\\Fourier.h", "include\\astra\\Globals.h", "include\\astra\\Logging.h", diff --git a/cuda/2d/fbp.cu b/cuda/2d/fbp.cu index 48fb7dc..a5b8a7a 100644 --- a/cuda/2d/fbp.cu +++ b/cuda/2d/fbp.cu @@ -35,27 +35,18 @@ along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>. #include "astra/cuda/3d/fdk.h" #include "astra/Logging.h" +#include "astra/Filters.h" #include <cuda.h> namespace astraCUDA { - -static int calcNextPowerOfTwo(int n) -{ - int x = 1; - while (x < n) - x *= 2; - - return x; -} - // static int FBP::calcFourierFilterSize(int _iDetectorCount) { - int iFFTRealDetCount = calcNextPowerOfTwo(2 * _iDetectorCount); - int iFreqBinCount = calcFFTFourierSize(iFFTRealDetCount); + int iFFTRealDetCount = astra::calcNextPowerOfTwo(2 * _iDetectorCount); + int iFreqBinCount = astra::calcFFTFourierSize(iFFTRealDetCount); // CHECKME: Matlab makes this at least 64. Do we also need to? return iFreqBinCount; @@ -88,7 +79,7 @@ bool FBP::init() return true; } -bool FBP::setFilter(astra::E_FBPFILTER _eFilter, const float * _pfHostFilter /* = NULL */, int _iFilterWidth /* = 0 */, float _fD /* = 1.0f */, float _fFilterParameter /* = -1.0f */) +bool FBP::setFilter(const astra::SFilterConfig &_cfg) { if (D_filter) { @@ -96,19 +87,19 @@ bool FBP::setFilter(astra::E_FBPFILTER _eFilter, const float * _pfHostFilter /* D_filter = 0; } - if (_eFilter == astra::FILTER_NONE) + if (_cfg.m_eType == astra::FILTER_NONE) return true; // leave D_filter set to 0 - int iFFTRealDetCount = calcNextPowerOfTwo(2 * dims.iProjDets); - int iFreqBinCount = calcFFTFourierSize(iFFTRealDetCount); + int iFFTRealDetCount = astra::calcNextPowerOfTwo(2 * dims.iProjDets); + int iFreqBinCount = astra::calcFFTFourierSize(iFFTRealDetCount); cufftComplex * pHostFilter = new cufftComplex[dims.iProjAngles * iFreqBinCount]; memset(pHostFilter, 0, sizeof(cufftComplex) * dims.iProjAngles * iFreqBinCount); allocateComplexOnDevice(dims.iProjAngles, iFreqBinCount, (cufftComplex**)&D_filter); - switch(_eFilter) + switch(_cfg.m_eType) { case astra::FILTER_NONE: // handled above @@ -130,7 +121,7 @@ bool FBP::setFilter(astra::E_FBPFILTER _eFilter, const float * _pfHostFilter /* case astra::FILTER_FLATTOP: case astra::FILTER_PARZEN: { - genFilter(_eFilter, _fD, dims.iProjAngles, pHostFilter, iFFTRealDetCount, iFreqBinCount, _fFilterParameter); + genCuFFTFilter(_cfg, dims.iProjAngles, pHostFilter, iFFTRealDetCount, iFreqBinCount); uploadComplexArrayToDevice(dims.iProjAngles, iFreqBinCount, pHostFilter, (cufftComplex*)D_filter); break; @@ -138,11 +129,11 @@ bool FBP::setFilter(astra::E_FBPFILTER _eFilter, const float * _pfHostFilter /* case astra::FILTER_PROJECTION: { // make sure the offered filter has the correct size - assert(_iFilterWidth == iFreqBinCount); + assert(_cfg.m_iCustomFilterWidth == iFreqBinCount); for(int iFreqBinIndex = 0; iFreqBinIndex < iFreqBinCount; iFreqBinIndex++) { - float fValue = _pfHostFilter[iFreqBinIndex]; + float fValue = _cfg.m_pfCustomFilter[iFreqBinIndex]; for(int iProjectionIndex = 0; iProjectionIndex < (int)dims.iProjAngles; iProjectionIndex++) { @@ -156,13 +147,13 @@ bool FBP::setFilter(astra::E_FBPFILTER _eFilter, const float * _pfHostFilter /* case astra::FILTER_SINOGRAM: { // make sure the offered filter has the correct size - assert(_iFilterWidth == iFreqBinCount); + assert(_cfg.m_iCustomFilterWidth == iFreqBinCount); for(int iFreqBinIndex = 0; iFreqBinIndex < iFreqBinCount; iFreqBinIndex++) { for(int iProjectionIndex = 0; iProjectionIndex < (int)dims.iProjAngles; iProjectionIndex++) { - float fValue = _pfHostFilter[iFreqBinIndex + iProjectionIndex * _iFilterWidth]; + float fValue = _cfg.m_pfCustomFilter[iFreqBinIndex + iProjectionIndex * _cfg.m_iCustomFilterWidth]; pHostFilter[iFreqBinIndex + iProjectionIndex * iFreqBinCount].x = fValue; pHostFilter[iFreqBinIndex + iProjectionIndex * iFreqBinCount].y = 0.0f; @@ -178,16 +169,16 @@ bool FBP::setFilter(astra::E_FBPFILTER _eFilter, const float * _pfHostFilter /* float * pfHostRealFilter = new float[iRealFilterElementCount]; memset(pfHostRealFilter, 0, sizeof(float) * iRealFilterElementCount); - int iUsedFilterWidth = min(_iFilterWidth, iFFTRealDetCount); - int iStartFilterIndex = (_iFilterWidth - iUsedFilterWidth) / 2; + int iUsedFilterWidth = min(_cfg.m_iCustomFilterWidth, iFFTRealDetCount); + int iStartFilterIndex = (_cfg.m_iCustomFilterWidth - iUsedFilterWidth) / 2; int iMaxFilterIndex = iStartFilterIndex + iUsedFilterWidth; - int iFilterShiftSize = _iFilterWidth / 2; + int iFilterShiftSize = _cfg.m_iCustomFilterWidth / 2; for(int iDetectorIndex = iStartFilterIndex; iDetectorIndex < iMaxFilterIndex; iDetectorIndex++) { int iFFTInFilterIndex = (iDetectorIndex + iFFTRealDetCount - iFilterShiftSize) % iFFTRealDetCount; - float fValue = _pfHostFilter[iDetectorIndex]; + float fValue = _cfg.m_pfCustomFilter[iDetectorIndex]; for(int iProjectionIndex = 0; iProjectionIndex < (int)dims.iProjAngles; iProjectionIndex++) { @@ -213,11 +204,11 @@ bool FBP::setFilter(astra::E_FBPFILTER _eFilter, const float * _pfHostFilter /* float* pfHostRealFilter = new float[iRealFilterElementCount]; memset(pfHostRealFilter, 0, sizeof(float) * iRealFilterElementCount); - int iUsedFilterWidth = min(_iFilterWidth, iFFTRealDetCount); - int iStartFilterIndex = (_iFilterWidth - iUsedFilterWidth) / 2; + int iUsedFilterWidth = min(_cfg.m_iCustomFilterWidth, iFFTRealDetCount); + int iStartFilterIndex = (_cfg.m_iCustomFilterWidth - iUsedFilterWidth) / 2; int iMaxFilterIndex = iStartFilterIndex + iUsedFilterWidth; - int iFilterShiftSize = _iFilterWidth / 2; + int iFilterShiftSize = _cfg.m_iCustomFilterWidth / 2; for(int iDetectorIndex = iStartFilterIndex; iDetectorIndex < iMaxFilterIndex; iDetectorIndex++) { @@ -225,7 +216,7 @@ bool FBP::setFilter(astra::E_FBPFILTER _eFilter, const float * _pfHostFilter /* for(int iProjectionIndex = 0; iProjectionIndex < (int)dims.iProjAngles; iProjectionIndex++) { - float fValue = _pfHostFilter[iDetectorIndex + iProjectionIndex * _iFilterWidth]; + float fValue = _cfg.m_pfCustomFilter[iDetectorIndex + iProjectionIndex * _cfg.m_iCustomFilterWidth]; pfHostRealFilter[iFFTInFilterIndex + iProjectionIndex * iFFTRealDetCount] = fValue; } } @@ -310,8 +301,8 @@ bool FBP::iterate(unsigned int iterations) if (D_filter) { - int iFFTRealDetCount = calcNextPowerOfTwo(2 * dims.iProjDets); - int iFFTFourDetCount = calcFFTFourierSize(iFFTRealDetCount); + int iFFTRealDetCount = astra::calcNextPowerOfTwo(2 * dims.iProjDets); + int iFFTFourDetCount = astra::calcFFTFourierSize(iFFTRealDetCount); cufftComplex * pDevComplexSinogram = NULL; diff --git a/cuda/2d/fft.cu b/cuda/2d/fft.cu index bd8cab5..2e94b79 100644 --- a/cuda/2d/fft.cu +++ b/cuda/2d/fft.cu @@ -275,17 +275,6 @@ bool runCudaIFFT(int _iProjectionCount, const cufftComplex* _pDevSourceComplex, return true; } - -// Because the input is real, the Fourier transform is symmetric. -// CUFFT only outputs the first half (ignoring the redundant second half), -// and expects the same as input for the IFFT. -int calcFFTFourierSize(int _iFFTRealSize) -{ - int iFFTFourierSize = _iFFTRealSize / 2 + 1; - - return iFFTFourierSize; -} - void genIdenFilter(int _iProjectionCount, cufftComplex * _pFilter, int _iFFTRealDetectorCount, int _iFFTFourierDetectorCount) { @@ -300,387 +289,13 @@ void genIdenFilter(int _iProjectionCount, cufftComplex * _pFilter, } } -void genFilter(E_FBPFILTER _eFilter, float _fD, int _iProjectionCount, +void genCuFFTFilter(const SFilterConfig &_cfg, int _iProjectionCount, cufftComplex * _pFilter, int _iFFTRealDetectorCount, - int _iFFTFourierDetectorCount, float _fParameter /* = -1.0f */) + int _iFFTFourierDetectorCount) { - float * pfFilt = new float[_iFFTFourierDetectorCount]; - float * pfW = new float[_iFFTFourierDetectorCount]; - - // We cache one Fourier transform for repeated FBP's of the same size - static float *pfData = 0; - static int iFilterCacheSize = 0; - - if (!pfData || iFilterCacheSize != _iFFTRealDetectorCount) { - // Compute filter in spatial domain - - delete[] pfData; - pfData = new float[2*_iFFTRealDetectorCount]; - int *ip = new int[int(2+sqrt(_iFFTRealDetectorCount)+1)]; - ip[0] = 0; - float32 *w = new float32[_iFFTRealDetectorCount/2]; - - for (int i = 0; i < _iFFTRealDetectorCount; ++i) { - pfData[2*i+1] = 0.0f; - - if (i & 1) { - int j = i; - if (2*j > _iFFTRealDetectorCount) - j = _iFFTRealDetectorCount - j; - float f = M_PI * j; - pfData[2*i] = -1 / (f*f); - } else { - pfData[2*i] = 0.0f; - } - } - - pfData[0] = 0.25f; - - cdft(2*_iFFTRealDetectorCount, -1, pfData, ip, w); - delete[] ip; - delete[] w; - - iFilterCacheSize = _iFFTRealDetectorCount; - } - - for(int iDetectorIndex = 0; iDetectorIndex < _iFFTFourierDetectorCount; iDetectorIndex++) - { - float fRelIndex = (float)iDetectorIndex / (float)_iFFTRealDetectorCount; - - pfFilt[iDetectorIndex] = 2.0f * pfData[2*iDetectorIndex]; - pfW[iDetectorIndex] = M_PI * 2.0f * fRelIndex; - } - - switch(_eFilter) - { - case FILTER_RAMLAK: - { - // do nothing - break; - } - case FILTER_SHEPPLOGAN: - { - // filt(2:end) = filt(2:end) .