/*
-----------------------------------------------------------------------
Copyright: 2010-2015, iMinds-Vision Lab, University of Antwerp
2014-2015, CWI, Amsterdam
Contact: astra@uantwerpen.be
Website: http://sf.net/projects/astra-toolbox
This file is part of the ASTRA Toolbox.
The ASTRA Toolbox is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The ASTRA Toolbox is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the ASTRA Toolbox. If not, see .
-----------------------------------------------------------------------
$Id$
*/
template
void CParallelBeamLineKernelProjector2D::project(Policy& p)
{
if (dynamic_cast(m_pProjectionGeometry)) {
projectBlock_internal(0, m_pProjectionGeometry->getProjectionAngleCount(),
0, m_pProjectionGeometry->getDetectorCount(), p);
} else if (dynamic_cast(m_pProjectionGeometry)) {
projectBlock_internal_vector(0, m_pProjectionGeometry->getProjectionAngleCount(),
0, m_pProjectionGeometry->getDetectorCount(), p);
}
}
template
void CParallelBeamLineKernelProjector2D::projectSingleProjection(int _iProjection, Policy& p)
{
projectBlock_internal(_iProjection, _iProjection + 1,
0, m_pProjectionGeometry->getDetectorCount(), p);
}
template
void CParallelBeamLineKernelProjector2D::projectSingleRay(int _iProjection, int _iDetector, Policy& p)
{
projectBlock_internal(_iProjection, _iProjection + 1,
_iDetector, _iDetector + 1, p);
}
//----------------------------------------------------------------------------------------
// PROJECT BLOCK - default projection geometry
template
void CParallelBeamLineKernelProjector2D::projectBlock_internal(int _iProjFrom, int _iProjTo, int _iDetFrom, int _iDetTo, Policy& p)
{
// variables
float32 theta, sin_theta, cos_theta, inv_sin_theta, inv_cos_theta, S, T, t, I, P, x, x2;
float32 lengthPerRow, updatePerRow, inv_pixelLengthX, lengthPerCol, updatePerCol, inv_pixelLengthY;
int iVolumeIndex, iRayIndex, row, col, iAngle, iDetector, x1;
bool switch_t;
float32 old_theta;
const SParProjection * proj = 0;
const CParallelProjectionGeometry2D* pProjectionGeometry = dynamic_cast(m_pProjectionGeometry);
// loop angles
for (iAngle = _iProjFrom; iAngle < _iProjTo; ++iAngle) {
// get theta
theta = m_pProjectionGeometry->getProjectionAngle(iAngle);
switch_t = false;
if (theta >= 7*PIdiv4) theta -= 2*PI;
if (theta >= 3*PIdiv4) {
theta -= PI;
switch_t = true;
}
// precalculate sin, cos, 1/cos
sin_theta = sin(theta);
cos_theta = cos(theta);
inv_sin_theta = 1.0f / sin_theta;
inv_cos_theta = 1.0f / cos_theta;
// precalculate kernel limits
lengthPerRow = m_pVolumeGeometry->getPixelLengthY() * inv_cos_theta;
updatePerRow = sin_theta * inv_cos_theta;
inv_pixelLengthX = 1.0f / m_pVolumeGeometry->getPixelLengthX();
// precalculate kernel limits
lengthPerCol = m_pVolumeGeometry->getPixelLengthX() * inv_sin_theta;
updatePerCol = cos_theta * inv_sin_theta;
inv_pixelLengthY = 1.0f / m_pVolumeGeometry->getPixelLengthY();
// precalculate S and T
S = 0.5f - 0.5f * ((updatePerRow < 0) ? -updatePerRow : updatePerRow);
T = 0.5f - 0.5f * ((updatePerCol < 0) ? -updatePerCol : updatePerCol);
// loop detectors
for (iDetector = _iDetFrom; iDetector < _iDetTo; ++iDetector) {
iRayIndex = iAngle * m_pProjectionGeometry->getDetectorCount() + iDetector;
// POLICY: RAY PRIOR
if (!p.rayPrior(iRayIndex)) continue;
// get t
t = m_pProjectionGeometry->indexToDetectorOffset(iDetector);
if (switch_t) t = -t;
// vertically
if (theta <= PIdiv4) {
