/* ----------------------------------------------------------------------- Copyright: 2010-2021, imec Vision Lab, University of Antwerp 2014-2021, CWI, Amsterdam Contact: astra@astra-toolbox.com Website: http://www.astra-toolbox.com/ This file is part of the ASTRA Toolbox. The ASTRA Toolbox is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. The ASTRA Toolbox is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with the ASTRA Toolbox. If not, see . ----------------------------------------------------------------------- */ #include "astra/cuda/3d/util3d.h" #include "astra/cuda/3d/dims3d.h" #include #include #include #include #include namespace astraCUDA3d { static const unsigned int g_volBlockZ = 6; static const unsigned int g_anglesPerBlock = 32; static const unsigned int g_volBlockX = 16; static const unsigned int g_volBlockY = 32; static const unsigned g_MaxAngles = 1024; struct DevConeParams { float4 fNumU; float4 fNumV; float4 fDen; }; __constant__ DevConeParams gC_C[g_MaxAngles]; bool bindProjDataTexture(cudaArray* array, cudaTextureObject_t& texObj) { cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(32, 0, 0, 0, cudaChannelFormatKindFloat); cudaResourceDesc resDesc; memset(&resDesc, 0, sizeof(resDesc)); resDesc.resType = cudaResourceTypeArray; resDesc.res.array.array = array; cudaTextureDesc texDesc; memset(&texDesc, 0, sizeof(texDesc)); texDesc.addressMode[0] = cudaAddressModeBorder; texDesc.addressMode[1] = cudaAddressModeBorder; texDesc.addressMode[2] = cudaAddressModeBorder; texDesc.filterMode = cudaFilterModeLinear; texDesc.readMode = cudaReadModeElementType; texDesc.normalizedCoords = 0; return checkCuda(cudaCreateTextureObject(&texObj, &resDesc, &texDesc, NULL), "cone_bp texture"); } //__launch_bounds__(32*16, 4) template __global__ void dev_cone_BP(void* D_volData, unsigned int volPitch, cudaTextureObject_t tex, int startAngle, int angleOffset, const astraCUDA3d::SDimensions3D dims, float fOutputScale) { float* volData = (float*)D_volData; int endAngle = startAngle + g_anglesPerBlock; if (endAngle > dims.iProjAngles - angleOffset) endAngle = dims.iProjAngles - angleOffset; // threadIdx: x = rel x // y = rel y // blockIdx: x = x + y // y = z const int X = blockIdx.x % ((dims.iVolX+g_volBlockX-1)/g_volBlockX) * g_volBlockX + threadIdx.x; const int Y = blockIdx.x / ((dims.iVolX+g_volBlockX-1)/g_volBlockX) * g_volBlockY + threadIdx.y; if (X >= dims.iVolX) return; if (Y >= dims.iVolY) return; const int startZ = blockIdx.y * g_volBlockZ; const float fX = X - 0.5f*dims.iVolX + 0.5f; const float fY = Y - 0.5f*dims.iVolY + 0.5f; const float fZ = startZ - 0.5f*dims.iVolZ + 0.5f; float Z[ZSIZE]; for(int i=0; i < ZSIZE; i++) Z[i] = 0.0f; { float fAngle = startAngle + angleOffset + 0.5f; for (int angle = startAngle; angle < endAngle; ++angle, fAngle += 1.0f) { float4 fCu = gC_C[angle].fNumU; float4 fCv = gC_C[angle].fNumV; float4 fCd = gC_C[angle].fDen; float fUNum = fCu.w + fX * fCu.x + fY * fCu.y + fZ * fCu.z; float fVNum = fCv.w + fX * fCv.x + fY * fCv.y + fZ * fCv.z; float fDen = (FDKWEIGHT ? 