* (sin(w(2:end)/(2*d))./(w(2:end)/(2*d))) - for(int iDetectorIndex = 1; iDetectorIndex < _iFFTFourierDetectorCount; iDetectorIndex++) - { - pfFilt[iDetectorIndex] = pfFilt[iDetectorIndex] * (sinf(pfW[iDetectorIndex] / 2.0f / _fD) / (pfW[iDetectorIndex] / 2.0f / _fD)); - } - break; - } - case FILTER_COSINE: - { - // filt(2:end) = filt(2:end) .* cos(w(2:end)/(2*d)) - for(int iDetectorIndex = 1; iDetectorIndex < _iFFTFourierDetectorCount; iDetectorIndex++) - { - pfFilt[iDetectorIndex] = pfFilt[iDetectorIndex] * cosf(pfW[iDetectorIndex] / 2.0f / _fD); - } - break; - } - case FILTER_HAMMING: - { - // filt(2:end) = filt(2:end) .* (.54 + .46 * cos(w(2:end)/d)) - for(int iDetectorIndex = 1; iDetectorIndex < _iFFTFourierDetectorCount; iDetectorIndex++) - { - pfFilt[iDetectorIndex] = pfFilt[iDetectorIndex] * ( 0.54f + 0.46f * cosf(pfW[iDetectorIndex] / _fD)); - } - break; - } - case FILTER_HANN: - { - // filt(2:end) = filt(2:end) .*(1+cos(w(2:end)./d)) / 2 - for(int iDetectorIndex = 1; iDetectorIndex < _iFFTFourierDetectorCount; iDetectorIndex++) - { - pfFilt[iDetectorIndex] = pfFilt[iDetectorIndex] * (1.0f + cosf(pfW[iDetectorIndex] / _fD)) / 2.0f; - } - break; - } - case FILTER_TUKEY: - { - float fAlpha = _fParameter; - if(_fParameter < 0.0f) fAlpha = 0.5f; - float fN = (float)_iFFTFourierDetectorCount; - float fHalfN = fN / 2.0f; - float fEnumTerm = fAlpha * fHalfN; - float fDenom = (1.0f - fAlpha) * fHalfN; - float fBlockStart = fHalfN - fEnumTerm; - float fBlockEnd = fHalfN + fEnumTerm; - - for(int iDetectorIndex = 1; iDetectorIndex < _iFFTFourierDetectorCount; iDetectorIndex++) - { - float fAbsSmallN = fabs((float)iDetectorIndex); - float fStoredValue = 0.0f; - - if((fBlockStart <= fAbsSmallN) && (fAbsSmallN <= fBlockEnd)) - { - fStoredValue = 1.0f; - } - else - { - float fEnum = fAbsSmallN - fEnumTerm; - float fCosInput = M_PI * fEnum / fDenom; - fStoredValue = 0.5f * (1.0f + cosf(fCosInput)); - } - - pfFilt[iDetectorIndex] *= fStoredValue; - } - - break; - } - case FILTER_LANCZOS: - { - float fDenum = (float)(_iFFTFourierDetectorCount - 1); - - for(int iDetectorIndex = 1; iDetectorIndex < _iFFTFourierDetectorCount; iDetectorIndex++) - { - float fSmallN = (float)iDetectorIndex; - float fX = 2.0f * fSmallN / fDenum - 1.0f; - float fSinInput = M_PI * fX; - float fStoredValue = 0.0f; - - if(fabsf(fSinInput) > 0.001f) - { - fStoredValue = sin(fSinInput)/fSinInput; - } - else - { - fStoredValue = 1.0f; - } - - pfFilt[iDetectorIndex] *= fStoredValue; - } - - break; - } - case FILTER_TRIANGULAR: - { - float fNMinusOne = (float)(_iFFTFourierDetectorCount - 1); - - for(int iDetectorIndex = 1; iDetectorIndex < _iFFTFourierDetectorCount; iDetectorIndex++) - { - float fSmallN = (float)iDetectorIndex; - float fAbsInput = fSmallN - fNMinusOne / 2.0f; - float fParenInput = fNMinusOne / 2.0f - fabsf(fAbsInput); - float fStoredValue = 2.0f / fNMinusOne * fParenInput; - - pfFilt[iDetectorIndex] *= fStoredValue; - } - - break; - } - case FILTER_GAUSSIAN: - { - float fSigma = _fParameter; - if(_fParameter < 0.0f) fSigma = 0.4f; - float fN = (float)_iFFTFourierDetectorCount; - float fQuotient = (fN - 1.0f) / 2.0f; - - for(int iDetectorIndex = 1; iDetectorIndex < _iFFTFourierDetectorCount; iDetectorIndex++) - { - float fSmallN = (float)iDetectorIndex; - float fEnum = fSmallN - fQuotient; - float fDenom = fSigma * fQuotient; - float fPower = -0.5f * (fEnum / fDenom) * (fEnum / fDenom); - float fStoredValue = expf(fPower); - - pfFilt[iDetectorIndex] *= fStoredValue; - } - - break; - } - case FILTER_BARTLETTHANN: - { - const float fA0 = 0.62f; - const float fA1 = 0.48f; - const float fA2 = 0.38f; - float fNMinusOne = (float)(_iFFTFourierDetectorCount) - 1.0f; - - for(int iDetectorIndex = 1; iDetectorIndex < _iFFTFourierDetectorCount; iDetectorIndex++) - { - float fSmallN = (float)iDetectorIndex; - float fAbsInput = fSmallN / fNMinusOne - 0.5f; - float fFirstTerm = fA1 * fabsf(fAbsInput); - float fCosInput = 2.0f * M_PI * fSmallN / fNMinusOne; - float fSecondTerm = fA2 * cosf(fCosInput); - float fStoredValue = fA0 - fFirstTerm - fSecondTerm; - - pfFilt[iDetectorIndex] *= fStoredValue; - } - - break; - } - case FILTER_BLACKMAN: - { - float fAlpha = _fParameter; - if(_fParameter < 0.0f) fAlpha = 0.16f; - float fA0 = (1.0f - fAlpha) / 2.0f; - float fA1 = 0.5f; - float fA2 = fAlpha / 2.0f; - float fNMinusOne = (float)(_iFFTFourierDetectorCount - 1); - - for(int iDetectorIndex = 1; iDetectorIndex < _iFFTFourierDetectorCount; iDetectorIndex++) - { - float fSmallN = (float)iDetectorIndex; - float fCosInput1 = 2.0f * M_PI * 0.5f * fSmallN / fNMinusOne; - float fCosInput2 = 4.0f * M_PI * 0.5f * fSmallN / fNMinusOne; - float fStoredValue = fA0 - fA1 * cosf(fCosInput1) + fA2 * cosf(fCosInput2); - - pfFilt[iDetectorIndex] *= fStoredValue; - } - - break; - } - case FILTER_NUTTALL: - { - const float fA0 = 0.355768f; - const float fA1 = 0.487396f; - const float fA2 = 0.144232f; - const float fA3 = 0.012604f; - float fNMinusOne = (float)(_iFFTFourierDetectorCount) - 1.0f; - - for(int iDetectorIndex = 1; iDetectorIndex < _iFFTFourierDetectorCount; iDetectorIndex++) - { - float fSmallN = (float)iDetectorIndex; - float fBaseCosInput = M_PI * fSmallN / fNMinusOne; - float fFirstTerm = fA1 * cosf(2.0f * fBaseCosInput); - float fSecondTerm = fA2 * cosf(4.0f * fBaseCosInput); - float fThirdTerm = fA3 * cosf(6.0f * fBaseCosInput); - float fStoredValue = fA0 - fFirstTerm + fSecondTerm - fThirdTerm; - - pfFilt[iDetectorIndex] *= fStoredValue; - } - - break; - } - case FILTER_BLACKMANHARRIS: - { - const float fA0 = 0.35875f; - const float fA1 = 0.48829f; - const float fA2 = 0.14128f; - const float fA3 = 0.01168f; - float fNMinusOne = (float)(_iFFTFourierDetectorCount) - 1.0f; - - for(int iDetectorIndex = 1; iDetectorIndex < _iFFTFourierDetectorCount; iDetectorIndex++) - { - float fSmallN = (float)iDetectorIndex; - float fBaseCosInput = M_PI * fSmallN / fNMinusOne; - float fFirstTerm = fA1 * cosf(2.0f * fBaseCosInput); - float fSecondTerm = fA2 * cosf(4.0f * fBaseCosInput); - float fThirdTerm = fA3 * cosf(6.0f * fBaseCosInput); - float fStoredValue = fA0 - fFirstTerm + fSecondTerm - fThirdTerm; - - pfFilt[iDetectorIndex] *= fStoredValue; - } - - break; - } - case FILTER_BLACKMANNUTTALL: - { - const float fA0 = 0.3635819f; - const float fA1 = 0.4891775f; - const float fA2 = 0.1365995f; - const float fA3 = 0.0106411f; - float fNMinusOne = (float)(_iFFTFourierDetectorCount) - 1.0f; - - for(int iDetectorIndex = 1; iDetectorIndex < _iFFTFourierDetectorCount; iDetectorIndex++) - { - float fSmallN = (float)iDetectorIndex; - float fBaseCosInput = M_PI * fSmallN / fNMinusOne; - float fFirstTerm = fA1 * cosf(2.0f * fBaseCosInput); - float fSecondTerm = fA2 * cosf(4.0f * fBaseCosInput); - float fThirdTerm = fA3 * cosf(6.0f * fBaseCosInput); - float fStoredValue = fA0 - fFirstTerm + fSecondTerm - fThirdTerm; - - pfFilt[iDetectorIndex] *= fStoredValue; - } - - break; - } - case FILTER_FLATTOP: - { - const float fA0 = 1.0f; - const float fA1 = 1.93f; - const float fA2 = 1.29f; - const float fA3 = 0.388f; - const float fA4 = 0.032f; - float fNMinusOne = (float)(_iFFTFourierDetectorCount) - 1.0f; - - for(int iDetectorIndex = 1; iDetectorIndex < _iFFTFourierDetectorCount; iDetectorIndex++) - { - float fSmallN = (float)iDetectorIndex; - float fBaseCosInput = M_PI * fSmallN / fNMinusOne; - float fFirstTerm = fA1 * cosf(2.0f * fBaseCosInput); - float fSecondTerm = fA2 * cosf(4.0f * fBaseCosInput); - float fThirdTerm = fA3 * cosf(6.0f * fBaseCosInput); - float fFourthTerm = fA4 * cosf(8.0f * fBaseCosInput); - float fStoredValue = fA0 - fFirstTerm + fSecondTerm - fThirdTerm + fFourthTerm; - - pfFilt[iDetectorIndex] *= fStoredValue; - } - - break; - } - case FILTER_KAISER: - { - float fAlpha = _fParameter; - if(_fParameter < 0.0f) fAlpha = 3.0f; - float fPiTimesAlpha = M_PI * fAlpha; - float fNMinusOne = (float)(_iFFTFourierDetectorCount - 1); - float fDenom = (float)j0((double)fPiTimesAlpha); - - for(int iDetectorIndex = 1; iDetectorIndex < _iFFTFourierDetectorCount; iDetectorIndex++) - { - float fSmallN = (float)iDetectorIndex; - float fSquareInput = 2.0f * fSmallN / fNMinusOne - 1; - float fSqrtInput = 1.0f - fSquareInput * fSquareInput; - float fBesselInput = fPiTimesAlpha * sqrt(fSqrtInput); - float fEnum = (float)j0((double)fBesselInput); - float fStoredValue = fEnum / fDenom; - - pfFilt[iDetectorIndex] *= fStoredValue; - } - - break; - } - case FILTER_PARZEN: - { - for(int iDetectorIndex = 1; iDetectorIndex < _iFFTFourierDetectorCount; iDetectorIndex++) - { - float fSmallN = (float)iDetectorIndex; - float fQ = fSmallN / (float)(_iFFTFourierDetectorCount - 1); - float fStoredValue = 0.0f; - - if(fQ <= 0.5f) - { - fStoredValue = 1.0f - 6.0f * fQ * fQ * (1.0f - fQ); - } - else - { - float fCubedValue = 1.0f - fQ; - fStoredValue = 2.0f * fCubedValue * fCubedValue * fCubedValue; - } - - pfFilt[iDetectorIndex] *= fStoredValue; - } - - break; - } - default: - { - ASTRA_ERROR("Cannot serve requested filter"); - } - } - - // filt(w>pi*d) = 0; - float fPiTimesD = M_PI * _fD; - for(int iDetectorIndex = 0; iDetectorIndex < _iFFTFourierDetectorCount; iDetectorIndex++) - { - float fWValue = pfW[iDetectorIndex]; - - if(fWValue > fPiTimesD) - { - pfFilt[iDetectorIndex] = 0.0f; - } - } + float * pfFilt = astra::genFilter(_cfg, + _iFFTRealDetectorCount, + _iFFTFourierDetectorCount); for(int iDetectorIndex = 0; iDetectorIndex < _iFFTFourierDetectorCount; iDetectorIndex++) { @@ -695,7 +310,6 @@ void genFilter(E_FBPFILTER _eFilter, float _fD, int _iProjectionCount, } delete[] pfFilt; - delete[] pfW; } diff --git a/cuda/3d/fdk.cu b/cuda/3d/fdk.cu index 46c07e7..1294721 100644 --- a/cuda/3d/fdk.cu +++ b/cuda/3d/fdk.cu @@ -246,14 +246,16 @@ bool FDK_Filter(cudaPitchedPtr D_projData, // Generate filter // TODO: Check errors int iPaddedDetCount = calcNextPowerOfTwo(2 * dims.iProjU); - int iHalfFFTSize = astraCUDA::calcFFTFourierSize(iPaddedDetCount); + int iHalfFFTSize = astra::calcFFTFourierSize(iPaddedDetCount); cufftComplex *pHostFilter = new cufftComplex[dims.iProjAngles * iHalfFFTSize]; memset(pHostFilter, 0, sizeof(cufftComplex) * dims.iProjAngles * iHalfFFTSize); if (pfFilter == 0){ - astraCUDA::genFilter(astra::FILTER_RAMLAK, 1.0f, dims.iProjAngles, pHostFilter, iPaddedDetCount, iHalfFFTSize); + astra::SFilterConfig filter; + filter.m_eType = astra::FILTER_RAMLAK; + astraCUDA::genCuFFTFilter(filter, dims.iProjAngles, pHostFilter, iPaddedDetCount, iHalfFFTSize); } else { for (int i = 0; i < dims.iProjAngles * iHalfFFTSize; i++) { pHostFilter[i].x = pfFilter[i]; diff --git a/include/astra/CudaFilteredBackProjectionAlgorithm.h b/include/astra/CudaFilteredBackProjectionAlgorithm.h index 1280e9a..8ef5a57 100644 --- a/include/astra/CudaFilteredBackProjectionAlgorithm.h +++ b/include/astra/CudaFilteredBackProjectionAlgorithm.h @@ -33,6 +33,7 @@ along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>. #include "Float32ProjectionData2D.h" #include "Float32VolumeData2D.h" #include "CudaReconstructionAlgorithm2D.h" +#include "Filters.h" #include "cuda/2d/astra.h" @@ -45,15 +46,9 @@ public: static std::string type; private: - E_FBPFILTER m_eFilter; - float * m_pfFilter; - int m_iFilterWidth; // number of elements per projection direction in filter - float m_fFilterParameter; // some filters allow for parameterization (value < 0.0f -> no parameter) - float m_fFilterD; // frequency cut-off + SFilterConfig m_filterConfig; bool m_bShortScan; // short-scan mode for fan beam - static E_FBPFILTER _convertStringToFilter(const char * _filterType); - public: CCudaFilteredBackProjectionAlgorithm(); virtual ~CCudaFilteredBackProjectionAlgorithm(); diff --git a/include/astra/FilteredBackProjectionAlgorithm.h b/include/astra/FilteredBackProjectionAlgorithm.h index 1cd4296..a234845 100644 --- a/include/astra/FilteredBackProjectionAlgorithm.h +++ b/include/astra/FilteredBackProjectionAlgorithm.h @@ -35,6 +35,7 @@ along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>. #include "Projector2D.h" #include "Float32ProjectionData2D.h" #include "Float32VolumeData2D.h" +#include "Filters.h" namespace astra { @@ -144,6 +145,10 @@ public: */ virtual std::string description() const; +protected: + + SFilterConfig m_filterConfig; + }; // inline functions diff --git a/include/astra/cuda/2d/fbp_filters.h b/include/astra/Filters.h index 7c1121a..a1dec97 100644 --- a/include/astra/cuda/2d/fbp_filters.h +++ b/include/astra/Filters.h @@ -25,13 +25,18 @@ along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>. ----------------------------------------------------------------------- */ -#ifndef FBP_FILTERS_H -#define FBP_FILTERS_H +#ifndef _INC_ASTRA_FILTERS_H +#define _INC_ASTRA_FILTERS_H namespace astra { +struct Config; +class CAlgorithm; +class CProjectionGeometry2D; + enum E_FBPFILTER { + FILTER_ERROR, //< not a valid filter FILTER_NONE, //< no filter (regular BP) FILTER_RAMLAK, //< default FBP filter FILTER_SHEPPLOGAN, //< Shepp-Logan @@ -54,8 +59,40 @@ enum E_FBPFILTER FILTER_SINOGRAM, //< every projection direction has its own filter FILTER_RPROJECTION, //< projection filter in real space (as opposed to fourier space) FILTER_RSINOGRAM, //< sinogram filter in real space + }; +struct SFilterConfig { + E_FBPFILTER m_eType; + float m_fD; + float m_fParameter; + + float *m_pfCustomFilter; + int m_iCustomFilterWidth; + int m_iCustomFilterHeight; + + SFilterConfig() : m_eType(FILTER_ERROR), m_fD(1.0f), m_fParameter(-1.0f), + m_pfCustomFilter(0), m_iCustomFilterWidth(0), + m_iCustomFilterHeight(0) { }; +}; + +// Generate filter of given size and parameters. Returns newly allocated array. +float *genFilter(const SFilterConfig &_cfg, + int _iFFTRealDetectorCount, + int _iFFTFourierDetectorCount); + +// Convert string to filter type. Returns FILTER_ERROR if unrecognized. +E_FBPFILTER convertStringToFilter(const char * _filterType); + +SFilterConfig getFilterConfigForAlgorithm(const Config& _cfg, CAlgorithm *_alg); + +bool checkCustomFilterSize(const SFilterConfig &_cfg, const CProjectionGeometry2D &_geom); + + +int calcNextPowerOfTwo(int _iValue); +int calcFFTFourierSize(int _iFFTRealSize); + + } -#endif /* FBP_FILTERS_H */ +#endif diff --git a/include/astra/cuda/2d/astra.h b/include/astra/cuda/2d/astra.h index 6f0e2f0..a2f2219 100644 --- a/include/astra/cuda/2d/astra.h +++ b/include/astra/cuda/2d/astra.h @@ -28,7 +28,6 @@ along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>. #ifndef _CUDA_ASTRA_H #define _CUDA_ASTRA_H -#include "fbp_filters.h" #include "dims.h" #include "algo.h" diff --git a/include/astra/cuda/2d/fbp.h b/include/astra/cuda/2d/fbp.h index 8666646..1adf3b1 100644 --- a/include/astra/cuda/2d/fbp.h +++ b/include/astra/cuda/2d/fbp.h @@ -26,7 +26,7 @@ along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>. */ #include "algo.h" -#include "fbp_filters.h" +#include "astra/Filters.h" namespace astraCUDA { @@ -75,9 +75,7 @@ public: // FILTER_COSINE, FILTER_HAMMING, and FILTER_HANN) // have a D variable, which gives the cutoff point in the frequency domain. // Setting this value to 1.0 will include the whole filter - bool setFilter(astra::E_FBPFILTER _eFilter, - const float * _pfHostFilter = NULL, - int _iFilterWidth = 0, float _fD = 1.0f, float _fFilterParameter = -1.0f); + bool setFilter(const astra::SFilterConfig &_cfg); bool setShortScan(bool ss) { m_bShortScan = ss; return true; } diff --git a/include/astra/cuda/2d/fft.h b/include/astra/cuda/2d/fft.h index d36cae2..f77cbde 100644 --- a/include/astra/cuda/2d/fft.h +++ b/include/astra/cuda/2d/fft.h @@ -31,7 +31,7 @@ along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>. #include <cufft.h> #include <cuda.h> -#include "fbp_filters.h" +#include "astra/Filters.h" namespace astraCUDA { @@ -58,11 +58,9 @@ bool runCudaIFFT(int _iProjectionCount, const cufftComplex* _pDevSourceComplex, void applyFilter(int _iProjectionCount, int _iFreqBinCount, cufftComplex * _pSinogram, cufftComplex * _pFilter); -int calcFFTFourierSize(int _iFFTRealSize); - -void genFilter(astra::E_FBPFILTER _eFilter, float _fD, int _iProjectionCount, - cufftComplex * _pFilter, int _iFFTRealDetectorCount, - int _iFFTFourierDetectorCount, float _fParameter = -1.0f); +void genCuFFTFilter(const astra::SFilterConfig &_cfg, int _iProjectionCount, + cufftComplex * _pFilter, int _iFFTRealDetectorCount, + int _iFFTFourierDetectorCount); void genIdenFilter(int _iProjectionCount, cufftComplex * _pFilter, int _iFFTRealDetectorCount, int _iFFTFourierDetectorCount); diff --git a/samples/matlab/s023_FBP_filters.m b/samples/matlab/s023_FBP_filters.m new file mode 100644 index 0000000..4abec7e --- /dev/null +++ b/samples/matlab/s023_FBP_filters.m @@ -0,0 +1,96 @@ +% ----------------------------------------------------------------------- +% This file is part of the ASTRA Toolbox +% +% Copyright: 2010-2018, imec Vision Lab, University of Antwerp +% 2014-2018, CWI, Amsterdam +% License: Open Source under GPLv3 +% Contact: astra@astra-toolbox.com +% Website: http://www.astra-toolbox.com/ +% ----------------------------------------------------------------------- + + +% This sample script illustrates three ways of passing filters to FBP. +% They work with both the FBP (CPU) and the FBP_CUDA (GPU) algorithms. + +N = 256; + +vol_geom = astra_create_vol_geom(N, N); +proj_geom = astra_create_proj_geom('parallel', 1.0, N, linspace2(0,pi,180)); + +proj_id = astra_create_projector('strip', proj_geom, vol_geom); + +P = phantom(256); + +[sinogram_id, sinogram] = astra_create_sino(P, proj_id); + +rec_id = astra_mex_data2d('create', '-vol', vol_geom); + +cfg = astra_struct('FBP'); +cfg.ReconstructionDataId = rec_id; +cfg.ProjectionDataId = sinogram_id; +cfg.ProjectorId = proj_id; + + +% 1. Use a standard Ram-Lak filter +cfg.FilterType = 'ram-lak'; + +alg_id = astra_mex_algorithm('create', cfg); +astra_mex_algorithm('run', alg_id); +rec_RL = astra_mex_data2d('get', rec_id); +astra_mex_algorithm('delete', alg_id); + + +% 2. Define a filter in Fourier space +% This is assumed to be symmetric, and ASTRA therefore expects only half + +% The full filter size should be the smallest power of two that is at least +% twice the number of detector pixels. +fullFilterSize = 2*N; +kernel = [linspace2(0, 1, floor(fullFilterSize / 2)) linspace2(1, 0, ceil(fullFilterSize / 2))]; +halfFilterSize = floor(fullFilterSize / 2) + 1; +filter = kernel(1:halfFilterSize); + +filter_geom = astra_create_proj_geom('parallel', 1.0, halfFilterSize, [0]); +filter_id = astra_mex_data2d('create', '-sino', filter_geom, filter); + +cfg.FilterType = 'projection'; +cfg.FilterSinogramId = filter_id; + +alg_id = astra_mex_algorithm('create', cfg); +astra_mex_algorithm('run', alg_id); +rec_filter = astra_mex_data2d('get', rec_id); +astra_mex_algorithm('delete', alg_id); + +% 3. Define a (spatial) convolution kernel directly +% For a kernel of odd size 2*k+1, the central component is at kernel(k+1) +% For a kernel of even size 2*k, the central component is at kernel(k+1) + +kernel = zeros(1, N); +for i = 0:floor(N/4)-1 + f = pi * (2*i + 1); + val = -2.0 / (f * f); + kernel(floor(N/2) + 1 + (2*i+1)) = val; + kernel(floor(N/2) + 1 - (2*i+1)) = val; +end +kernel(floor(N/2)+1) = 0.5; + +kernel_geom = astra_create_proj_geom('parallel', 1.0, N, [0]); +kernel_id = astra_mex_data2d('create', '-sino', kernel_geom, kernel); + +cfg.FilterType = 'rprojection'; +cfg.FilterSinogramId = kernel_id; + +alg_id = astra_mex_algorithm('create', cfg); +astra_mex_algorithm('run', alg_id); +rec_kernel = astra_mex_data2d('get', rec_id); +astra_mex_algorithm('delete', alg_id); + +figure(1); imshow(P, []); +figure(2); imshow(rec_RL, []); +figure(3); imshow(rec_filter, []); +figure(4); imshow(rec_kernel, []); + + +astra_mex_data2d('delete', rec_id); +astra_mex_data2d('delete', sinogram_id); +astra_mex_projector('delete', proj_id); diff --git a/samples/python/s023_FBP_filters.py b/samples/python/s023_FBP_filters.py new file mode 100644 index 0000000..11518ac --- /dev/null +++ b/samples/python/s023_FBP_filters.py @@ -0,0 +1,116 @@ +# ----------------------------------------------------------------------- +# Copyright: 2010-2018, imec Vision Lab, University of Antwerp +# 2013-2018, CWI, Amsterdam +# +# Contact: astra@astra-toolbox.com +# Website: http://www.astra-toolbox.com/ +# +# This file is part of the ASTRA Toolbox. +# +# +# The ASTRA Toolbox is free software: you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# The ASTRA Toolbox is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>. +# +# ----------------------------------------------------------------------- + +import astra +import numpy as np +import scipy.io + + +# This sample script illustrates three ways of passing filters to FBP. +# They work with both the FBP (CPU) and the FBP_CUDA (GPU) algorithms. + + +N = 256 + +vol_geom = astra.create_vol_geom(N, N) +proj_geom = astra.create_proj_geom('parallel', 1.0, N, np.linspace(0,np.pi,180,False)) + +P = scipy.io.loadmat('phantom.mat')['phantom256'] + +proj_id = astra.create_projector('strip',proj_geom,vol_geom) +sinogram_id, sinogram = astra.create_sino(P, proj_id) + +rec_id = astra.data2d.create('-vol', vol_geom) +cfg = astra.astra_dict('FBP') +cfg['ReconstructionDataId'] = rec_id +cfg['ProjectionDataId'] = sinogram_id +cfg['ProjectorId'] = proj_id + + + +# 1. Use a standard Ram-Lak filter +cfg['FilterType'] = 'ram-lak' + +alg_id = astra.algorithm.create(cfg) +astra.algorithm.run(alg_id) +rec_RL = astra.data2d.get(rec_id) +astra.algorithm.delete(alg_id) + +# 2. Define a filter in Fourier space +# This is assumed to be symmetric, and ASTRA therefore expects only half + +# The full filter size should be the smallest power of two that is at least +# twice the number of detector pixels. +fullFilterSize = 2*N +kernel = np.append( np.linspace(0, 1, fullFilterSize//2, endpoint=False), np.linspace(1, 0, fullFilterSize//2, endpoint=False) ) +halfFilterSize = fullFilterSize // 2 + 1 +filter = np.reshape(kernel[0:halfFilterSize], (1, halfFilterSize)) + +filter_geom = astra.create_proj_geom('parallel', 1.0, halfFilterSize, [0]); +filter_id = astra.data2d.create('-sino', filter_geom, filter); + +cfg['FilterType'] = 'projection' +cfg['FilterSinogramId'] = filter_id +alg_id = astra.algorithm.create(cfg) +astra.algorithm.run(alg_id) +rec_filter = astra.data2d.get(rec_id) +astra.algorithm.delete(alg_id) + + +# 3. Define a (spatial) convolution kernel directly +# For a kernel of odd size 2*k+1, the central component is at kernel[k] +# For a kernel of even size 2*k, the central component is at kernel[k] +kernel = np.zeros((1, N)) +for i in range(0,N//4): + f = np.pi * (2*i + 1) + val = -2.0 / (f * f) + kernel[0, N//2 + (2*i+1)] = val + kernel[0, N//2 - (2*i+1)] = val +kernel[0, N//2] = 0.5 +kernel_geom = astra.create_proj_geom('parallel', 1.0, N, [0]); +kernel_id = astra.data2d.create('-sino', kernel_geom, kernel); + +cfg['FilterType'] = 'rprojection' +cfg['FilterSinogramId'] = kernel_id +alg_id = astra.algorithm.create(cfg) +astra.algorithm.run(alg_id) +rec_kernel = astra.data2d.get(rec_id) +astra.algorithm.delete(alg_id) + +import pylab +pylab.figure() +pylab.imshow(P) +pylab.figure() +pylab.imshow(rec_RL) +pylab.figure() +pylab.imshow(rec_filter) +pylab.figure() +pylab.imshow(rec_kernel) +pylab.show() + +astra.data2d.delete(rec_id) +astra.data2d.delete(sinogram_id) +astra.projector.delete(proj_id) + diff --git a/src/CudaFDKAlgorithm3D.cpp b/src/CudaFDKAlgorithm3D.cpp index 4d8fc5a..24ed04f 100644 --- a/src/CudaFDKAlgorithm3D.cpp +++ b/src/CudaFDKAlgorithm3D.cpp @@ -35,9 +35,9 @@ along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>. #include "astra/CompositeGeometryManager.h" #include "astra/Logging.h" +#include "astra/Filters.h" #include "astra/cuda/3d/astra3d.h" -#include "astra/cuda/2d/fft.h" #include "astra/cuda/3d/util3d.h" using namespace std; @@ -156,7 +156,7 @@ bool CCudaFDKAlgorithm3D::initialize(const Config& _cfg) const CProjectionGeometry3D* projgeom = m_pSinogram->getGeometry(); const CProjectionGeometry2D* filtgeom = pFilterData->getGeometry(); int iPaddedDetCount = calcNextPowerOfTwo(2 * projgeom->getDetectorColCount()); - int iHalfFFTSize = astraCUDA::calcFFTFourierSize(iPaddedDetCount); + int iHalfFFTSize = calcFFTFourierSize(iPaddedDetCount); if(filtgeom->getDetectorCount()!