// calculate x for row 0
P = (t - sin_theta * m_pVolumeGeometry->pixelRowToCenterY(0)) * inv_cos_theta;
x = (P - m_pVolumeGeometry->getWindowMinX()) * inv_pixelLengthX;
// get coords
int nextx1 = int((x > 0.0f) ? x : x-1.0f);
float nextx2 = x - nextx1;
// for each row
for (row = 0; row < m_pVolumeGeometry->getGridRowCount(); ++row) {
x1 = nextx1;
x2 = nextx2;
nextx2 += updatePerRow;
while (nextx2 >= 1.0f) {
nextx2 -= 1.0f;
nextx1++;
}
while (nextx2 < 0.0f) {
nextx2 += 1.0f;
nextx1--;
}
if (x1 < -1 || x1 > m_pVolumeGeometry->getGridColCount()) continue;
// left
if (x2 < 0.5f-S) {
I = (0.5f - S + x2) / (1.0f - 2.0f*S) * lengthPerRow;
if (x1-1 >= 0 && x1-1 < m_pVolumeGeometry->getGridColCount()) {
iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1-1);
// POLICY: PIXEL PRIOR + ADD + POSTERIOR
if (p.pixelPrior(iVolumeIndex)) {
p.addWeight(iRayIndex, iVolumeIndex, lengthPerRow-I);
p.pixelPosterior(iVolumeIndex);
}
}
if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridColCount()) {
iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1);
// POLICY: PIXEL PRIOR + ADD + POSTERIOR
if (p.pixelPrior(iVolumeIndex)) {
p.addWeight(iRayIndex, iVolumeIndex, I);
p.pixelPosterior(iVolumeIndex);
}
}
}
// center
else if (x2 <= 0.5f+S) {
if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridColCount()) {
iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1);
// POLICY: PIXEL PRIOR + ADD + POSTERIOR
if (p.pixelPrior(iVolumeIndex)) {
p.addWeight(iRayIndex, iVolumeIndex, lengthPerRow);
p.pixelPosterior(iVolumeIndex);
}
}
}
// right
else {
I = (1.5f - S - x2) / (1.0f - 2.0f*S) * lengthPerRow;
if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridColCount()) {
iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1);
// POLICY: PIXEL PRIOR + ADD + POSTERIOR
if (p.pixelPrior(iVolumeIndex)) {
p.addWeight(iRayIndex, iVolumeIndex, I);
p.pixelPosterior(iVolumeIndex);
}
}
if (x1+1 >= 0 && x1+1 < m_pVolumeGeometry->getGridColCount()) {
iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1+1);
// POLICY: PIXEL PRIOR + ADD + POSTERIOR
if (p.pixelPrior(iVolumeIndex)) {
p.addWeight(iRayIndex, iVolumeIndex, lengthPerRow-I);
p.pixelPosterior(iVolumeIndex);
}
}
}
}
}
// horizontally
else if (PIdiv4 <= theta && theta <= 3*PIdiv4) {
// calculate point P
P = (t - cos_theta * m_pVolumeGeometry->pixelColToCenterX(0)) * inv_sin_theta;
x = (m_pVolumeGeometry->getWindowMaxY() - P) * inv_pixelLengthY;
// get coords
int nextx1 = int((x > 0.0f) ? x : x-1.0f);
float nextx2 = x - nextx1;
// for each col
for (col = 0; col < m_pVolumeGeometry->getGridColCount(); ++col) {
x1 = nextx1;
x2 = nextx2;
nextx2 += updatePerCol;
while (nextx2 >= 1.0f) {
nextx2 -= 1.0f;
nextx1++;
}
while (nextx2 < 0.0f) {
nextx2 += 1.0f;
nextx1--;
}
if (x1 < -1 || x1 > m_pVolumeGeometry->getGridRowCount()) continue;
// up
if (x2 < 0.5f-T) {
I = (0.5f - T + x2) / (1.0f - 2.0f*T) * lengthPerCol;
if (x1-1 >= 0 && x1-1 < m_pVolumeGeometry->getGridRowCount()) {
iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1-1, col);
// POLICY: PIXEL PRIOR + ADD + POSTERIOR
if (p.pixelPrior(iVolumeIndex)) {
p.addWeight(iRayIndex, iVolumeIndex, lengthPerCol-I);
p.pixelPosterior(iVolumeIndex);
}
}
if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridRowCount()) {
iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1, col);
// POLICY: PIXEL PRIOR + ADD + POSTERIOR
if (p.pixelPrior(iVolumeIndex)) {
p.addWeight(iRayIndex, iVolumeIndex, I);