1.0f : fCd.w) + fX * fCd.x + fY * fCd.y + fZ * fCd.z; float fU,fV, fr; for (int idx = 0; idx < ZSIZE; idx++) { fr = __fdividef(1.0f, fDen); fU = fUNum * fr; fV = fVNum * fr; float fVal = tex3D(tex, fU, fAngle, fV); Z[idx] += fr*fr*fVal; fUNum += fCu.z; fVNum += fCv.z; fDen += fCd.z; } } } int endZ = ZSIZE; if (endZ > dims.iVolZ - startZ) endZ = dims.iVolZ - startZ; for(int i=0; i < endZ; i++) volData[((startZ+i)*dims.iVolY+Y)*volPitch+X] += Z[i] * fOutputScale; } //End kernel // supersampling version __global__ void dev_cone_BP_SS(void* D_volData, unsigned int volPitch, cudaTextureObject_t tex, int startAngle, int angleOffset, const SDimensions3D dims, int iRaysPerVoxelDim, float fOutputScale) { float* volData = (float*)D_volData; int endAngle = startAngle + g_anglesPerBlock; if (endAngle > dims.iProjAngles - angleOffset) endAngle = dims.iProjAngles - angleOffset; // threadIdx: x = rel x // y = rel y // blockIdx: x = x + y // y = z // TO TRY: precompute part of detector intersection formulas in shared mem? // TO TRY: inner loop over z, gather ray values in shared mem const int X = blockIdx.x % ((dims.iVolX+g_volBlockX-1)/g_volBlockX) * g_volBlockX + threadIdx.x; const int Y = blockIdx.x / ((dims.iVolX+g_volBlockX-1)/g_volBlockX) * g_volBlockY + threadIdx.y; if (X >= dims.iVolX) return; if (Y >= dims.iVolY) return; const int startZ = blockIdx.y * g_volBlockZ; int endZ = startZ + g_volBlockZ; if (endZ > dims.iVolZ) endZ = dims.iVolZ; float fX = X - 0.5f*dims.iVolX + 0.5f - 0.5f + 0.5f/iRaysPerVoxelDim; float fY = Y - 0.5f*dims.iVolY + 0.5f - 0.5f + 0.5f/iRaysPerVoxelDim; float fZ = startZ - 0.5f*dims.iVolZ + 0.5f - 0.5f + 0.5f/iRaysPerVoxelDim; const float fSubStep = 1.0f/iRaysPerVoxelDim; fOutputScale /= (iRaysPerVoxelDim*iRaysPerVoxelDim*iRaysPerVoxelDim); for (int Z = startZ; Z < endZ; ++Z, fZ += 1.0f) { float fVal = 0.0f; float fAngle = startAngle + angleOffset + 0.5f; for (int angle = startAngle; angle < endAngle; ++angle, fAngle += 1.0f) { float4 fCu = gC_C[angle].fNumU; float4 fCv = gC_C[angle].fNumV; float4 fCd = gC_C[angle].fDen; float fXs = fX; for (int iSubX = 0; iSubX < iRaysPerVoxelDim; ++iSubX) { float fYs = fY; for (int iSubY = 0; iSubY < iRaysPerVoxelDim; ++iSubY) { float fZs = fZ; for (int iSubZ = 0; iSubZ < iRaysPerVoxelDim; ++iSubZ) { const float fUNum = fCu.w + fXs * fCu.x + fYs * fCu.y + fZs * fCu.z; const float fVNum = fCv.w + fXs * fCv.x + fYs * fCv.y + fZs * fCv.z; const float fDen = fCd.w + fXs * fCd.x + fYs * fCd.y + fZs * fCd.z; const float fr = __fdividef(1.0f, fDen); const float fU = fUNum * fr; const float fV = fVNum * fr; fVal += tex3D(tex, fU, fAngle, fV) * fr * fr; fZs += fSubStep; } fYs += fSubStep; } fXs += fSubStep; } } volData[(Z*dims.iVolY+Y)*volPitch+X] += fVal * fOutputScale; } } bool transferConstants(const SConeProjection* angles, unsigned int iProjAngles, const SProjectorParams3D& params) { DevConeParams *p = new DevConeParams[iProjAngles]; // We need three things in the kernel: // projected coordinates of pixels on the detector: // u: || (x-s) v (s-d) || / || u v (s-x) || // v: -|| u (x-s) (s-d) || / || u v (s-x) || // ray density weighting factor for the adjoint // || u v (s-d) ||^2 / ( |cross(u,v)| * || u v (s-x) ||^2 ) // FDK weighting factor // ( || u v s || / || u v (s-x) || ) ^ 2 // Since u and v are ratios with the same denominator, we have // a degree of freedom to scale the denominator. We use that to make // the square of the denominator equal to the relevant weighting factor. for (unsigned int i = 0; i < iProjAngles; ++i) { Vec3 u(angles[i].fDetUX, angles[i].fDetUY, angles[i].fDetUZ); Vec3 v(angles[i].fDetVX, angles[i].fDetVY, angles[i].fDetVZ); Vec3 s(angles[i].fSrcX, angles[i].fSrcY, angles[i].fSrcZ); Vec3 d(angles[i].fDetSX, angles[i].fDetSY, angles[i].fDetSZ); double fScale; if (!params.bFDKWeighting) { // goal: 1/fDen^2 = || u v (s-d) ||^2 / ( |cross(u,v)| * || u v (s-x) ||^2 ) // fDen = ( sqrt(|cross(u,v)|) * || u v (s-x) || ) / || u v (s-d) || // i.e. scale = sqrt(|cross(u,v)|) * / || u v (s-d) || // NB: for