=iHalfFFTSize || filtgeom->getProjectionAngleCount()!=projgeom->getProjectionCount()){ ASTRA_ERROR("Filter size does not match required size (%i angles, %i detectors)",projgeom->getProjectionCount(),iHalfFFTSize); return false; diff --git a/src/CudaFilteredBackProjectionAlgorithm.cpp b/src/CudaFilteredBackProjectionAlgorithm.cpp index 944f165..88e235b 100644 --- a/src/CudaFilteredBackProjectionAlgorithm.cpp +++ b/src/CudaFilteredBackProjectionAlgorithm.cpp @@ -27,10 +27,10 @@ along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>. #include <astra/CudaFilteredBackProjectionAlgorithm.h> #include <astra/FanFlatProjectionGeometry2D.h> -#include <cstring> #include "astra/AstraObjectManager.h" #include "astra/CudaProjector2D.h" +#include "astra/Filters.h" #include "astra/cuda/2d/astra.h" #include "astra/cuda/2d/fbp.h" @@ -45,15 +45,12 @@ CCudaFilteredBackProjectionAlgorithm::CCudaFilteredBackProjectionAlgorithm() { m_bIsInitialized = false; CCudaReconstructionAlgorithm2D::_clear(); - m_pfFilter = NULL; - m_fFilterParameter = -1.0f; - m_fFilterD = 1.0f; } CCudaFilteredBackProjectionAlgorithm::~CCudaFilteredBackProjectionAlgorithm() { - delete[] m_pfFilter; - m_pfFilter = NULL; + delete[] m_filterConfig.m_pfCustomFilter; + m_filterConfig.m_pfCustomFilter = NULL; } bool CCudaFilteredBackProjectionAlgorithm::initialize(const Config& _cfg) @@ -71,59 +68,7 @@ bool CCudaFilteredBackProjectionAlgorithm::initialize(const Config& _cfg) if (!m_bIsInitialized) return false; - - // filter type - XMLNode node = _cfg.self.getSingleNode("FilterType"); - if (node) - m_eFilter = _convertStringToFilter(node.getContent().c_str()); - else - m_eFilter = FILTER_RAMLAK; - CC.markNodeParsed("FilterType"); - - // filter - node = _cfg.self.getSingleNode("FilterSinogramId"); - if (node) - { - int id = node.getContentInt(); - const CFloat32ProjectionData2D * pFilterData = dynamic_cast<CFloat32ProjectionData2D*>(CData2DManager::getSingleton().get(id)); - m_iFilterWidth = pFilterData->getGeometry()->getDetectorCount(); - int iFilterProjectionCount = pFilterData->getGeometry()->getProjectionAngleCount(); - - m_pfFilter = new float[m_iFilterWidth * iFilterProjectionCount]; - memcpy(m_pfFilter, pFilterData->getDataConst(), sizeof(float) * m_iFilterWidth * iFilterProjectionCount); - } - else - { - m_iFilterWidth = 0; - m_pfFilter = NULL; - } - CC.markNodeParsed("FilterSinogramId"); // TODO: Only for some types! - - // filter parameter - node = _cfg.self.getSingleNode("FilterParameter"); - if (node) - { - float fParameter = node.getContentNumerical(); - m_fFilterParameter = fParameter; - } - else - { - m_fFilterParameter = -1.0f; - } - CC.markNodeParsed("FilterParameter"); // TODO: Only for some types! - - // D value - node = _cfg.self.getSingleNode("FilterD"); - if (node) - { - float fD = node.getContentNumerical(); - m_fFilterD = fD; - } - else - { - m_fFilterD = 1.0f; - } - CC.markNodeParsed("FilterD"); // TODO: Only for some types! + m_filterConfig = getFilterConfigForAlgorithm(_cfg, this); // Fan beam short scan mode if (m_pSinogram && dynamic_cast<CFanFlatProjectionGeometry2D*>(m_pSinogram->getGeometry())) { @@ -153,8 +98,8 @@ bool CCudaFilteredBackProjectionAlgorithm::initialize(CFloat32ProjectionData2D * m_pReconstruction = _pReconstruction; m_iGPUIndex = _iGPUIndex; - m_eFilter = _eFilter; - m_iFilterWidth = _iFilterWidth; + m_filterConfig.m_eType = _eFilter; + m_filterConfig.m_iCustomFilterWidth = _iFilterWidth; m_bShortScan = false; // success @@ -167,7 +112,7 @@ bool CCudaFilteredBackProjectionAlgorithm::initialize(CFloat32ProjectionData2D * { int iFilterElementCount = 0; - if((_eFilter != FILTER_SINOGRAM) && (_eFilter != FILTER_RSINOGRAM)) + if((m_filterConfig.m_eType != FILTER_SINOGRAM) && (m_filterConfig.m_eType != FILTER_RSINOGRAM)) { iFilterElementCount = _iFilterWidth; } @@ -176,15 +121,15 @@ bool CCudaFilteredBackProjectionAlgorithm::initialize(CFloat32ProjectionData2D * iFilterElementCount = m_pSinogram->getAngleCount(); } - m_pfFilter = new float[iFilterElementCount]; - memcpy(m_pfFilter, _pfFilter, iFilterElementCount * sizeof(float)); + m_filterConfig.m_pfCustomFilter = new float[iFilterElementCount]; + memcpy(m_filterConfig.m_pfCustomFilter, _pfFilter, iFilterElementCount * sizeof(float)); } else { - m_pfFilter = NULL; + m_filterConfig.m_pfCustomFilter = NULL; } - m_fFilterParameter = _fFilterParameter; + m_filterConfig.m_fParameter = _fFilterParameter; return check(); } @@ -196,7 +141,7 @@ void CCudaFilteredBackProjectionAlgorithm::initCUDAAlgorithm() astraCUDA::FBP* pFBP = dynamic_cast<astraCUDA::FBP*>(m_pAlgo); - bool ok = pFBP->setFilter(m_eFilter, m_pfFilter, m_iFilterWidth, m_fFilterD, m_fFilterParameter); + bool ok = pFBP->setFilter(m_filterConfig); if (!ok) { ASTRA_ERROR("CCudaFilteredBackProjectionAlgorithm: Failed to set filter"); ASTRA_ASSERT(ok); @@ -215,9 +160,11 @@ bool CCudaFilteredBackProjectionAlgorithm::check() ASTRA_CONFIG_CHECK(m_pSinogram, "FBP_CUDA", "Invalid Projection Data Object."); ASTRA_CONFIG_CHECK(m_pReconstruction, "FBP_CUDA", "Invalid Reconstruction Data Object."); - if((m_eFilter == FILTER_PROJECTION) || (m_eFilter == FILTER_SINOGRAM) || (m_eFilter == FILTER_RPROJECTION) || (m_eFilter == FILTER_RSINOGRAM)) + ASTRA_CONFIG_CHECK(m_filterConfig.m_eType != FILTER_ERROR, "FBP_CUDA", "Invalid filter name."); + + if((m_filterConfig.m_eType == FILTER_PROJECTION) || (m_filterConfig.m_eType == FILTER_SINOGRAM) || (m_filterConfig.m_eType == FILTER_RPROJECTION) || (m_filterConfig.m_eType == FILTER_RSINOGRAM)) { - ASTRA_CONFIG_CHECK(m_pfFilter, "FBP_CUDA", "Invalid filter pointer."); + ASTRA_CONFIG_CHECK(m_filterConfig.m_pfCustomFilter, "FBP_CUDA", "Invalid filter pointer."); } // check initializations @@ -229,122 +176,12 @@ bool CCudaFilteredBackProjectionAlgorithm::check() // check pixel supersampling ASTRA_CONFIG_CHECK(m_iPixelSuperSampling >= 0, "FBP_CUDA", "PixelSuperSampling must be a non-negative integer."); + ASTRA_CONFIG_CHECK(checkCustomFilterSize(m_filterConfig, *m_pSinogram->getGeometry()), "FBP_CUDA", "Filter size mismatch"); + // success m_bIsInitialized = true; return true; } -static bool stringCompareLowerCase(const char * _stringA, const char * _stringB) -{ - int iCmpReturn = 0; - -#ifdef _MSC_VER - iCmpReturn = _stricmp(_stringA, _stringB); -#else - iCmpReturn = strcasecmp(_stringA, _stringB); -#endif - - return (iCmpReturn == 0); -} - -E_FBPFILTER CCudaFilteredBackProjectionAlgorithm::_convertStringToFilter(const char * _filterType) -{ - E_FBPFILTER output = FILTER_NONE; - - if(stringCompareLowerCase(_filterType, "ram-lak")) - { - output = FILTER_RAMLAK; - } - else if(stringCompareLowerCase(_filterType, "shepp-logan")) - { - output = FILTER_SHEPPLOGAN; - } - else if(stringCompareLowerCase(_filterType, "cosine")) - { - output = FILTER_COSINE; - } - else if(stringCompareLowerCase(_filterType, "hamming")) - { - output = FILTER_HAMMING; - } - else if(stringCompareLowerCase(_filterType, "hann")) - { - output = FILTER_HANN; - } - else if(stringCompareLowerCase(_filterType, "none")) - { - output = FILTER_NONE; - } - else if(stringCompareLowerCase(_filterType, "tukey")) - { - output = FILTER_TUKEY; - } - else if(stringCompareLowerCase(_filterType, "lanczos")) - { - output = FILTER_LANCZOS; - } - else if(stringCompareLowerCase(_filterType, "triangular")) - { - output = FILTER_TRIANGULAR; - } - else if(stringCompareLowerCase(_filterType, "gaussian")) - { - output = FILTER_GAUSSIAN; - } - else if(stringCompareLowerCase(_filterType, "barlett-hann")) - { - output = FILTER_BARTLETTHANN; - } - else if(stringCompareLowerCase(_filterType, "blackman")) - { - output = FILTER_BLACKMAN; - } - else if(stringCompareLowerCase(_filterType, "nuttall")) - { - output = FILTER_NUTTALL; - } - else if(stringCompareLowerCase(_filterType, "blackman-harris")) - { - output = FILTER_BLACKMANHARRIS; - } - else if(stringCompareLowerCase(_filterType, "blackman-nuttall")) - { - output = FILTER_BLACKMANNUTTALL; - } - else if(stringCompareLowerCase(_filterType, "flat-top")) - { - output = FILTER_FLATTOP; - } - else if(stringCompareLowerCase(_filterType, "kaiser")) - { - output = FILTER_KAISER; - } - else if(stringCompareLowerCase(_filterType, "parzen")) - { - output = FILTER_PARZEN; - } - else if(stringCompareLowerCase(_filterType, "projection")) - { - output = FILTER_PROJECTION; - } - else if(stringCompareLowerCase(_filterType, "sinogram")) - { - output = FILTER_SINOGRAM; - } - else if(stringCompareLowerCase(_filterType, "rprojection")) - { - output = FILTER_RPROJECTION; - } - else if(stringCompareLowerCase(_filterType, "rsinogram")) - { - output = FILTER_RSINOGRAM; - } - else - { - ASTRA_ERROR("Failed to convert \"%s\" into a filter.",_filterType); - } - - return output; -} diff --git a/src/FilteredBackProjectionAlgorithm.cpp b/src/FilteredBackProjectionAlgorithm.cpp index bb2e722..67a12a2 100644 --- a/src/FilteredBackProjectionAlgorithm.cpp +++ b/src/FilteredBackProjectionAlgorithm.cpp @@ -81,6 +81,9 @@ void CFilteredBackProjectionAlgorithm::clear() m_pSinogram = NULL; m_pReconstruction = NULL; m_bIsInitialized = false; + + delete[] m_filterConfig.m_pfCustomFilter; + m_filterConfig.m_pfCustomFilter = 0; } @@ -151,6 +154,9 @@ bool CFilteredBackProjectionAlgorithm::initialize(const Config& _cfg) delete[] projectionAngles; } + m_filterConfig = getFilterConfigForAlgorithm(_cfg, this); + + // TODO: check that the angles are linearly spaced between 0 and pi // success @@ -195,11 +201,14 @@ bool CFilteredBackProjectionAlgorithm::initialize(CProjector2D* _pProjector, CFloat32VolumeData2D* _pVolume, CFloat32ProjectionData2D* _pSinogram) { + clear(); + // store classes m_pProjector = _pProjector; m_pReconstruction = _pVolume; m_pSinogram = _pSinogram; + m_filterConfig = SFilterConfig(); // TODO: check that the angles are linearly spaced between 0 and pi @@ -214,6 +223,15 @@ bool CFilteredBackProjectionAlgorithm::_check() { ASTRA_CONFIG_CHECK(CReconstructionAlgorithm2D::_check(), "FBP", "Error in ReconstructionAlgorithm2D initialization"); + ASTRA_CONFIG_CHECK(m_filterConfig.m_eType != FILTER_ERROR, "FBP", "Invalid filter name."); + + if((m_filterConfig.m_eType == FILTER_PROJECTION) || (m_filterConfig.m_eType == FILTER_SINOGRAM) || (m_filterConfig.m_eType == FILTER_RPROJECTION) || (m_filterConfig.m_eType == FILTER_RSINOGRAM)) + { + ASTRA_CONFIG_CHECK(m_filterConfig.m_pfCustomFilter, "FBP", "Invalid filter pointer."); + } + + ASTRA_CONFIG_CHECK(checkCustomFilterSize(m_filterConfig, *m_pSinogram->getGeometry()), "FBP", "Filter size mismatch"); + // success return true; } @@ -249,34 +267,84 @@ void CFilteredBackProjectionAlgorithm::performFiltering(CFloat32ProjectionData2D ASTRA_ASSERT(_pFilteredSinogram->getAngleCount() == m_pSinogram->getAngleCount()); ASTRA_ASSERT(_pFilteredSinogram->getDetectorCount() == m_pSinogram->getDetectorCount()); + ASTRA_ASSERT(m_filterConfig.m_eType != FILTER_ERROR); + if (m_filterConfig.m_eType == FILTER_NONE) + return; int iAngleCount = m_pProjector->getProjectionGeometry()->getProjectionAngleCount(); int iDetectorCount = m_pProjector->getProjectionGeometry()->getDetectorCount(); - // We'll zero-pad to the smallest power of two at least 64 and - // at least 2*iDetectorCount - int zpDetector = 64; - int nextPow2 = 5; - while (zpDetector < iDetectorCount*2) { - zpDetector *= 2; - nextPow2++; - } + int zpDetector = calcNextPowerOfTwo(2 * m_pSinogram->getDetectorCount()); + int iHalfFFTSize = astra::calcFFTFourierSize(zpDetector); - // Create filter - float32* filter = new float32[zpDetector]; + // cdft setup + int *ip = new int[int(2+sqrt((float)zpDetector)+1)]; + ip[0] = 0; + float32 *w = new float32[zpDetector/2]; - for (int iDetector = 0; iDetector <= zpDetector/2; iDetector++) - filter[iDetector] = (2.0f * iDetector)/zpDetector; + // Create filter + bool bFilterMultiAngle = false; + bool bFilterComplex = false; + float *pfFilter = 0; + float *pfFilter_delete = 0; + switch (m_filterConfig.m_eType) { + case FILTER_ERROR: + case FILTER_NONE: + // Should have been handled before + ASTRA_ASSERT(false); + return; + case FILTER_PROJECTION: + // Fourier space, real, half the coefficients (because symmetric) + // 1 x iHalfFFTSize + pfFilter = m_filterConfig.m_pfCustomFilter; + break; + case FILTER_SINOGRAM: + bFilterMultiAngle = true; + pfFilter = m_filterConfig.m_pfCustomFilter; + break; + case FILTER_RSINOGRAM: + bFilterMultiAngle = true; + // fall-through + case FILTER_RPROJECTION: + { + bFilterComplex = true; + + int count = bFilterMultiAngle ? iAngleCount : 1; + // Spatial, real, full convolution kernel + // Center in center (or right-of-center for even sized.) + // I.e., 0 1 0 and 0 0 1 0 both correspond to the identity + + pfFilter = new float[2 * zpDetector * count]; + pfFilter_delete = pfFilter; + + int iUsedFilterWidth = min(m_filterConfig.m_iCustomFilterWidth, zpDetector); + int iStartFilterIndex = (m_filterConfig.m_iCustomFilterWidth - iUsedFilterWidth) / 2; + int iMaxFilterIndex = iStartFilterIndex + iUsedFilterWidth; + + int iFilterShiftSize = m_filterConfig.m_iCustomFilterWidth / 2; + + for (int i = 0; i < count; ++i) { + float *rOut = pfFilter + i * 2 * zpDetector; + float *rIn = m_filterConfig.m_pfCustomFilter + i * m_filterConfig.m_iCustomFilterWidth; + memset(rOut, 0, sizeof(float) * 2 * zpDetector); + + for(int j = iStartFilterIndex; j < iMaxFilterIndex; j++) { + int iFFTInFilterIndex = (j + zpDetector - iFilterShiftSize) % zpDetector; + rOut[2 * iFFTInFilterIndex] = rIn[j]; + } - for (int iDetector = zpDetector/2+1; iDetector < zpDetector; iDetector++) - filter[iDetector] = (2.0f * (zpDetector - iDetector)) / zpDetector; + cdft(2*zpDetector, -1, rOut, ip, w); + } + break; + } + default: + pfFilter = genFilter(m_filterConfig, zpDetector, iHalfFFTSize); + pfFilter_delete = pfFilter; + } float32* pf = new float32[2 * iAngleCount * zpDetector]; - int *ip = new int[int(2+sqrt((float)zpDetector)+1)]; - ip[0]=0; - float32 *w = new float32[zpDetector/2]; // Copy and zero-pad data for (int iAngle = 0; iAngle < iAngleCount; ++iAngle) { @@ -299,11 +367,34 @@ void CFilteredBackProjectionAlgorithm::performFiltering(CFloat32ProjectionData2D } // Filter - for (int iAngle = 0; iAngle < iAngleCount; ++iAngle) { - float32* pfRow = pf + iAngle * 2 * zpDetector; - for (int iDetector = 0; iDetector < zpDetector; ++iDetector) { - pfRow[2*iDetector] *= filter[iDetector]; - pfRow[2*iDetector+1] *= filter[iDetector]; + if (bFilterComplex) { + for (int iAngle = 0; iAngle < iAngleCount; ++iAngle) { + float32* pfRow = pf + iAngle * 2 * zpDetector; + float *pfFilterRow = pfFilter; + if (bFilterMultiAngle) + pfFilterRow += iAngle * 2 * zpDetector; + + for (int i = 0; i < zpDetector; ++i) { + float re = pfRow[2*i] * pfFilterRow[2*i] - pfRow[2*i+1] * pfFilterRow[2*i+1]; + float im = pfRow[2*i] * pfFilterRow[2*i+1] + pfRow[2*i+1] * pfFilterRow[2*i]; + pfRow[2*i] = re; + pfRow[2*i+1] = im; + } + } + } else { + for (int iAngle = 0; iAngle < iAngleCount; ++iAngle) { + float32* pfRow = pf + iAngle * 2 * zpDetector; + float *pfFilterRow = pfFilter; + if (bFilterMultiAngle) + pfFilterRow += iAngle * iHalfFFTSize; + for (int iDetector = 0; iDetector < iHalfFFTSize; ++iDetector) { + pfRow[2*iDetector] *= pfFilterRow[iDetector]; + pfRow[2*iDetector+1] *= pfFilterRow[iDetector]; + } + for (int iDetector = iHalfFFTSize; iDetector < zpDetector; ++iDetector) { + pfRow[2*iDetector] *= pfFilterRow[zpDetector - iDetector]; + pfRow[2*iDetector+1] *= pfFilterRow[zpDetector - iDetector]; + } } } @@ -324,7 +415,7 @@ void CFilteredBackProjectionAlgorithm::performFiltering(CFloat32ProjectionData2D delete[] pf; delete[] w; delete[] ip; - delete[] filter; + delete[] pfFilter_delete; } } diff --git a/src/Filters.cpp b/src/Filters.cpp new file mode 100644 index 0000000..c13aa6b --- /dev/null +++ b/src/Filters.cpp @@ -0,0 +1,608 @@ +/* +----------------------------------------------------------------------- +Copyright: 2010-2018, imec Vision Lab, University of Antwerp + 2014-2018, CWI, Amsterdam + +Contact: astra@astra-toolbox.com +Website: http://www.astra-toolbox.com/ + +This file is part of the ASTRA Toolbox. + + +The ASTRA Toolbox is free software: you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation, either version 3 of the License, or +(at your option) any later version. + +The ASTRA Toolbox is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>. + +----------------------------------------------------------------------- +*/ + +#include "astra/Globals.h" +#include "astra/Logging.h" +#include "astra/Fourier.h" +#include "astra/Filters.h" +#include "astra/Config.h" +#include "astra/Float32ProjectionData2D.h" +#include "astra/AstraObjectManager.h" + +#include <utility> +#include <cstring> + +namespace astra { + +float *genFilter(const SFilterConfig &_cfg, + int _iFFTRealDetectorCount, + int _iFFTFourierDetectorCount) +{ + float * pfFilt = new float[_iFFTFourierDetectorCount]; + float * pfW = new float[_iFFTFourierDetectorCount]; + + // We cache one Fourier transform for repeated FBP's of the same size + static float *pfData = 0; + static int iFilterCacheSize = 0; + + if (!pfData || iFilterCacheSize != _iFFTRealDetectorCount) { + // Compute filter in spatial domain + + delete[] pfData; + pfData = new float[2*_iFFTRealDetectorCount]; + int *ip = new int[int(2+sqrt(_iFFTRealDetectorCount)+1)]; + ip[0] = 0; + float32 *w = new float32[_iFFTRealDetectorCount/2]; + + for (int i = 0; i < _iFFTRealDetectorCount; ++i) { + pfData[2*i+1] = 0.0f; + + if (i & 1) { + int j = i; + if (2*j > _iFFTRealDetectorCount) + j = _iFFTRealDetectorCount - j; + float f = M_PI * j; + pfData[2*i] = -1 / (f*f); + } else { + pfData[2*i] = 0.0f; + } + } + + pfData[0] = 0.25f; + + cdft(2*_iFFTRealDetectorCount, -1, pfData, ip, w); + delete[] ip; + delete[] w; + + iFilterCacheSize = _iFFTRealDetectorCount; + } + + for(int iDetectorIndex = 0; iDetectorIndex < _iFFTFourierDetectorCount; iDetectorIndex++) + { + float fRelIndex = (float)iDetectorIndex / (float)_iFFTRealDetectorCount; + + pfFilt[iDetectorIndex] = 2.0f * pfData[2*iDetectorIndex]; + pfW[iDetectorIndex] = M_PI * 2.0f * fRelIndex; + } + + switch(_cfg.m_eType) + { + case FILTER_RAMLAK: + { + // do nothing + break; + } + case FILTER_SHEPPLOGAN: + { + // filt(2:end) = filt(2:end) .* (sin(w(2:end)/(2*d))./(w(2:end)/(2*d))) + for(int iDetectorIndex = 1; iDetectorIndex < _iFFTFourierDetectorCount; iDetectorIndex++) + { + pfFilt[iDetectorIndex] = pfFilt[iDetectorIndex] * (sinf(pfW[iDetectorIndex] / 2.0f / _cfg.m_fD) / (pfW[iDetectorIndex] / 2.0f / _cfg.m_fD)); + } + break; + } + case FILTER_COSINE: + { + // filt(2:end) = filt(2:end) .* cos(w(2:end)/(2*d)) + for(int iDetectorIndex = 1; iDetectorIndex < _iFFTFourierDetectorCount; iDetectorIndex++) + { + pfFilt[iDetectorIndex] = pfFilt[iDetectorIndex] * cosf(pfW[iDetectorIndex] / 2.0f / _cfg.m_fD); + } + break; + } + case FILTER_HAMMING: + { + // filt(2:end) = filt(2:end) .* (.54 + .46 * cos(w(2:end)/d)) + for(int iDetectorIndex = 1; iDetectorIndex < _iFFTFourierDetectorCount; iDetectorIndex++) + { + pfFilt[iDetectorIndex] = pfFilt[iDetectorIndex] * ( 0.54f + 0.46f * cosf(pfW[iDetectorIndex] / _cfg.m_fD)); + } + break; + } + case FILTER_HANN: + { + // filt(2:end) = filt(2:end) .*(1+cos(w(2:end)./d)) / 2 + for(int iDetectorIndex = 1; iDetectorIndex < _iFFTFourierDetectorCount; iDetectorIndex++) + { + pfFilt[iDetectorIndex] = pfFilt[iDetectorIndex] * (1.0f + cosf(pfW[iDetectorIndex] / _cfg.m_fD)) / 2.0f; + } + break; + } + case FILTER_TUKEY: + { + float fAlpha = _cfg.m_fParameter; + if(_cfg.m_fParameter < 0.0f) fAlpha = 0.5f; + float fN = (float)_iFFTFourierDetectorCount; + float fHalfN = fN / 2.0f; + float fEnumTerm = fAlpha * fHalfN; + float fDenom = (1.0f - fAlpha) * fHalfN; + float fBlockStart = fHalfN - fEnumTerm; + float fBlockEnd = fHalfN + fEnumTerm; + + for(int iDetectorIndex = 1; iDetectorIndex < _iFFTFourierDetectorCount; iDetectorIndex++) + { + float fAbsSmallN = fabs((float)iDetectorIndex); + float fStoredValue = 0.0f; + + if((fBlockStart <= fAbsSmallN) && (fAbsSmallN <= fBlockEnd)) + { + fStoredValue = 1.0f; + } + else + { + float fEnum = fAbsSmallN - fEnumTerm; + float fCosInput = M_PI * fEnum / fDenom; + fStoredValue = 0.5f * (1.0f + cosf(fCosInput)); + } + + pfFilt[iDetectorIndex] *= fStoredValue; + } + + break; + } + case FILTER_LANCZOS: + { + float fDenum = (float)(_iFFTFourierDetectorCount - 1); + + for(int iDetectorIndex = 1; iDetectorIndex < _iFFTFourierDetectorCount; iDetectorIndex++) + { + float fSmallN = (float)iDetectorIndex; + float fX = 2.0f * fSmallN / fDenum - 1.0f; + float fSinInput = M_PI * fX; + float fStoredValue = 0.0f; + + if(fabsf(fSinInput) > 0.001f) + { + fStoredValue = sin(fSinInput)/fSinInput; + } + else + { + fStoredValue = 1.0f; + } + + pfFilt[iDetectorIndex] *= fStoredValue; + } + + break; + } + case FILTER_TRIANGULAR: + { + float fNMinusOne = (float)(_iFFTFourierDetectorCount - 1); + + for(int iDetectorIndex = 1; iDetectorIndex < _iFFTFourierDetectorCount; iDetectorIndex++) + { + float fSmallN = (float)iDetectorIndex; + float fAbsInput = fSmallN - fNMinusOne / 2.0f; + float fParenInput = fNMinusOne / 2.0f - fabsf(fAbsInput); + float fStoredValue = 2.0f / fNMinusOne * fParenInput; + + pfFilt[iDetectorIndex] *= fStoredValue; + } + + break; + } + case FILTER_GAUSSIAN: + { + float fSigma = _cfg.m_fParameter; + if(_cfg.m_fParameter < 0.0f) fSigma = 0.4f; + float fN = (float)_iFFTFourierDetectorCount; + float fQuotient = (fN - 1.0f) / 2.0f; + + for(int iDetectorIndex = 1; iDetectorIndex < _iFFTFourierDetectorCount; iDetectorIndex++) + { + float fSmallN = (float)iDetectorIndex; + float fEnum = fSmallN - fQuotient; + float fDenom = fSigma * fQuotient; + float fPower = -0.5f * (fEnum / fDenom) * (fEnum / fDenom); + float fStoredValue = expf(fPower); + + pfFilt[iDetectorIndex] *= fStoredValue; + } + + break; + } + case FILTER_BARTLETTHANN: + { + const float fA0 = 0.62f; + const float fA1 = 0.48f; + const float fA2 = 0.38f; + float fNMinusOne = (float)(_iFFTFourierDetectorCount) - 1.0f; + + for(int iDetectorIndex = 1; iDetectorIndex < _iFFTFourierDetectorCount; iDetectorIndex++) + { + float fSmallN = (float)iDetectorIndex; + float fAbsInput = fSmallN / fNMinusOne - 0.5f; + float fFirstTerm = fA1 * fabsf(fAbsInput); + float fCosInput = 2.0f * M_PI * fSmallN / fNMinusOne; + float fSecondTerm = fA2 * cosf(fCosInput); + float fStoredValue = fA0 - fFirstTerm - fSecondTerm; + + pfFilt[iDetectorIndex] *= fStoredValue; + } + + break; + } + case FILTER_BLACKMAN: + { + float fAlpha = _cfg.m_fParameter; + if(_cfg.m_fParameter < 0.0f) fAlpha = 0.16f; + float fA0 = (1.0f - fAlpha) / 2.0f; + float fA1 = 0.5f; + float fA2 = fAlpha / 2.0f; + float fNMinusOne = (float)(_iFFTFourierDetectorCount - 1); + + for(int iDetectorIndex = 1; iDetectorIndex < _iFFTFourierDetectorCount; iDetectorIndex++) + { + float fSmallN = (float)iDetectorIndex; + float fCosInput1 = 2.0f * M_PI * 0.5f * fSmallN / fNMinusOne; + float fCosInput2 = 4.0f * M_PI * 0.5f * fSmallN / fNMinusOne; + float fStoredValue = fA0 - fA1 * cosf(fCosInput1) + fA2 * cosf(fCosInput2); + + pfFilt[iDetectorIndex] *= fStoredValue; + } + + break; + } + case FILTER_NUTTALL: + { + const float fA0 = 0.355768f; + const float fA1 = 0.487396f; + const float fA2 = 0.144232f; + const float fA3 = 0.012604f; + float fNMinusOne = (float)(_iFFTFourierDetectorCount) - 1.0f; + + for(int iDetectorIndex = 1; iDetectorIndex < _iFFTFourierDetectorCount; iDetectorIndex++) + { + float fSmallN = (float)iDetectorIndex; + float fBaseCosInput = M_PI * fSmallN / fNMinusOne; + float fFirstTerm = fA1 * cosf(2.0f * fBaseCosInput); + float fSecondTerm = fA2 * cosf(4.0f * fBaseCosInput); + float fThirdTerm = fA3 * cosf(6.0f * fBaseCosInput); + float fStoredValue = fA0 - fFirstTerm + fSecondTerm - fThirdTerm; + + pfFilt[iDetectorIndex] *= fStoredValue; + } + + break; + } + case FILTER_BLACKMANHARRIS: + { + const float fA0 = 0.35875f; + const float fA1 = 0.48829f; + const float fA2 = 0.14128f; + const float fA3 = 0.01168f; + float fNMinusOne = (float)(_iFFTFourierDetectorCount) - 1.0f; + + for(int iDetectorIndex = 1; iDetectorIndex < _iFFTFourierDetectorCount; iDetectorIndex++) + { + float fSmallN = (float)iDetectorIndex; + float fBaseCosInput = M_PI * fSmallN / fNMinusOne; + float fFirstTerm = fA1 * cosf(2.0f * fBaseCosInput); + float fSecondTerm = fA2 * cosf(4.0f * fBaseCosInput); + float fThirdTerm = fA3 * cosf(6.0f * fBaseCosInput); + float fStoredValue = fA0 - fFirstTerm + fSecondTerm - fThirdTerm; + + pfFilt[iDetectorIndex] *= fStoredValue; + } + + break; + } + case FILTER_BLACKMANNUTTALL: + { + const float fA0 = 0.3635819f; + const float fA1 = 0.4891775f; + const float fA2 = 0.1365995f; + const float fA3 = 0.0106411f; + float fNMinusOne = (float)(_iFFTFourierDetectorCount) - 1.0f; + + for(int iDetectorIndex = 1; iDetectorIndex < _iFFTFourierDetectorCount; iDetectorIndex++) + { + float fSmallN = (float)iDetectorIndex; + float fBaseCosInput = M_PI * fSmallN / fNMinusOne; + float fFirstTerm = fA1 * cosf(2.0f * fBaseCosInput); + float fSecondTerm = fA2 * cosf(4.0f * fBaseCosInput); + float fThirdTerm = fA3 * cosf(6.0f * fBaseCosInput); + float fStoredValue = fA0 - fFirstTerm + fSecondTerm - fThirdTerm; + + pfFilt[iDetectorIndex] *= fStoredValue; + } + + break; + } + case FILTER_FLATTOP: + { + const float fA0 = 1.0f; + const float fA1 = 1.93f; + const float fA2 = 1.29f; + const float fA3 = 0.388f; + const float fA4 = 0.032f; + float fNMinusOne = (float)(_iFFTFourierDetectorCount) - 1.0f; + + for(int iDetectorIndex = 1; iDetectorIndex < _iFFTFourierDetectorCount; iDetectorIndex++) + { + float fSmallN = (float)iDetectorIndex; + float fBaseCosInput = M_PI * fSmallN / fNMinusOne; + float fFirstTerm = fA1 * cosf(2.0f * fBaseCosInput); + float fSecondTerm = fA2 * cosf(4.0f * fBaseCosInput); + float fThirdTerm = fA3 * cosf(6.0f * fBaseCosInput); + float fFourthTerm = fA4 * cosf(8.0f * fBaseCosInput); + float fStoredValue = fA0 - fFirstTerm + fSecondTerm - fThirdTerm + fFourthTerm; + + pfFilt[iDetectorIndex] *= fStoredValue; + } + + break; + } + case FILTER_KAISER: + { + float fAlpha = _cfg.m_fParameter; + if(_cfg.m_fParameter < 0.0f) fAlpha = 3.0f; + float fPiTimesAlpha = M_PI * fAlpha; + float fNMinusOne = (float)(_iFFTFourierDetectorCount - 1); + float fDenom = (float)j0((double)fPiTimesAlpha); + + for(int iDetectorIndex = 1; iDetectorIndex < _iFFTFourierDetectorCount; iDetectorIndex++) + { + float fSmallN = (float)iDetectorIndex; + float fSquareInput = 2.0f * fSmallN / fNMinusOne - 1; + float fSqrtInput = 1.0f - fSquareInput * fSquareInput; + float fBesselInput = fPiTimesAlpha * sqrt(fSqrtInput); + float fEnum = (float)j0((double)fBesselInput); + float fStoredValue = fEnum / fDenom; + + pfFilt[iDetectorIndex] *= fStoredValue; + } + + break; + } + case FILTER_PARZEN: + { + for(int iDetectorIndex = 1; iDetectorIndex < _iFFTFourierDetectorCount; iDetectorIndex++) + { + float fSmallN = (float)iDetectorIndex; + float fQ = fSmallN / (float)(_iFFTFourierDetectorCount - 1); + float fStoredValue = 0.0f; + + if(fQ <= 0.5f) + { + fStoredValue = 1.0f - 6.0f * fQ * fQ * (1.0f - fQ); + } + else + { + float fCubedValue = 1.0f - fQ; + fStoredValue = 2.0f * fCubedValue * fCubedValue * fCubedValue; + } + + pfFilt[iDetectorIndex] *= fStoredValue; + } + + break; + } + default: + { + ASTRA_ERROR("Cannot serve requested filter"); + } + } + + // filt(w>pi*d) = 0; + float fPiTimesD = M_PI * _cfg.m_fD; + for(int iDetectorIndex = 0; iDetectorIndex < _iFFTFourierDetectorCount; iDetectorIndex++) + { + float fWValue = pfW[iDetectorIndex]; + + if(fWValue > fPiTimesD) + { + pfFilt[iDetectorIndex] = 0.0f; + } + } + + delete[] pfW; + + return pfFilt; +} + +static bool stringCompareLowerCase(const char * _stringA, const char * _stringB) +{ + int iCmpReturn = 0; + +#ifdef _MSC_VER + iCmpReturn = _stricmp(_stringA, _stringB); +#else + iCmpReturn = strcasecmp(_stringA, _stringB); +#endif + + return (iCmpReturn == 0); +} + +struct FilterNameMapEntry { + const char *m_name; + E_FBPFILTER m_type; +}; + +E_FBPFILTER convertStringToFilter(const char * _filterType) +{ + + static const FilterNameMapEntry map[] = { + { "ram-lak", FILTER_RAMLAK }, + { "shepp-logan", FILTER_SHEPPLOGAN }, + { "cosine", FILTER_COSINE }, + { "hamming", FILTER_HAMMING}, + { "hann", FILTER_HANN}, + { "tukey", FILTER_TUKEY }, + { "lanczos", FILTER_LANCZOS}, + { "triangular", FILTER_TRIANGULAR}, + { "gaussian", FILTER_GAUSSIAN}, + { "barlett-hann", FILTER_BARTLETTHANN }, + { "blackman", FILTER_BLACKMAN}, + { "nuttall", FILTER_NUTTALL }, + { "blackman-harris", FILTER_BLACKMANHARRIS }, + { "blackman-nuttall", FILTER_BLACKMANNUTTALL }, + { "flat-top", FILTER_FLATTOP }, + { "kaiser", FILTER_KAISER }, + { "parzen", FILTER_PARZEN }, + { "projection", FILTER_PROJECTION }, + { "sinogram", FILTER_SINOGRAM }, + { "rprojection", FILTER_RPROJECTION }, + { "rsinogram", FILTER_RSINOGRAM }, + { "none", FILTER_NONE }, + { 0, FILTER_ERROR } }; + + const FilterNameMapEntry *i; + + for (i = &map[0]; i->m_name; ++i) + if (stringCompareLowerCase(_filterType, i->m_name)) + return i->m_type; + + ASTRA_ERROR("Failed to convert \"%s\" into a filter.",_filterType); + + return FILTER_ERROR; +} + + +SFilterConfig getFilterConfigForAlgorithm(const Config& _cfg, CAlgorithm *_alg) +{ + ConfigStackCheck<CAlgorithm> CC("getFilterConfig", _alg, _cfg); + + SFilterConfig c; + + // filter type + XMLNode node = _cfg.self.getSingleNode("FilterType"); + if (node) + c.m_eType = convertStringToFilter(node.getContent().c_str()); + else + c.m_eType = FILTER_RAMLAK; + CC.markNodeParsed("FilterType"); + + // filter + node = _cfg.self.getSingleNode("FilterSinogramId"); + if (node) + { + int id = node.getContentInt(); + const CFloat32ProjectionData2D * pFilterData = dynamic_cast<CFloat32ProjectionData2D*>(CData2DManager::getSingleton().get(id)); + c.m_iCustomFilterWidth = pFilterData->getGeometry()->getDetectorCount(); + c.m_iCustomFilterHeight = pFilterData->getGeometry()->getProjectionAngleCount(); + + c.m_pfCustomFilter = new float[c.m_iCustomFilterWidth * c.m_iCustomFilterHeight]; + memcpy(c.m_pfCustomFilter, pFilterData->getDataConst(), sizeof(float) * c.m_iCustomFilterWidth * c.m_iCustomFilterHeight); + } + else + { + c.m_iCustomFilterWidth = 0; + c.m_iCustomFilterHeight = 0; + c.m_pfCustomFilter = NULL; + } + CC.markNodeParsed("FilterSinogramId"); // TODO: Only for some types! + + // filter parameter + node = _cfg.self.getSingleNode("FilterParameter"); + if (node) + { + float fParameter = node.getContentNumerical(); + c.m_fParameter = fParameter; + } + else + { + c.m_fParameter = -1.0f; + } + CC.markNodeParsed("FilterParameter"); // TODO: Only for some types! + + // D value + node = _cfg.self.getSingleNode("FilterD"); + if (node) + { + float fD = node.getContentNumerical(); + c.m_fD = fD; + } + else + { + c.m_fD = 1.0f; + } + CC.markNodeParsed("FilterD"); // TODO: Only for some types! + + return c; +} + +int calcNextPowerOfTwo(int n) +{ + int x = 1; + while (x < n && x > 0) + x *= 2; + + return x; +} + +// Because the input is real, the Fourier transform is symmetric. +// CUFFT only outputs the first half (ignoring the redundant second half), +// and expects the same as input for the IFFT. +int calcFFTFourierSize(int _iFFTRealSize) +{ + int iFFTFourierSize = _iFFTRealSize / 2 + 1; + + return iFFTFourierSize; +} + +bool checkCustomFilterSize(const SFilterConfig &_cfg, const CProjectionGeometry2D &_geom) { + int iExpectedWidth = -1, iExpectedHeight = 1; + + switch (_cfg.m_eType) { + case FILTER_ERROR: + ASTRA_ERROR("checkCustomFilterSize: internal error; FILTER_ERROR passed"); + return false; + case FILTER_NONE: + return true; + case FILTER_SINOGRAM: + iExpectedHeight = _geom.getProjectionAngleCount(); + // fallthrough + case FILTER_PROJECTION: + { + int iPaddedDetCount = calcNextPowerOfTwo(2 * _geom.getDetectorCount()); + iExpectedWidth = calcFFTFourierSize(iPaddedDetCount); + } + if (_cfg.m_iCustomFilterWidth != iExpectedWidth || + _cfg.m_iCustomFilterHeight != iExpectedHeight) + { + ASTRA_ERROR("filter size mismatch: %dx%d (received) is not %dx%d (expected)", _cfg.m_iCustomFilterHeight, _cfg.m_iCustomFilterWidth, iExpectedHeight, iExpectedWidth); + return false; + } + return true; + case FILTER_RSINOGRAM: + iExpectedHeight = _geom.getProjectionAngleCount(); + // fallthrough + case FILTER_RPROJECTION: + if (_cfg.m_iCustomFilterHeight != iExpectedHeight) + { + ASTRA_ERROR("filter size mismatch: %dx%d (received) is not %dxX (expected)", _cfg.m_iCustomFilterHeight, _cfg.m_iCustomFilterWidth, iExpectedHeight); + return false; + } + return true; + default: + // Non-custom filters; nothing to check. + return true; + } +} + +} |