/*
-----------------------------------------------------------------------
Copyright: 2010-2021, imec Vision Lab, University of Antwerp
2014-2021, CWI, Amsterdam
Contact: astra@astra-toolbox.com
Website: http://www.astra-toolbox.com/
This file is part of the ASTRA Toolbox.
The ASTRA Toolbox is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The ASTRA Toolbox is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the ASTRA Toolbox. If not, see .
-----------------------------------------------------------------------
*/
#include "astra/cuda/3d/util3d.h"
#include "astra/cuda/3d/dims3d.h"
#include
#include
#include
#include
#include
namespace astraCUDA3d {
static const unsigned int g_volBlockZ = 6;
static const unsigned int g_anglesPerBlock = 32;
static const unsigned int g_volBlockX = 16;
static const unsigned int g_volBlockY = 32;
static const unsigned g_MaxAngles = 1024;
struct DevConeParams {
float4 fNumU;
float4 fNumV;
float4 fDen;
};
__constant__ DevConeParams gC_C[g_MaxAngles];
bool bindProjDataTexture(cudaArray* array, cudaTextureObject_t& texObj)
{
cudaChannelFormatDesc channelDesc =
cudaCreateChannelDesc(32, 0, 0, 0, cudaChannelFormatKindFloat);
cudaResourceDesc resDesc;
memset(&resDesc, 0, sizeof(resDesc));
resDesc.resType = cudaResourceTypeArray;
resDesc.res.array.array = array;
cudaTextureDesc texDesc;
memset(&texDesc, 0, sizeof(texDesc));
texDesc.addressMode[0] = cudaAddressModeBorder;
texDesc.addressMode[1] = cudaAddressModeBorder;
texDesc.addressMode[2] = cudaAddressModeBorder;
texDesc.filterMode = cudaFilterModeLinear;
texDesc.readMode = cudaReadModeElementType;
texDesc.normalizedCoords = 0;
return checkCuda(cudaCreateTextureObject(&texObj, &resDesc, &texDesc, NULL), "cone_bp texture");
}
//__launch_bounds__(32*16, 4)
template
__global__ void dev_cone_BP(void* D_volData, unsigned int volPitch,
cudaTextureObject_t tex,
int startAngle, int angleOffset,
const astraCUDA3d::SDimensions3D dims,
float fOutputScale)
{
float* volData = (float*)D_volData;
int endAngle = startAngle + g_anglesPerBlock;
if (endAngle > dims.iProjAngles - angleOffset)
endAngle = dims.iProjAngles - angleOffset;
// threadIdx: x = rel x
// y = rel y
// blockIdx: x = x + y
// y = z
const int X = blockIdx.x % ((dims.iVolX+g_volBlockX-1)/g_volBlockX) * g_volBlockX + threadIdx.x;
const int Y = blockIdx.x / ((dims.iVolX+g_volBlockX-1)/g_volBlockX) * g_volBlockY + threadIdx.y;
if (X >= dims.iVolX)
return;
if (Y >= dims.iVolY)
return;
const int startZ = blockIdx.y * g_volBlockZ;
const float fX = X - 0.5f*dims.iVolX + 0.5f;
const float fY = Y - 0.5f*dims.iVolY + 0.5f;
const float fZ = startZ - 0.5f*dims.iVolZ + 0.5f;
float Z[ZSIZE];
for(int i=0; i < ZSIZE; i++)
Z[i] = 0.0f;
{
float fAngle = startAngle + angleOffset + 0.5f;
for (int angle = startAngle; angle < endAngle; ++angle, fAngle += 1.0f)
{
float4 fCu = gC_C[angle].fNumU;
float4 fCv = gC_C[angle].fNumV;
float4 fCd = gC_C[angle].fDen;
float fUNum = fCu.w + fX * fCu.x + fY * fCu.y + fZ * fCu.z;
float fVNum = fCv.w + fX * fCv.x + fY * fCv.y + fZ * fCv.z;
float fDen = (FDKWEIGHT ? 1.0f : fCd.w) + fX * fCd.x + fY * fCd.y + fZ * fCd.z;
float fU,fV, fr;
for (int idx = 0; idx < ZSIZE; idx++)
{
fr = __fdividef(1.0f, fDen);
fU = fUNum * fr;
fV = fVNum * fr;
float fVal = tex3D(tex, fU, fAngle, fV);
Z[idx] += fr*fr*fVal;
fUNum += fCu.z;
fVNum += fCv.z;
fDen += fCd.z;
}
}
}
int endZ = ZSIZE;
if (endZ > dims.iVolZ - startZ)
endZ = dims.iVolZ - startZ;
for(int i=0; i < endZ; i++)
volData[((startZ+i)*dims.iVolY+Y)*volPitch+X] += Z[i] * fOutputScale;
} //End kernel
// supersampling version
__global__ void dev_cone_BP_SS(void* D_volData, unsigned int volPitch, cudaTextureObject_t tex, int startAngle, int angleOffset, const SDimensions3D dims, int iRaysPerVoxelDim, float fOutputScale)
{
float* volData = (float*)D_volData;
int endAngle = startAngle + g_anglesPerBlock;
if (endAngle > dims.iProjAngles - angleOffset)
endAngle = dims.iProjAngles - angleOffset;
// threadIdx: x = rel x
// y = rel y
// blockIdx: x = x + y
// y = z
// TO TRY: precompute part of detector intersection formulas in shared mem?