p.pixelPosterior(iVolumeIndex);
}
}
}
// center
else if (x2 <= 0.5f+T) {
if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridRowCount()) {
iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1, col);
// POLICY: PIXEL PRIOR + ADD + POSTERIOR
if (p.pixelPrior(iVolumeIndex)) {
p.addWeight(iRayIndex, iVolumeIndex, lengthPerCol);
p.pixelPosterior(iVolumeIndex);
}
}
}
// down
else {
I = (1.5f - T - x2) / (1.0f - 2.0f*T) * lengthPerCol;
if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridColCount()) {
iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1, col);
// POLICY: PIXEL PRIOR + ADD + POSTERIOR
if (p.pixelPrior(iVolumeIndex)) {
p.addWeight(iRayIndex, iVolumeIndex, I);
p.pixelPosterior(iVolumeIndex);
}
}
if (x1+1 >= 0 && x1+1 < m_pVolumeGeometry->getGridColCount()) {
iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1+1, col);
// POLICY: PIXEL PRIOR + ADD + POSTERIOR
if (p.pixelPrior(iVolumeIndex)) {
p.addWeight(iRayIndex, iVolumeIndex, lengthPerCol-I);
p.pixelPosterior(iVolumeIndex);
}
}
}
}
} // end loop col
// POLICY: RAY POSTERIOR
p.rayPosterior(iRayIndex);
} // end loop detector
} // end loop angles
}
//----------------------------------------------------------------------------------------
// PROJECT BLOCK - vector projection geometry
template
void CParallelBeamLineKernelProjector2D::projectBlock_internal_vector(int _iProjFrom, int _iProjTo, int _iDetFrom, int _iDetTo, Policy& p)
{
// variables
float32 detX, detY, S, T, I, x, y, c, r, update_c, update_r, offset;
float32 lengthPerRow, lengthPerCol, inv_pixelLengthX, inv_pixelLengthY, invTminSTimesLengthPerRow, invTminSTimesLengthPerCol;
int iVolumeIndex, iRayIndex, row, col, iAngle, iDetector;
const SParProjection * proj = 0;
const CParallelVecProjectionGeometry2D* pVecProjectionGeometry = dynamic_cast(m_pProjectionGeometry);
inv_pixelLengthX = 1.0f / m_pVolumeGeometry->getPixelLengthX();
inv_pixelLengthY = 1.0f / m_pVolumeGeometry->getPixelLengthY();
// loop angles
for (iAngle = _iProjFrom; iAngle < _iProjTo; ++iAngle) {
proj = &pVecProjectionGeometry->getProjectionVectors()[iAngle];
bool vertical = fabs(proj->fRayX) < fabs(proj->fRayY);
if (vertical) {
S = abs(0.5f * (1.0f - proj->fRayY/proj->fRayX));
T = abs(0.5f * (1.0f + proj->fRayY/proj->fRayX));
lengthPerRow = m_pVolumeGeometry->getPixelLengthX() * sqrt(proj->fRayY*proj->fRayY + proj->fRayX*proj->fRayX) / abs(proj->fRayY);
invTminSTimesLengthPerRow = lengthPerRow / (T - S);
} else {
S = abs(0.5f * (1.0f - proj->fRayX/proj->fRayY));
T = abs(0.5f * (1.0f + proj->fRayX/proj->fRayY));
lengthPerCol = m_pVolumeGeometry->getPixelLengthY() * sqrt(proj->fRayY*proj->fRayY + proj->fRayX*proj->fRayX) / abs(proj->fRayX);
invTminSTimesLengthPerCol = lengthPerCol / (T - S);
}
// loop detectors
for (iDetector = _iDetFrom; iDetector < _iDetTo; ++iDetector) {
iRayIndex = iAngle * m_pProjectionGeometry->getDetectorCount() + iDetector;
// POLICY: RAY PRIOR
if (!p.rayPrior(iRayIndex)) continue;
detX = proj->fDetSX + (iDetector+0.5f) * proj->fDetUX;
detY = proj->fDetSY + (iDetector+0.5f) * proj->fDetUY;
// vertically
if (vertical) {
// calculate x for row 0
float32 x = detX + (proj->fRayX/proj->fRayY)*(m_pVolumeGeometry->pixelRowToCenterY(0)-detY);
float32 c = (x - m_pVolumeGeometry->getWindowMinX()) * inv_pixelLengthX - 0.5f;
float32 update_c = -m_pVolumeGeometry->getPixelLengthY() * (proj->fRayX/proj->fRayY) * inv_pixelLengthX;
// for each row
