/* ----------------------------------------------------------------------- Copyright: 2010-2015, iMinds-Vision Lab, University of Antwerp 2014-2015, CWI, Amsterdam Contact: astra@uantwerpen.be Website: http://sf.net/projects/astra-toolbox This file is part of the ASTRA Toolbox. The ASTRA Toolbox is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. The ASTRA Toolbox is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with the ASTRA Toolbox. If not, see . ----------------------------------------------------------------------- $Id$ */ #include #include #include "sirt3d.h" #include "util3d.h" #include "arith3d.h" #include "cone_fp.h" #ifdef STANDALONE #include "testutil.h" #endif namespace astraCUDA3d { SIRT::SIRT() : ReconAlgo3D() { D_maskData.ptr = 0; D_smaskData.ptr = 0; D_sinoData.ptr = 0; D_volumeData.ptr = 0; D_projData.ptr = 0; D_tmpData.ptr = 0; D_lineWeight.ptr = 0; D_pixelWeight.ptr = 0; useVolumeMask = false; useSinogramMask = false; useMinConstraint = false; useMaxConstraint = false; fRelaxation = 1.0f; } SIRT::~SIRT() { reset(); } void SIRT::reset() { cudaFree(D_projData.ptr); cudaFree(D_tmpData.ptr); cudaFree(D_lineWeight.ptr); cudaFree(D_pixelWeight.ptr); D_maskData.ptr = 0; D_smaskData.ptr = 0; D_sinoData.ptr = 0; D_volumeData.ptr = 0; D_projData.ptr = 0; D_tmpData.ptr = 0; D_lineWeight.ptr = 0; D_pixelWeight.ptr = 0; useVolumeMask = false; useSinogramMask = false; fRelaxation = 1.0f; ReconAlgo3D::reset(); } bool SIRT::enableVolumeMask() { useVolumeMask = true; return true; } bool SIRT::enableSinogramMask() { useSinogramMask = true; return true; } bool SIRT::init() { D_pixelWeight = allocateVolumeData(dims); zeroVolumeData(D_pixelWeight, dims); D_tmpData = allocateVolumeData(dims); zeroVolumeData(D_tmpData, dims); D_projData = allocateProjectionData(dims); zeroProjectionData(D_projData, dims); D_lineWeight = allocateProjectionData(dims); zeroProjectionData(D_lineWeight, dims); // We can't precompute lineWeights and pixelWeights when using a mask if (!useVolumeMask && !useSinogramMask) precomputeWeights(); // TODO: check if allocations succeeded return true; } bool SIRT::setMinConstraint(float fMin) { fMinConstraint = fMin; useMinConstraint = true; return true; } bool SIRT::setMaxConstraint(float fMax) { fMaxConstraint = fMax; useMaxConstraint = true; return true; } bool SIRT::precomputeWeights() { zeroProjectionData(D_lineWeight, dims); if (useVolumeMask) { callFP(D_maskData, D_lineWeight, 1.0f); } else { processVol3D(D_tmpData, 1.0f, dims); callFP(D_tmpData, D_lineWeight, 1.0f); } processSino3D(D_lineWeight, dims); if (useSinogramMask) { // scale line weights with sinogram mask to zero out masked sinogram pixels processSino3D(D_lineWeight, D_smaskData, dims); } zeroVolumeData(D_pixelWeight, dims); if (useSinogramMask) { callBP(D_pixelWeight, D_smaskData, 1.0f); } else { processSino3D(D_projData, 1.0f, dims); callBP(D_pixelWeight, D_projData, 1.0f); } #if 0 float* bufp = new float[512*512]; for (int i = 0; i < 180; ++i) { for (int j = 0; j < 512; ++j) { cudaMemcpy(bufp+512*j, ((float*)D_projData.ptr)+180*512*j+512*i, 512*sizeof(float), cudaMemcpyDeviceToHost); } char fname[20]; sprintf(fname, "ray%03d.png", i); saveImage(fname, 512, 512, bufp); } #endif #if 0 float* buf = new float[256*256]; for (int i = 0; i < 256; ++i) { cudaMemcpy(buf, ((float*)D_pixelWeight.ptr)+256*256*i, 256*256*sizeof(float), cudaMemcpyDeviceToHost); char fname[20]; sprintf(fname, "pix%03d.png", i); saveImage(fname, 256, 256, buf); } #endif processVol3D(D_pixelWeight, dims); if (useVolumeMask) { // scale pixel weights with mask to zero out masked pixels