/* ----------------------------------------------------------------------- Copyright: 2010-2015, iMinds-Vision Lab, University of Antwerp 2014-2015, CWI, Amsterdam Contact: astra@uantwerpen.be Website: http://sf.net/projects/astra-toolbox This file is part of the ASTRA Toolbox. The ASTRA Toolbox is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. The ASTRA Toolbox is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with the ASTRA Toolbox. If not, see . ----------------------------------------------------------------------- $Id$ */ template void CParallelBeamLineKernelProjector2D::project(Policy& p) { if (dynamic_cast(m_pProjectionGeometry)) { projectBlock_internal(0, m_pProjectionGeometry->getProjectionAngleCount(), 0, m_pProjectionGeometry->getDetectorCount(), p); } else if (dynamic_cast(m_pProjectionGeometry)) { projectBlock_internal_vector(0, m_pProjectionGeometry->getProjectionAngleCount(), 0, m_pProjectionGeometry->getDetectorCount(), p); } } template void CParallelBeamLineKernelProjector2D::projectSingleProjection(int _iProjection, Policy& p) { projectBlock_internal(_iProjection, _iProjection + 1, 0, m_pProjectionGeometry->getDetectorCount(), p); } template void CParallelBeamLineKernelProjector2D::projectSingleRay(int _iProjection, int _iDetector, Policy& p) { projectBlock_internal(_iProjection, _iProjection + 1, _iDetector, _iDetector + 1, p); } //---------------------------------------------------------------------------------------- // PROJECT BLOCK - default projection geometry template void CParallelBeamLineKernelProjector2D::projectBlock_internal(int _iProjFrom, int _iProjTo, int _iDetFrom, int _iDetTo, Policy& p) { // variables float32 theta, sin_theta, cos_theta, inv_sin_theta, inv_cos_theta, S, T, t, I, P, x, x2; float32 lengthPerRow, updatePerRow, inv_pixelLengthX, lengthPerCol, updatePerCol, inv_pixelLengthY; int iVolumeIndex, iRayIndex, row, col, iAngle, iDetector, x1; bool switch_t; float32 old_theta; const SParProjection * proj = 0; const CParallelProjectionGeometry2D* pProjectionGeometry = dynamic_cast(m_pProjectionGeometry); // loop angles for (iAngle = _iProjFrom; iAngle < _iProjTo; ++iAngle) { // get theta theta = m_pProjectionGeometry->getProjectionAngle(iAngle); switch_t = false; if (theta >= 7*PIdiv4) theta -= 2*PI; if (theta >= 3*PIdiv4) { theta -= PI; switch_t = true; } // precalculate sin, cos, 1/cos sin_theta = sin(theta); cos_theta = cos(theta); inv_sin_theta = 1.0f / sin_theta; inv_cos_theta = 1.0f / cos_theta; // precalculate kernel limits lengthPerRow = m_pVolumeGeometry->getPixelLengthY() * inv_cos_theta; updatePerRow = sin_theta * inv_cos_theta; inv_pixelLengthX = 1.0f / m_pVolumeGeometry->getPixelLengthX(); // precalculate kernel limits lengthPerCol = m_pVolumeGeometry->getPixelLengthX() * inv_sin_theta; updatePerCol = cos_theta * inv_sin_theta; inv_pixelLengthY = 1.0f / m_pVolumeGeometry->getPixelLengthY(); // precalculate S and T S = 0.5f - 0.5f * ((updatePerRow < 0) ? -updatePerRow : updatePerRow); T = 0.5f - 0.5f * ((updatePerCol < 0) ? -updatePerCol : updatePerCol); // loop detectors for (iDetector = _iDetFrom; iDetector < _iDetTo; ++iDetector) { iRayIndex = iAngle * m_pProjectionGeometry->getDetectorCount() + iDetector; // POLICY: RAY PRIOR if (!p.rayPrior(iRayIndex)) continue; // get t t = m_pProjectionGeometry->indexToDetectorOffset(iDetector); if (switch_t) t = -t; // vertically if (theta <= PIdiv4) { // calculate