/* ----------------------------------------------------------------------- Copyright 2012 iMinds-Vision Lab, University of Antwerp Contact: astra@ua.ac.be Website: http://astra.ua.ac.be This file is part of the All Scale Tomographic Reconstruction Antwerp Toolbox ("ASTRA Toolbox"). The ASTRA Toolbox is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. The ASTRA Toolbox is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with the ASTRA Toolbox. If not, see . ----------------------------------------------------------------------- $Id$ */ #include "util.h" #include "darthelper.h" #include namespace astraCUDA { // CUDA function for the selection of ROI __global__ void devRoiSelect(float* in, float radius, unsigned int pitch, unsigned int width, unsigned int height) { float x = (float)(threadIdx.x + 16*blockIdx.x); float y = (float)(threadIdx.y + 16*blockIdx.y); float w = (width-1.0f)*0.5f; float h = (height-1.0f)*0.5f; if ((x-w)*(x-w) + (y-h)*(y-h) > radius * radius * 0.25f) { float* d = (float*)in; unsigned int o = y*pitch+x; d[o] = 0.0f; } } void roiSelect(float* out, float radius, unsigned int width, unsigned int height) { float* D_data; unsigned int pitch; allocateVolume(D_data, width, height, pitch); copyVolumeToDevice(out, width, width, height, D_data, pitch); dim3 blockSize(16,16); dim3 gridSize((width+15)/16, (height+15)/16); devRoiSelect<<>>(D_data, radius, pitch, width, height); copyVolumeFromDevice(out, width, width, height, D_data, pitch); cudaFree(D_data); } // CUDA function for the masking of DART with a radius == 1 __global__ void devDartMask(float* mask, const float* in, unsigned int conn, unsigned int pitch, unsigned int width, unsigned int height) { unsigned int x = threadIdx.x + 16*blockIdx.x; unsigned int y = threadIdx.y + 16*blockIdx.y; // Sacrifice the border pixels to simplify the implementation. if (x > 0 && x < width - 1 && y > 0 && y < height - 1) { float* d = (float*)in; float* m = (float*)mask; unsigned int o2 = y*pitch+x; // On this row. unsigned int o1 = o2 - pitch; // On previous row. unsigned int o3 = o2 + pitch; // On next row. if ((conn == 8 && // 8-connected (d[o1 - 1] != d[o2] || d[o1] != d[o2] || d[o1 + 1] != d[o2] || d[o2 - 1] != d[o2] || d[o2 + 1] != d[o2] || d[o3 - 1] != d[o2] || d[o3] != d[o2] || d[o3 + 1] != d[o2] )) || (conn == 4 && // 4-connected ( d[o1] != d[o2] || d[o2 - 1] != d[o2] || d[o3 + 1] != d[o2] || d[o3] != d[o2] ))) { m[o2] = 1.0f; } } } // CUDA function for the masking of DART with a radius > 1 __global__ void devDartMaskRadius(float* mask, const float* in, unsigned int conn, unsigned int radius, unsigned int pitch, unsigned int width, unsigned int height) { unsigned int x = threadIdx.x + 16*blockIdx.x; unsigned int y = threadIdx.y + 16*blockIdx.y; // Sacrifice the border pixels to simplify the implementation. if (x > radius-1 && x < width - radius && y > radius-1 && y < height - radius) { float* d = (float*)in; float* m = (float*)mask; int r = radius; // o2: index of the current center pixel int o2 = y*pitch+x; if (conn == 8) // 8-connected { for (int row = -r; row <= r; row++) { int o1 = (y+row)*pitch+x; for (int col = -r; col <= r; col++) { if (d[o1 + col] != d[o2]) {m[o2] = 1.0f; return;} } } } else if (conn == 4) // 4-connected { // horizontal unsigned int o1 = y*pitch+x; for (int col = -r; col <= r; col++) { if (d[o1 + col] != d[o2]) {m[o2] = 1.0f; return;} } // vertical for (int row = -r; row <= r; row++) { unsigned int o1 = (y+row)*pitch+x; if (d[o1] != d[o2]) {m[o2] = 1.0f; return;} } } } } // CUDA function for the masking of ADART with a radius == 1 __global__ void devADartMask(float* mask, const float* in, unsigned int conn, unsigned int threshold, unsigned int pitch, unsigned int width, unsigned int height) { unsigned int x = threadIdx.x + 16*blockIdx.x; unsigned int y = threadIdx.y + 16*blockIdx.y; // Sacrifice the border pixels to simplify the implementation. if (x > 0 && x < width - 1 && y > 0 && y < height - 1) { float* d = (float*)in; float* m = (float*)mask; unsigned int o2 = y*pitch+x; // On this row. unsigned int o1 = o2 - pitch; // On previous row. unsigned int o3 = o2 + pitch; // On next row. if (conn == 8) { if (d[o1 - 1] != d[o2] && --threshold == 0) {m[o2] = 1.0f; return;} if (d[o1 ] != d[o2] && --threshold == 0) {m[o2] = 1.0f; return;} if (d[o1 + 1] != d[o2] && --threshold == 0) {m[o2] = 1.0f; return;} if (d[o2 - 1] != d[o2] && --threshold == 0) {m[o2] = 1.0f; return;} if (d[o2 + 1] != d[o2] && --threshold == 0) {m[o2] = 1.0f; return;} if (d[o3 - 1] != d[o2] && --threshold == 0) {m[o2] = 1.0f; return;} if (d[o3 ] != d[o2] && --threshold == 0) {m[o2] = 1.0f; return;} if (d[o3 + 1] != d[o2] && --threshold == 0) {m[o2] = 1.0f; return;} } else if (conn == 4) { if (d[o1 ] != d[o2] && --threshold == 0) {m[o2] = 1.0f; return;} if (d[o2 - 1] != d[o2] && --threshold == 0) {m[o2] = 1.0f; return;} if (d[o2 + 1] != d[o2] && --threshold == 0) {m[o2] = 1.0f; return;} if (d[o3 ] != d[o2] && --threshold == 0) {m[o2] = 1.0f; return;} } } } // CUDA function for the masking of ADART with a radius > 1 __global__ void devADartMaskRadius(float* mask, const float* in, unsigned int conn, unsigned int radius, unsigned int threshold, unsigned int pitch, unsigned int width, unsigned int height) { unsigned int x = threadIdx.x + 16*blockIdx.x; unsigned int y = threadIdx.y + 16*blockIdx.y; // Sacrifice the border pixels to simplify the implementation. if (x > radius-1 && x < width - radius && y > radius-1 && y < height - radius) { float* d = (float*)in; float* m = (float*)mask; int r = radius; unsigned int o2 = y*pitch+x; // On this row. if (conn == 8) { for (int row = -r; row <= r; row++) { unsigned int o1 = (y+row)*pitch+x; for (int col = -r; col <= r; col++) { if (d[o1+col] != d[o2] && --threshold == 0) {m[o2] = 1.0f; return;} } } } else if (conn == 4) { // horizontal for (int col = -r; col <= r; col++) { if (d[o2+col] != d[o2] && --threshold == 0) {m[o2] = 1.0f; return;} } // vertical for (int row = -r; row <= r; row++) { unsigned int o1 = (y+row)*pitch+x; if (d[o1] != d[o2] && --threshold == 0) {m[o2] = 1.0f; return;} } } } } void dartMask(float* mask, const float* segmentation, unsigned int conn, unsigned int radius, unsigned int threshold, unsigned int width, unsigned int height) { float* D_segmentationData; float* D_maskData; unsigned int pitch; allocateVolume(D_segmentationData, width, height, pitch); copyVolumeToDevice(segmentation, width, width, height, D_segmentationData, pitch); allocateVolume(D_maskData, width, height, pitch); zeroVolume(D_maskData, pitch, width, height); dim3 blockSize(16,16); dim3 gridSize((width+15)/16, (height+15)/16); if (threshold == 1 && radius == 1) devDartMask<<>>(D_maskData, D_segmentationData, conn, pitch, width, height); else if (threshold > 1 && radius == 1) devADartMask<<>>(D_maskData, D_segmentationData, conn, threshold, pitch, width, height); else if (threshold == 1 && radius > 1) devDartMaskRadius<<>>(D_maskData, D_segmentationData, conn, radius, pitch, width, height); else devADartMaskRadius<<>>(D_maskData, D_segmentationData, conn, radius, threshold, pitch, width, height); copyVolumeFromDevice(mask, width, width, height, D_maskData, pitch); cudaFree(D_segmentationData); cudaFree(D_maskData); } __global__ void devDartSmoothingRadius(float* out, const float* in, float b, unsigned int radius, unsigned int pitch, unsigned int width, unsigned int height) { unsigned int x = threadIdx.x + 16*blockIdx.x; unsigned int y = threadIdx.y + 16*blockIdx.y; // Sacrifice the border pixels to simplify the implementation. if (x > radius-1 && x < width - radius && y > radius-1 && y < height - radius) { float* d = (float*)in; float* m = (float*)out; unsigned int o2 = y*pitch+x; int r = radius; float res = -d[o2]; for (int row = -r; row < r; row++) { unsigned int o1 = (y+row)*pitch+x; for (int col = -r; col <= r; col++) { res += d[o1+col]; } } res *= b / 4*r*(r+1); res += (1.0f-b) * d[o2]; m[o2] = res; } } __global__ void devDartSmoothing(float* out, const float* in, float b, unsigned int pitch, unsigned int width, unsigned int height) { unsigned int x = threadIdx.x + 16*blockIdx.x; unsigned int y = threadIdx.y + 16*blockIdx.y; // Sacrifice the border pixels to simplify the implementation. if (x > 0 && x < width - 1 && y > 0 && y < height - 1) { float* d = (float*)in; float* m = (float*)out; unsigned int o2 = y*pitch+x; // On this row. unsigned int o1 = o2 - pitch; // On previous row. unsigned int o3 = o2 + pitch; // On next row. m[o2] = (1.0f-b) * d[o2] + b * 0.125f * (d[o1 - 1] + d[o1] + d[o1 + 1] + d[o2 - 1] + d[o2 + 1] + d[o3 - 1] + d[o3] + d[o3 + 1]); } } void dartSmoothing(float* out, const float* in, float b, unsigned int radius, unsigned int width, unsigned int height) { float* D_inData; float* D_outData; unsigned int pitch; allocateVolume(D_inData, width+2, height+2, pitch); copyVolumeToDevice(in, width, width, height, D_inData, pitch); allocateVolume(D_outData, width+2, height+2, pitch); zeroVolume(D_outData, pitch, width+2, height+2); dim3 blockSize(16,16); dim3 gridSize((width+15)/16, (height+15)/16); if (radius == 1) devDartSmoothing<<>>(D_outData, D_inData, b, pitch, width, height); else devDartSmoothingRadius<<>>(D_outData, D_inData, b, radius, pitch, width, height); copyVolumeFromDevice(out, width, width, height, D_outData, pitch); cudaFree(D_outData); cudaFree(D_inData); } _AstraExport bool setGPUIndex(int iGPUIndex) { if (iGPUIndex != -1) { cudaSetDevice(iGPUIndex); cudaError_t err = cudaGetLastError(); // Ignore errors caused by calling cudaSetDevice multiple times if (err != cudaSuccess && err != cudaErrorSetOnActiveProcess) return false; } return true; } }