// TO TRY: inner loop over z, gather ray values in shared mem
const int X = blockIdx.x % ((dims.iVolX+g_volBlockX-1)/g_volBlockX) * g_volBlockX + threadIdx.x;
const int Y = blockIdx.x / ((dims.iVolX+g_volBlockX-1)/g_volBlockX) * g_volBlockY + threadIdx.y;
if (X >= dims.iVolX)
return;
if (Y >= dims.iVolY)
return;
const int startZ = blockIdx.y * g_volBlockZ;
int endZ = startZ + g_volBlockZ;
if (endZ > dims.iVolZ)
endZ = dims.iVolZ;
float fX = X - 0.5f*dims.iVolX + 0.5f - 0.5f + 0.5f/iRaysPerVoxelDim;
float fY = Y - 0.5f*dims.iVolY + 0.5f - 0.5f + 0.5f/iRaysPerVoxelDim;
float fZ = startZ - 0.5f*dims.iVolZ + 0.5f - 0.5f + 0.5f/iRaysPerVoxelDim;
const float fSubStep = 1.0f/iRaysPerVoxelDim;
fOutputScale /= (iRaysPerVoxelDim*iRaysPerVoxelDim*iRaysPerVoxelDim);
for (int Z = startZ; Z < endZ; ++Z, fZ += 1.0f)
{
float fVal = 0.0f;
float fAngle = startAngle + angleOffset + 0.5f;
for (int angle = startAngle; angle < endAngle; ++angle, fAngle += 1.0f)
{
float4 fCu = gC_C[angle].fNumU;
float4 fCv = gC_C[angle].fNumV;
float4 fCd = gC_C[angle].fDen;
float fXs = fX;
for (int iSubX = 0; iSubX < iRaysPerVoxelDim; ++iSubX) {
float fYs = fY;
for (int iSubY = 0; iSubY < iRaysPerVoxelDim; ++iSubY) {
float fZs = fZ;
for (int iSubZ = 0; iSubZ < iRaysPerVoxelDim; ++iSubZ) {
const float fUNum = fCu.w + fXs * fCu.x + fYs * fCu.y + fZs * fCu.z;
const float fVNum = fCv.w + fXs * fCv.x + fYs * fCv.y + fZs * fCv.z;
const float fDen = fCd.w + fXs * fCd.x + fYs * fCd.y + fZs * fCd.z;
const float fr = __fdividef(1.0f, fDen);
const float fU = fUNum * fr;
const float fV = fVNum * fr;
fVal += tex3D(tex, fU, fAngle, fV) * fr * fr;
fZs += fSubStep;
}
fYs += fSubStep;
}
fXs += fSubStep;
}
}
volData[(Z*dims.iVolY+Y)*volPitch+X] += fVal * fOutputScale;
}
}
bool transferConstants(const SConeProjection* angles, unsigned int iProjAngles, const SProjectorParams3D& params)
{
DevConeParams *p = new DevConeParams[iProjAngles];
// We need three things in the kernel:
// projected coordinates of pixels on the detector:
// u: || (x-s) v (s-d) || / || u v (s-x) ||
// v: -|| u (x-s) (s-d) || / || u v (s-x) ||
// ray density weighting factor for the adjoint
// || u v (s-d) ||^2 / ( |cross(u,v)| * || u v (s-x) ||^2 )
// FDK weighting factor
// ( || u v s || / || u v (s-x) || ) ^ 2
// Since u and v are ratios with the same denominator, we have
// a degree of freedom to scale the denominator. We use that to make
// the square of the denominator equal to the relevant weighting factor.