processVol3D(D_pixelWeight, D_maskData, dims); } processVol3D(D_pixelWeight, fRelaxation, dims); return true; } bool SIRT::setVolumeMask(cudaPitchedPtr& _D_maskData) { assert(useVolumeMask); D_maskData = _D_maskData; return true; } bool SIRT::setSinogramMask(cudaPitchedPtr& _D_smaskData) { assert(useSinogramMask); D_smaskData = _D_smaskData; return true; } bool SIRT::setBuffers(cudaPitchedPtr& _D_volumeData, cudaPitchedPtr& _D_projData) { D_volumeData = _D_volumeData; D_sinoData = _D_projData; return true; } bool SIRT::iterate(unsigned int iterations) { shouldAbort = false; if (useVolumeMask || useSinogramMask) precomputeWeights(); #if 0 float* buf = new float[256*256]; for (int i = 0; i < 256; ++i) { cudaMemcpy(buf, ((float*)D_pixelWeight.ptr)+256*256*i, 256*256*sizeof(float), cudaMemcpyDeviceToHost); char fname[20]; sprintf(fname, "pix%03d.png", i); saveImage(fname, 256, 256, buf); } #endif #if 0 float* bufp = new float[512*512]; for (int i = 0; i < 100; ++i) { for (int j = 0; j < 512; ++j) { cudaMemcpy(bufp+512*j, ((float*)D_lineWeight.ptr)+100*512*j+512*i, 512*sizeof(float), cudaMemcpyDeviceToHost); } char fname[20]; sprintf(fname, "ray%03d.png", i); saveImage(fname, 512, 512, bufp); } #endif // iteration for (unsigned int iter = 0; iter < iterations && !shouldAbort; ++iter) { // copy sinogram to projection data duplicateProjectionData(D_projData, D_sinoData, dims); // do FP, subtracting projection from sinogram if (useVolumeMask) { duplicateVolumeData(D_tmpData, D_volumeData, dims); processVol3D(D_tmpData, D_maskData, dims); callFP(D_tmpData, D_projData, -1.0f); } else { callFP(D_volumeData, D_projData, -1.0f); } processSino3D(D_projData, D_lineWeight, dims); zeroVolumeData(D_tmpData, dims); #if 0 float* bufp = new float[512*512]; printf("Dumping projData: %p\n", (void*)D_projData.ptr); for (int i = 0; i < 180; ++i) { for (int j = 0; j < 512; ++j) { cudaMemcpy(bufp+512*j, ((float*)D_projData.ptr)+180*512*j+512*i, 512*sizeof(float), cudaMemcpyDeviceToHost); } char fname[20]; sprintf(fname, "diff%03d.png", i); saveImage(fname, 512, 512, bufp); } #endif callBP(D_tmpData, D_projData, 1.0f); #if 0 printf("Dumping tmpData: %p\n", (void*)D_tmpData.ptr); float* buf = new float[256*256]; for (int i = 0; i < 256; ++i) { cudaMemcpy(buf, ((float*)D_tmpData.ptr)+256*256*i, 256*256*sizeof(float), cudaMemcpyDeviceToHost); char fname[20]; sprintf(fname, "add%03d.png", i); saveImage(fname, 256, 256, buf); } #endif // pixel weights also contain the volume mask and relaxation factor processVol3D(D_volumeData, D_tmpData, D_pixelWeight, dims); if (useMinConstraint) processVol3D(D_volumeData, fMinConstraint, dims); if (useMaxConstraint) processVol3D(D_volumeData, fMaxConstraint, dims); } return true; } float SIRT::computeDiffNorm() { // copy sinogram to projection data duplicateProjectionData(D_projData, D_sinoData, dims); // do FP, subtracting projection from sinogram if (useVolumeMask) { duplicateVolumeData(D_tmpData, D_volumeData, dims); processVol3D(D_tmpData, D_maskData, dims); callFP(D_tmpData, D_projData, -1.0f); } else { callFP(D_volumeData, D_projData, -1.0f); } float s = dotProduct3D(D_projData, dims.iProjU, dims.iProjAngles, dims.iProjV); return sqrt(s); } bool doSIRT(cudaPitchedPtr& D_volumeData, cudaPitchedPtr& D_sinoData, cudaPitchedPtr& D_maskData, const SDimensions3D& dims, const SConeProjection* angles, unsigned int iterations) { SIRT sirt; bool ok = true; ok &= sirt.setConeGeometry(dims, angles, SProjectorParams3D()); if (D_maskData.ptr) ok &= sirt.enableVolumeMask(); if (!ok) return false; ok = sirt.init(); if (!ok) return false; if (D_maskData.ptr) ok &= sirt.setVolumeMask(D_maskData); ok &= sirt.setBuffers(D_volumeData, D_sinoData); if (!ok) return false; ok = sirt.iterate(iterations); return ok; } } #ifdef STANDALONE using namespace astraCUDA3d; int main() { SDimensions3D dims; dims.iVolX = 256; dims.iVolY = 256; dims.iVolZ = 256; dims.iProjAngles = 100; dims.iProjU = 512; dims.iProjV = 512; dims.iRaysPerDet = 1; SConeProjection angle[100]; angle[0].fSrcX = -2905.6; angle[0].fSrcY = 0; angle[0].fSrcZ = 0; angle[0].fDetSX = 694.4; angle[0].fDetSY = -122.4704; angle[0].fDetSZ = -122.4704; angle[0].fDetUX = 0; angle[0].fDetUY = .4784; //angle[0].fDetUY = .5; angle[0].fDetUZ = 0; angle[0].fDetVX = 0; angle[0].fDetVY = 0; angle[0].fDetVZ = .4784; #define ROTATE0(name,i,alpha) do { angle[i].f##name##X = angle[0].f##name##X * cos(alpha) - angle[0].f##name##Y * sin(alpha); angle[i].f##name##Y = angle[0].f##name##X * sin(alpha) + angle[0].f##name##Y * cos(alpha); } while(0) for (int i = 1; i < 100; ++i) { angle[i] = angle[0]; ROTATE0(Src, i, i*2*M_PI/100); ROTATE0(DetS, i, i*2*M_PI/100); ROTATE0(DetU, i, i*2*M_PI/100); ROTATE0(DetV, i, i*2*M_PI/100); } #undef ROTATE0 cudaPitchedPtr volData = allocateVolumeData(dims); cudaPitchedPtr projData = allocateProjectionData(dims); zeroProjectionData(projData, dims); float* pbuf = new float[100*512*512]; copyProjectionsFromDevice(pbuf, projData, dims); copyProjectionsToDevice(pbuf, projData, dims); delete[] pbuf; #if 0 float* slice = new float[256*256]; cudaPitchedPtr ptr; ptr.ptr = slice; ptr.pitch = 256*sizeof(float); ptr.xsize = 256*sizeof(float); ptr.ysize = 256; for (unsigned int i = 0; i < 256; ++i) { for (unsigned int y = 0; y < 256; ++y) for (unsigned int x = 0; x < 256; ++x) slice[y*256+x] = (i-127.5)*(i-127.5)+(y-127.5)*(y-127.5)+(x-127.5)*(x-127.5) < 4900 ? 1.0f : 0.0f; cudaExtent extentS; extentS.width = dims.iVolX*sizeof(float); extentS.height = dims.iVolY; extentS.depth = 1; cudaPos sp = { 0, 0, 0 }; cudaPos dp = { 0, 0, i }; cudaMemcpy3DParms p; p.srcArray = 0; p.srcPos = sp; p.srcPtr = ptr; p.dstArray = 0; p.dstPos = dp; p.dstPtr = volData; p.extent = extentS; p.kind = cudaMemcpyHostToDevice; cudaMemcpy3D(&p); } astraCUDA3d::ConeFP(volData, projData, dims, angle, 1.0f); #else for (int i = 0; i < 100; ++i) { char fname[32]; sprintf(fname, "Tiffs/%04d.png", 4*i); unsigned int w,h; float* bufp = loadImage(fname, w,h); for (int j = 0; j < 512*512; ++j) { float v = bufp[j]; if (v > 236.0f) v = 236.0f; v = logf(236.0f / v); bufp[j] = 256*v; } for (int j = 0; j < 512; ++j) { cudaMemcpy(((float*)projData.ptr)+100*512*j+512*i, bufp+512*j, 512*sizeof(float), cudaMemcpyHostToDevice); } delete[] bufp; } #endif #if 0 float* bufs = new float[100*512]; for (int i = 0; i < 512; ++i) { cudaMemcpy(bufs, ((float*)projData.ptr)+100*512*i, 100*512*sizeof(float), cudaMemcpyDeviceToHost); printf("%d %d %d\n", projData.pitch, projData.xsize, projData.ysize); char fname[20]; sprintf(fname, "sino%03d.png", i); saveImage(fname, 100, 512, bufs); } float* bufp = new float[512*512]; for (int i = 0; i < 100; ++i) { for (int j = 0; j < 512; ++j) { cudaMemcpy(bufp+512*j, ((float*)projData.ptr)+100*512*j+512*i, 512*sizeof(float), cudaMemcpyDeviceToHost); } char fname[20]; sprintf(fname, "proj%03d.png", i); saveImage(fname, 512, 512, bufp); } #endif zeroVolumeData(volData, dims); cudaPitchedPtr maskData; maskData.ptr = 0; astraCUDA3d::doSIRT(volData, projData, maskData, dims, angle, 50); #if 1 float* buf = new float[256*256]; for (int i = 0; i < 256; ++i) { cudaMemcpy(buf, ((float*)volData.ptr)+256*256*i, 256*256*sizeof(float), cudaMemcpyDeviceToHost); char fname[20]; sprintf(fname, "vol%03d.png", i); saveImage(fname, 256, 256, buf); } #endif return 0; } #endif