for (row = 0; row < m_pVolumeGeometry->getGridRowCount(); ++row, c += update_c) {
col = int(c+0.5f);
offset = c - float32(col);
if (col <= 0 || col >= m_pVolumeGeometry->getGridColCount()-1) continue;
// left
if (offset < -S) {
I = (offset + T) * invTminSTimesLengthPerRow;
iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, col-1);
// POLICY: PIXEL PRIOR + ADD + POSTERIOR
if (p.pixelPrior(iVolumeIndex)) {
p.addWeight(iRayIndex, iVolumeIndex, lengthPerRow-I);
p.pixelPosterior(iVolumeIndex);
}
iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, col);
// POLICY: PIXEL PRIOR + ADD + POSTERIOR
if (p.pixelPrior(iVolumeIndex)) {
p.addWeight(iRayIndex, iVolumeIndex, I);
p.pixelPosterior(iVolumeIndex);
}
}
// right
else if (S < offset) {
I = (offset - S) * invTminSTimesLengthPerRow;
iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, col);
// POLICY: PIXEL PRIOR + ADD + POSTERIOR
if (p.pixelPrior(iVolumeIndex)) {
p.addWeight(iRayIndex, iVolumeIndex, lengthPerRow-I);
p.pixelPosterior(iVolumeIndex);
}
iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, col+1);
// POLICY: PIXEL PRIOR + ADD + POSTERIOR
if (p.pixelPrior(iVolumeIndex)) {
p.addWeight(iRayIndex, iVolumeIndex, I);
p.pixelPosterior(iVolumeIndex);
}
}
// centre
else {
iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, col);
// POLICY: PIXEL PRIOR + ADD + POSTERIOR
if (p.pixelPrior(iVolumeIndex)) {
p.addWeight(iRayIndex, iVolumeIndex, lengthPerRow);
p.pixelPosterior(iVolumeIndex);
}
}
}
}
// horizontally
else {
// calculate y for col 0
float32 y = detY + (proj->fRayY/proj->fRayX)*(m_pVolumeGeometry->pixelColToCenterX(0)-detX);
float32 r = (m_pVolumeGeometry->getWindowMaxY() - y) * inv_pixelLengthY - 0.5f;
float32 update_r = -m_pVolumeGeometry->getPixelLengthX() * (proj->fRayY/proj->fRayX) * inv_pixelLengthY;
// for each col
for (col = 0; col < m_pVolumeGeometry->getGridColCount(); ++col, r += update_r) {
int row = int(r+0.5f);
float32 offset = r - float32(row);
if (row <= 0 || row >= m_pVolumeGeometry->getGridRowCount()-1) continue;
// up
if (offset < -S) {
I = (offset + T) * invTminSTimesLengthPerCol;
iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row-1, col);
// POLICY: PIXEL PRIOR + ADD + POSTERIOR
if (p.pixelPrior(iVolumeIndex)) {
p.addWeight(iRayIndex, iVolumeIndex, lengthPerCol-I);
p.pixelPosterior(iVolumeIndex);
}
iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, col);
// POLICY: PIXEL PRIOR + ADD + POSTERIOR
if (p.pixelPrior(iVolumeIndex)) {
p.addWeight(iRayIndex, iVolumeIndex, I);
p.pixelPosterior(iVolumeIndex);
}
}
// down
else if (S < offset) {
I = (offset - S) * invTminSTimesLengthPerCol;
iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, col);
// POLICY: PIXEL PRIOR + ADD + POSTERIOR
if (p.pixelPrior(iVolumeIndex)) {
p.addWeight(iRayIndex, iVolumeIndex, lengthPerCol-I);
p.pixelPosterior(iVolumeIndex);
}
iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row+1, col);
// POLICY: PIXEL PRIOR + ADD + POSTERIOR
if (p.pixelPrior(iVolumeIndex)) {
p.addWeight(iRayIndex, iVolumeIndex, I);
p.pixelPosterior(iVolumeIndex);
}
}
// centre
else {
iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, col);
// POLICY: PIXEL PRIOR + ADD + POSTERIOR
if (p.pixelPrior(iVolumeIndex)) {
p.addWeight(iRayIndex, iVolumeIndex, lengthPerCol);
p.pixelPosterior(iVolumeIndex);
}
}
}
} // end loop col
// POLICY: RAY POSTERIOR
p.rayPosterior(iRayIndex);
} // end loop detector
} // end loop angles
}