for (unsigned int i = 0; i < iProjAngles; ++i) {
Vec3 u(angles[i].fDetUX, angles[i].fDetUY, angles[i].fDetUZ);
Vec3 v(angles[i].fDetVX, angles[i].fDetVY, angles[i].fDetVZ);
Vec3 s(angles[i].fSrcX, angles[i].fSrcY, angles[i].fSrcZ);
Vec3 d(angles[i].fDetSX, angles[i].fDetSY, angles[i].fDetSZ);
double fScale;
if (!params.bFDKWeighting) {
// goal: 1/fDen^2 = || u v (s-d) ||^2 / ( |cross(u,v)| * || u v (s-x) ||^2 )
// fDen = ( sqrt(|cross(u,v)|) * || u v (s-x) || ) / || u v (s-d) ||
// i.e. scale = sqrt(|cross(u,v)|) * / || u v (s-d) ||
// NB: for cross(u,v) we invert the volume scaling (for the voxel
// size normalization) to get the proper dimensions for
// the scaling of the adjoint
fScale = sqrt(scaled_cross3(u,v,Vec3(params.fVolScaleX,params.fVolScaleY,params.fVolScaleZ)).norm()) / det3(u, v, s-d);
} else {
// goal: 1/fDen = || u v s || / || u v (s-x) ||
// fDen = || u v (s-x) || / || u v s ||
// i.e., scale = 1 / || u v s ||
fScale = 1.0 / det3(u, v, s);
}
p[i].fNumU.w = fScale * det3(s,v,d);
p[i].fNumU.x = fScale * det3x(v,s-d);
p[i].fNumU.y = fScale * det3y(v,s-d);
p[i].fNumU.z = fScale * det3z(v,s-d);
p[i].fNumV.w = -fScale * det3(s,u,d);
p[i].fNumV.x = -fScale * det3x(u,s-d);
p[i].fNumV.y = -fScale * det3y(u,s-d);
p[i].fNumV.z = -fScale * det3z(u,s-d);
p[i].fDen.w = fScale * det3(u, v, s); // == 1.0 for FDK
p[i].fDen.x = -fScale * det3x(u, v);
p[i].fDen.y = -fScale * det3y(u, v);
p[i].fDen.z = -fScale * det3z(u, v);
}
// TODO: Check for errors
cudaMemcpyToSymbol(gC_C, p, iProjAngles*sizeof(DevConeParams), 0, cudaMemcpyHostToDevice);
delete[] p;
return true;
}
bool ConeBP_Array(cudaPitchedPtr D_volumeData,
cudaArray *D_projArray,
const SDimensions3D& dims, const SConeProjection* angles,
const SProjectorParams3D& params)
{
cudaTextureObject_t D_texObj;
bindProjDataTexture(D_projArray, D_texObj);
float fOutputScale;
if (params.bFDKWeighting) {
// NB: assuming cube voxels here
fOutputScale = params.fOutputScale / (params.fVolScaleX);
} else {
fOutputScale = params.fOutputScale * (params.fVolScaleX * params.fVolScaleY * params.fVolScaleZ);
}
bool ok = true;
for (unsigned int th = 0; th < dims.iProjAngles; th += g_MaxAngles) {
unsigned int angleCount = g_MaxAngles;
if (th + angleCount > dims.iProjAngles)
angleCount = dims.iProjAngles - th;
ok = transferConstants(angles, angleCount, params);
if (!ok)
break;
dim3 dimBlock(g_volBlockX, g_volBlockY);
dim3 dimGrid(((dims.iVolX/1+g_volBlockX-1)/(g_volBlockX))*((dims.iVolY/1+1*g_volBlockY-1)/(1*g_volBlockY)), (dims.iVolZ+g_volBlockZ-1)/g_volBlockZ);
// timeval t;
// tic(t);
for (unsigned int i = 0; i < angleCount; i += g_anglesPerBlock) {
// printf("Calling BP: %d, %dx%d, %dx%d to %p\n", i, dimBlock.x, dimBlock.y, dimGrid.x, dimGrid.y, (void*)D_volumeData.ptr);
if (params.bFDKWeighting) {
if (dims.iVolZ == 1) {
dev_cone_BP<<>>(D_volumeData.ptr, D_volumeData.pitch/sizeof(float), D_texObj, i, th, dims, fOutputScale);
} else {
dev_cone_BP<<>>(D_volumeData.ptr, D_volumeData.pitch/sizeof(float), D_texObj, i, th, dims, fOutputScale);
}
} else if (params.iRaysPerVoxelDim == 1) {
if (dims.iVolZ == 1) {
dev_cone_BP<<>>(D_volumeData.ptr, D_volumeData.pitch/sizeof(float), D_texObj, i, th, dims, fOutputScale);
} else {
dev_cone_BP<<>>(D_volumeData.ptr, D_volumeData.pitch/sizeof(float), D_texObj, i, th, dims, fOutputScale);
}
} else
dev_cone_BP_SS<<>>(D_volumeData.ptr, D_volumeData.pitch/sizeof(float), D_texObj, i, th, dims, params.iRaysPerVoxelDim, fOutputScale);
}
// TODO: Consider not synchronizing here, if possible.
ok = checkCuda(cudaThreadSynchronize(), "cone_bp");
if (!ok)
break;
angles = angles + angleCount;
// printf("%f\n", toc(t));
}
cudaDestroyTextureObject(D_texObj);
return ok;
}
bool ConeBP(cudaPitchedPtr D_volumeData,
cudaPitchedPtr D_projData,
const SDimensions3D& dims, const SConeProjection* angles,
const SProjectorParams3D& params)
{
// transfer projections to array
cudaArray* cuArray = allocateProjectionArray(dims);
transferProjectionsToArray(D_projData, cuArray, dims);
bool ret = ConeBP_Array(D_volumeData, cuArray, dims, angles, params);
cudaFreeArray(cuArray);
return ret;
}
}