/* ----------------------------------------------------------------------- Copyright: 2010-2015, iMinds-Vision Lab, University of Antwerp 2014-2015, CWI, Amsterdam Contact: astra@uantwerpen.be Website: http://sf.net/projects/astra-toolbox This file is part of the ASTRA Toolbox. The ASTRA Toolbox is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. The ASTRA Toolbox is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with the ASTRA Toolbox. If not, see . ----------------------------------------------------------------------- $Id$ */ #include #include #include "util3d.h" #include "mem3d.h" #include "astra3d.h" #include "cone_fp.h" #include "cone_bp.h" #include "par3d_fp.h" #include "par3d_bp.h" #include "fdk.h" #include "astra/Logging.h" namespace astraCUDA3d { struct SMemHandle3D_internal { cudaPitchedPtr ptr; unsigned int nx; unsigned int ny; unsigned int nz; }; size_t availableGPUMemory() { size_t free, total; cudaError_t err = cudaMemGetInfo(&free, &total); if (err != cudaSuccess) return 0; return free; } int maxBlockDimension() { int dev; cudaError_t err = cudaGetDevice(&dev); if (err != cudaSuccess) { ASTRA_WARN("Error querying device"); return 0; } cudaDeviceProp props; err = cudaGetDeviceProperties(&props, dev); if (err != cudaSuccess) { ASTRA_WARN("Error querying device %d properties", dev); return 0; } return std::min(props.maxTexture3D[0], std::min(props.maxTexture3D[1], props.maxTexture3D[2])); } MemHandle3D allocateGPUMemory(unsigned int x, unsigned int y, unsigned int z, Mem3DZeroMode zero) { SMemHandle3D_internal hnd; hnd.nx = x; hnd.ny = y; hnd.nz = z; size_t free = availableGPUMemory(); cudaError_t err; err = cudaMalloc3D(&hnd.ptr, make_cudaExtent(sizeof(float)*x, y, z)); if (err != cudaSuccess) { return MemHandle3D(); } size_t free2 = availableGPUMemory(); ASTRA_DEBUG("Allocated %d x %d x %d on GPU. (Pre: %lu, post: %lu)", x, y, z, free, free2); if (zero == INIT_ZERO) { err = cudaMemset3D(hnd.ptr, 0, make_cudaExtent(sizeof(float)*x, y, z)); if (err != cudaSuccess) { cudaFree(hnd.ptr.ptr); return MemHandle3D(); } } MemHandle3D ret; ret.d = boost::shared_ptr(new SMemHandle3D_internal); *ret.d = hnd; return ret; } bool freeGPUMemory(MemHandle3D handle) { size_t free = availableGPUMemory(); cudaError_t err = cudaFree(handle.d->ptr.ptr); size_t free2 = availableGPUMemory(); ASTRA_DEBUG("Freeing memory. (Pre: %lu, post: %lu)", free, free2); return err == cudaSuccess; } bool copyToGPUMemory(const float *src, MemHandle3D dst, const SSubDimensions3D &pos) { ASTRA_DEBUG("Copying %d x %d x %d to GPU", pos.subnx, pos.subny, pos.subnz); ASTRA_DEBUG("Offset %d,%d,%d", pos.subx, pos.suby, pos.subz); cudaPitchedPtr s; s.ptr = (void*)src; // const cast away s.pitch = pos.pitch * sizeof(float); s.xsize = pos.nx * sizeof(float); s.ysize = pos.ny; ASTRA_DEBUG("Pitch %d, xsize %d, ysize %d", s.pitch, s.xsize, s.ysize); cudaMemcpy3DParms p; p.srcArray = 0; p.srcPos = make_cudaPos(pos.subx * sizeof(float), pos.suby, pos.subz); p.srcPtr = s; p.dstArray = 0; p.dstPos = make_cudaPos(0, 0, 0); p.dstPtr = dst.d->ptr; p.extent = make_cudaExtent(pos.subnx * sizeof(float), pos.subny, pos.subnz); p.kind = cudaMemcpyHostToDevice; cudaError_t err = cudaMemcpy3D(&p); return err == cudaSuccess; } bool copyFromGPUMemory(float *dst, MemHandle3D src, const SSubDimensions3D &pos) { ASTRA_DEBUG("Copying %d x %d x %d from GPU", pos.subnx, pos.subny, pos.subnz); ASTRA_DEBUG("Offset %d,%d,%d", pos.subx, pos.suby, pos.subz); cudaPitchedPtr d; d.ptr = (void*)dst; d.pitch = pos.pitch * sizeof(float); d.xsize = pos.nx * sizeof(float); d.ysize = pos.ny; ASTRA_DEBUG("Pitch %d, xsize %d, ysize %d", d.pitch, d.xsize, d.ysize); cudaMemcpy3DParms p; p.srcArray = 0; p.srcPos = make_cudaPos(0, 0, 0); p.srcPtr = src.d->ptr; p.dstArray = 0; p.dstPos = make_cudaPos(pos.subx * sizeof(float), pos.suby, pos.subz); p.dstPtr = d; p.extent = make_cudaExtent(pos.subnx * sizeof(float), pos.subny, pos.subnz); p.kind = cudaMemcpyDeviceToHost; cudaError_t err = cudaMemcpy3D(&p); return err == cudaSuccess; } bool FP(const astra::CProjectionGeometry3D* pProjGeom, MemHandle3D projData, const astra::CVolumeGeometry3D* pVolGeom, MemHandle3D volData, int iDetectorSuperSampling, astra::Cuda3DProjectionKernel projKernel) { SDimensions3D dims; SProjectorParams3D params; bool ok = convertAstraGeometry_dims(pVolGeom, pProjGeom, dims); if (!ok) return false; #if 1 params.iRaysPerDetDim = iDetectorSuperSampling; if (iDetectorSuperSampling == 0) return false; #else astra::Cuda3DProjectionKernel projKernel = astra::ker3d_default; #endif SPar3DProjection* pParProjs; SConeProjection* pConeProjs; ok = convertAstraGeometry(pVolGeom, pProjGeom, pParProjs, pConeProjs, params); if (pParProjs) { #if 0 for (int i = 0; i < dims.iProjAngles; ++i) { ASTRA_DEBUG("Vec: %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f\n", pParProjs[i].fRayX, pParProjs[i].fRayY, pParProjs[i].fRayZ, pParProjs[i].fDetSX, pParProjs[i].fDetSY, pParProjs[i].fDetSZ, pParProjs[i].fDetUX, pParProjs[i].fDetUY, pParProjs[i].fDetUZ, pParProjs[i].fDetVX, pParProjs[i].fDetVY, pParProjs[i].fDetVZ); } #endif switch (projKernel) { case astra::ker3d_default: ok &= Par3DFP(volData.d->ptr, projData.d->ptr, dims, pParProjs, params); break; case astra::ker3d_sum_square_weights: ok &= Par3DFP_SumSqW(volData.d->ptr, projData.d->ptr, dims, pParProjs, params); break; default: ok = false; } } else { switch (projKernel) { case astra::ker3d_default: ok &= ConeFP(volData.d->ptr, projData.d->ptr, dims, pConeProjs, params); break; default: ok = false; } } return ok; } bool BP(const astra::CProjectionGeometry3D* pProjGeom, MemHandle3D projData, const astra::CVolumeGeometry3D* pVolGeom, MemHandle3D volData, int iVoxelSuperSampling) { SDimensions3D dims; SProjectorParams3D params; bool ok = convertAstraGeometry_dims(pVolGeom, pProjGeom, dims); if (!ok) return false; #if 1 params.iRaysPerVoxelDim = iVoxelSuperSampling; #endif SPar3DProjection* pParProjs; SConeProjection* pConeProjs; ok = convertAstraGeometry(pVolGeom, pProjGeom, pParProjs, pConeProjs, params); if (pParProjs) ok &= Par3DBP(volData.d->ptr, projData.d->ptr, dims, pParProjs, params); else ok &= ConeBP(volData.d->ptr, projData.d->ptr, dims, pConeProjs, params); return ok; } bool FDK(const astra::CProjectionGeometry3D* pProjGeom, MemHandle3D projData, const astra::CVolumeGeometry3D* pVolGeom, MemHandle3D volData, bool bShortScan) { SDimensions3D dims; SProjectorParams3D params; bool ok = convertAstraGeometry_dims(pVolGeom, pProjGeom, dims); if (!ok) return false; SPar3DProjection* pParProjs; SConeProjection* pConeProjs; ok = convertAstraGeometry(pVolGeom, pProjGeom, pParProjs, pConeProjs, params); if (!ok || !pConeProjs) return false; ok &= FDK(volData.d->ptr, projData.d->ptr, pConeProjs, dims, params, bShortScan); return ok; } }