x for row 0 P = (t - sin_theta * m_pVolumeGeometry->pixelRowToCenterY(0)) * inv_cos_theta; x = (P - m_pVolumeGeometry->getWindowMinX()) * inv_pixelLengthX; // get coords int nextx1 = int((x > 0.0f) ? x : x-1.0f); float nextx2 = x - nextx1; // for each row for (row = 0; row < m_pVolumeGeometry->getGridRowCount(); ++row) { x1 = nextx1; x2 = nextx2; nextx2 += updatePerRow; while (nextx2 >= 1.0f) { nextx2 -= 1.0f; nextx1++; } while (nextx2 < 0.0f) { nextx2 += 1.0f; nextx1--; } if (x1 < -1 || x1 > m_pVolumeGeometry->getGridColCount()) continue; // left if (x2 < 0.5f-S) { I = (0.5f - S + x2) / (1.0f - 2.0f*S) * lengthPerRow; if (x1-1 >= 0 && x1-1 < m_pVolumeGeometry->getGridColCount()) { iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1-1); // POLICY: PIXEL PRIOR + ADD + POSTERIOR if (p.pixelPrior(iVolumeIndex)) { p.addWeight(iRayIndex, iVolumeIndex, lengthPerRow-I); p.pixelPosterior(iVolumeIndex); } } if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridColCount()) { iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1); // POLICY: PIXEL PRIOR + ADD + POSTERIOR if (p.pixelPrior(iVolumeIndex)) { p.addWeight(iRayIndex, iVolumeIndex, I); p.pixelPosterior(iVolumeIndex); } } } // center else if (x2 <= 0.5f+S) { if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridColCount()) { iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1); // POLICY: PIXEL PRIOR + ADD + POSTERIOR if (p.pixelPrior(iVolumeIndex)) { p.addWeight(iRayIndex, iVolumeIndex, lengthPerRow); p.pixelPosterior(iVolumeIndex); } } } // right else { I = (1.5f - S - x2) / (1.0f - 2.0f*S) * lengthPerRow; if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridColCount()) { iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1); // POLICY: PIXEL PRIOR + ADD + POSTERIOR if (p.pixelPrior(iVolumeIndex)) { p.addWeight(iRayIndex, iVolumeIndex, I); p.pixelPosterior(iVolumeIndex); } } if (x1+1 >= 0 && x1+1 < m_pVolumeGeometry->getGridColCount()) { iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1+1); // POLICY: PIXEL PRIOR + ADD + POSTERIOR if (p.pixelPrior(iVolumeIndex)) { p.addWeight(iRayIndex, iVolumeIndex, lengthPerRow-I); p.pixelPosterior(iVolumeIndex); } } } } } // horizontally else if (PIdiv4 <= theta && theta <= 3*PIdiv4) { // calculate point P P = (t - cos_theta * m_pVolumeGeometry->pixelColToCenterX(0)) * inv_sin_theta; x = (m_pVolumeGeometry->getWindowMaxY() - P) * inv_pixelLengthY; // get coords int nextx1 = int((x > 0.0f) ? x : x-1.0f); float nextx2 = x - nextx1; // for each col for (col = 0; col < m_pVolumeGeometry->getGridColCount(); ++col) { x1 = nextx1; x2 = nextx2; nextx2 += updatePerCol; while (nextx2 >= 1.0f) { nextx2 -= 1.0f; nextx1++; } while (nextx2 < 0.0f) { nextx2 += 1.0f; nextx1--; } if (x1 < -1 || x1 > m_pVolumeGeometry->getGridRowCount()) continue; // up if (x2 < 0.5f-T) { I = (0.5f - T + x2) / (1.0f - 2.0f*T) * lengthPerCol; if (x1-1 >= 0 && x1-1 < m_pVolumeGeometry->getGridRowCount()) { iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1-1, col); // POLICY: PIXEL PRIOR + ADD + POSTERIOR if (p.pixelPrior(iVolumeIndex)) { p.addWeight(iRayIndex, iVolumeIndex, lengthPerCol-I); p.pixelPosterior(iVolumeIndex); } } if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridRowCount()) { iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1, col); // POLICY: PIXEL PRIOR + ADD + POSTERIOR if (p.pixelPrior(iVolumeIndex)) { p.addWeight(iRayIndex, iVolumeIndex, I); p.pixelPosterior(iVolumeIndex); } } } // center