cross(u,v) we invert the volume scaling (for the voxel // size normalization) to get the proper dimensions for // the scaling of the adjoint fScale = sqrt(scaled_cross3(u,v,Vec3(params.fVolScaleX,params.fVolScaleY,params.fVolScaleZ)).norm()) / det3(u, v, s-d); } else { // goal: 1/fDen = || u v s || / || u v (s-x) || // fDen = || u v (s-x) || / || u v s || // i.e., scale = 1 / || u v s || fScale = 1.0 / det3(u, v, s); } p[i].fNumU.w = fScale * det3(s,v,d); p[i].fNumU.x = fScale * det3x(v,s-d); p[i].fNumU.y = fScale * det3y(v,s-d); p[i].fNumU.z = fScale * det3z(v,s-d); p[i].fNumV.w = -fScale * det3(s,u,d); p[i].fNumV.x = -fScale * det3x(u,s-d); p[i].fNumV.y = -fScale * det3y(u,s-d); p[i].fNumV.z = -fScale * det3z(u,s-d); p[i].fDen.w = fScale * det3(u, v, s); // == 1.0 for FDK p[i].fDen.x = -fScale * det3x(u, v); p[i].fDen.y = -fScale * det3y(u, v); p[i].fDen.z = -fScale * det3z(u, v); } // TODO: Check for errors cudaMemcpyToSymbol(gC_C, p, iProjAngles*sizeof(DevConeParams), 0, cudaMemcpyHostToDevice); delete[] p; return true; } bool ConeBP_Array(cudaPitchedPtr D_volumeData, cudaArray *D_projArray, const SDimensions3D& dims, const SConeProjection* angles, const SProjectorParams3D& params) { cudaTextureObject_t D_texObj; bindProjDataTexture(D_projArray, D_texObj); float fOutputScale; if (params.bFDKWeighting) { // NB: assuming cube voxels here fOutputScale = params.fOutputScale / (params.fVolScaleX); } else { fOutputScale = params.fOutputScale * (params.fVolScaleX * params.fVolScaleY * params.fVolScaleZ); } bool ok = true; for (unsigned int th = 0; th < dims.iProjAngles; th += g_MaxAngles) { unsigned int angleCount = g_MaxAngles; if (th + angleCount > dims.iProjAngles) angleCount = dims.iProjAngles - th; ok = transferConstants(angles, angleCount, params); if (!ok) break; dim3 dimBlock(g_volBlockX, g_volBlockY); dim3 dimGrid(((dims.iVolX/1+g_volBlockX-1)/(g_volBlockX))*((dims.iVolY/1+1*g_volBlockY-1)/(1*g_volBlockY)), (dims.iVolZ+g_volBlockZ-1)/g_volBlockZ); // timeval t; // tic(t); for (unsigned int i = 0; i < angleCount; i += g_anglesPerBlock) { // printf("Calling BP: %d, %dx%d, %dx%d to %p\n", i, dimBlock.x, dimBlock.y, dimGrid.x, dimGrid.y, (void*)D_volumeData.ptr); if (params.bFDKWeighting) { if (dims.iVolZ == 1) { dev_cone_BP<<>>(D_volumeData.ptr, D_volumeData.pitch/sizeof(float), D_texObj, i, th, dims, fOutputScale); } else { dev_cone_BP<<>>(D_volumeData.ptr, D_volumeData.pitch/sizeof(float), D_texObj, i, th, dims, fOutputScale); } } else if (params.iRaysPerVoxelDim == 1) { if (dims.iVolZ == 1) { dev_cone_BP<<>>(D_volumeData.ptr, D_volumeData.pitch/sizeof(float), D_texObj, i, th, dims, fOutputScale); } else { dev_cone_BP<<>>(D_volumeData.ptr, D_volumeData.pitch/sizeof(float), D_texObj, i, th, dims, fOutputScale); } } else dev_cone_BP_SS<<>>(D_volumeData.ptr, D_volumeData.pitch/sizeof(float), D_texObj, i, th, dims, params.iRaysPerVoxelDim, fOutputScale); } // TODO: Consider not synchronizing here, if possible. ok = checkCuda(cudaThreadSynchronize(), "cone_bp"); if (!ok) break; angles = angles + angleCount; // printf("%f\n", toc(t)); } cudaDestroyTextureObject(D_texObj); return ok; } bool ConeBP(cudaPitchedPtr D_volumeData, cudaPitchedPtr D_projData, const SDimensions3D& dims, const SConeProjection* angles, const SProjectorParams3D& params) { // transfer projections to array cudaArray* cuArray = allocateProjectionArray(dims); transferProjectionsToArray(D_projData, cuArray, dims); bool ret = ConeBP_Array(D_volumeData, cuArray, dims, angles, params); cudaFreeArray(cuArray); return ret; } }