else if (x2 <= 0.5f+T) { if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridRowCount()) { iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1, col); // POLICY: PIXEL PRIOR + ADD + POSTERIOR if (p.pixelPrior(iVolumeIndex)) { p.addWeight(iRayIndex, iVolumeIndex, lengthPerCol); p.pixelPosterior(iVolumeIndex); } } } // down else { I = (1.5f - T - x2) / (1.0f - 2.0f*T) * lengthPerCol; if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridColCount()) { iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1, col); // POLICY: PIXEL PRIOR + ADD + POSTERIOR if (p.pixelPrior(iVolumeIndex)) { p.addWeight(iRayIndex, iVolumeIndex, I); p.pixelPosterior(iVolumeIndex); } } if (x1+1 >= 0 && x1+1 < m_pVolumeGeometry->getGridColCount()) { iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1+1, col); // POLICY: PIXEL PRIOR + ADD + POSTERIOR if (p.pixelPrior(iVolumeIndex)) { p.addWeight(iRayIndex, iVolumeIndex, lengthPerCol-I); p.pixelPosterior(iVolumeIndex); } } } } } // end loop col // POLICY: RAY POSTERIOR p.rayPosterior(iRayIndex); } // end loop detector } // end loop angles } //---------------------------------------------------------------------------------------- // PROJECT BLOCK - vector projection geometry template void CParallelBeamLineKernelProjector2D::projectBlock_internal_vector(int _iProjFrom, int _iProjTo, int _iDetFrom, int _iDetTo, Policy& p) { // variables float32 detX, detY, S, T, I, x, y, c, r, update_c, update_r, offset; float32 lengthPerRow, lengthPerCol, inv_pixelLengthX, inv_pixelLengthY, invTminSTimesLengthPerRow, invTminSTimesLengthPerCol; int iVolumeIndex, iRayIndex, row, col, iAngle, iDetector; const SParProjection * proj = 0; const CParallelVecProjectionGeometry2D* pVecProjectionGeometry = dynamic_cast(m_pProjectionGeometry); inv_pixelLengthX = 1.0f / m_pVolumeGeometry->getPixelLengthX(); inv_pixelLengthY = 1.0f / m_pVolumeGeometry->getPixelLengthY(); // loop angles for (iAngle = _iProjFrom; iAngle < _iProjTo; ++iAngle) { proj = &pVecProjectionGeometry->getProjectionVectors()[iAngle]; bool vertical = fabs(proj->fRayX) < fabs(proj->fRayY); if (vertical) { S = abs(0.5f * (1.0f - proj->fRayY/proj->fRayX)); T = abs(0.5f * (1.0f + proj->fRayY/proj->fRayX)); lengthPerRow = m_pVolumeGeometry->getPixelLengthX() * sqrt(proj->fRayY*proj->fRayY + proj->fRayX*proj->fRayX) / abs(proj->fRayY); invTminSTimesLengthPerRow = lengthPerRow / (T - S); } else { S = abs(0.5f * (1.0f - proj->fRayX/proj->fRayY)); T = abs(0.5f * (1.0f + proj->fRayX/proj->fRayY)); lengthPerCol = m_pVolumeGeometry->getPixelLengthY() * sqrt(proj->fRayY*proj->fRayY + proj->fRayX*proj->fRayX) / abs(proj->fRayX); invTminSTimesLengthPerCol = lengthPerCol / (T - S); } // loop detectors for (iDetector = _iDetFrom; iDetector < _iDetTo; ++iDetector) { iRayIndex = iAngle * m_pProjectionGeometry->getDetectorCount() + iDetector; // POLICY: RAY PRIOR if (!p.rayPrior(iRayIndex)) continue; detX = proj->fDetSX + (iDetector+0.5f) * proj->fDetUX; detY = proj->fDetSY + (iDetector+0.5f) * proj->fDetUY; // vertically if (vertical) { // calculate x for row 0 float32 x = detX + (proj->fRayX/proj->fRayY)*(m_pVolumeGeometry->pixelRowToCenterY(0)-detY); float32 c = (x - m_pVolumeGeometry->getWindowMinX()) * inv_pixelLengthX - 0.5f; float32 update_c = -m_pVolumeGeometry->getPixelLengthY() * (proj->fRayX/proj->fRayY) * inv_pixelLengthX; // for each row for (row = 0; row < m_pVolumeGeometry->getGridRowCount(); ++row, c += update_c) { col = int(c+0.5f); offset = c - float32(col); if (col <= 0 || col >= m_pVolumeGeometry->getGridColCount()-1) continue; // left if (offset < -S) { I = (offset + T) * invTminSTimesLengthPerRow; iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, col-1); // POLICY: PIXEL PRIOR + ADD + POSTERIOR if (p.pixelPrior(iVolumeIndex)) { p.addWeight(iRayIndex, iVolumeIndex, lengthPerRow-I); p.pixelPosterior(iVolumeIndex); } iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, col); // POLICY: PIXEL PRIOR + ADD + POSTERIOR if (p.pixelPrior(iVolumeIndex)) { p.addWeight(iRayIndex, iVolumeIndex, I); p.pixelPosterior(iVolumeIndex); } } // right else if (S < offset) { I = (offset - S) * invTminSTimesLengthPerRow; iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, col); // POLICY: PIXEL PRIOR + ADD + POSTERIOR if (p.pixelPrior(iVolumeIndex)) { p.addWeight(iRayIndex, iVolumeIndex, lengthPerRow-I); p.pixelPosterior(iVolumeIndex); } iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, col+1); // POLICY: PIXEL PRIOR + ADD + POSTERIOR if (p.pixelPrior(iVolumeIndex)) { p.addWeight(iRayIndex, iVolumeIndex, I); p.pixelPosterior(iVolumeIndex); } } // centre else { iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, col); // POLICY: PIXEL PRIOR + ADD + POSTERIOR if (p.pixelPrior(iVolumeIndex)) { p.addWeight(iRayIndex, iVolumeIndex, lengthPerRow); p.pixelPosterior(iVolumeIndex); } } } } // horizontally else { // calculate y for col 0 float32 y = detY + (proj->fRayY/proj->fRayX)*(m_pVolumeGeometry->pixelColToCenterX(0)-detX); float32 r = (m_pVolumeGeometry->getWindowMaxY() - y) * inv_pixelLengthY - 0.5f; float32 update_r = -m_pVolumeGeometry->getPixelLengthX() * (proj->fRayY/proj->fRayX) * inv_pixelLengthY; // for each col for (col = 0; col < m_pVolumeGeometry->getGridColCount(); ++col, r += update_r) { int row = int(r+0.5f); float32 offset = r - float32(row); if (row <= 0 || row >= m_pVolumeGeometry->getGridRowCount()-1) continue; // up if (offset < -S) { I = (offset + T) * invTminSTimesLengthPerCol; iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row-1, col); // POLICY: PIXEL PRIOR + ADD + POSTERIOR if (p.pixelPrior(iVolumeIndex)) { p.addWeight(iRayIndex, iVolumeIndex, lengthPerCol-I); p.pixelPosterior(iVolumeIndex); } iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, col); // POLICY: PIXEL PRIOR + ADD + POSTERIOR if (p.pixelPrior(iVolumeIndex)) { p.addWeight(iRayIndex, iVolumeIndex, I); p.pixelPosterior(iVolumeIndex); } } // down else if (S < offset) { I = (offset - S) * invTminSTimesLengthPerCol; iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, col); // POLICY: PIXEL PRIOR + ADD + POSTERIOR if (p.pixelPrior(iVolumeIndex)) { p.addWeight(iRayIndex, iVolumeIndex, lengthPerCol-I); p.pixelPosterior(iVolumeIndex); } iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row+1, col); // POLICY: PIXEL PRIOR + ADD + POSTERIOR if (p.pixelPrior(iVolumeIndex)) { p.addWeight(iRayIndex, iVolumeIndex, I); p.pixelPosterior(iVolumeIndex); } } // centre else { iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, col); // POLICY: PIXEL PRIOR + ADD + POSTERIOR if (p.pixelPrior(iVolumeIndex)) { p.addWeight(iRayIndex, iVolumeIndex, lengthPerCol); p.pixelPosterior(iVolumeIndex); } } } } // end loop col // POLICY: RAY POSTERIOR p.rayPosterior(iRayIndex); } // end loop detector } // end loop angles }