/* ----------------------------------------------------------------------- Copyright 2012 iMinds-Vision Lab, University of Antwerp Contact: astra@ua.ac.be Website: http://astra.ua.ac.be This file is part of the All Scale Tomographic Reconstruction Antwerp Toolbox ("ASTRA Toolbox"). The ASTRA Toolbox is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. The ASTRA Toolbox is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with the ASTRA Toolbox. If not, see . ----------------------------------------------------------------------- $Id$ */ template void CParallelBeamLinearKernelProjector2D::project(Policy& p) { projectBlock_internal(0, m_pProjectionGeometry->getProjectionAngleCount(), 0, m_pProjectionGeometry->getDetectorCount(), p); } template void CParallelBeamLinearKernelProjector2D::projectSingleProjection(int _iProjection, Policy& p) { projectBlock_internal(_iProjection, _iProjection + 1, 0, m_pProjectionGeometry->getDetectorCount(), p); } template void CParallelBeamLinearKernelProjector2D::projectSingleRay(int _iProjection, int _iDetector, Policy& p) { projectBlock_internal(_iProjection, _iProjection + 1, _iDetector, _iDetector + 1, p); } //---------------------------------------------------------------------------------------- // PROJECT BLOCK template void CParallelBeamLinearKernelProjector2D::projectBlock_internal(int _iProjFrom, int _iProjTo, int _iDetFrom, int _iDetTo, Policy& p) { // variables float32 theta, sin_theta, cos_theta, inv_sin_theta, inv_cos_theta, t; float32 lengthPerRow, updatePerRow, inv_pixelLengthX; float32 lengthPerCol, updatePerCol, inv_pixelLengthY; bool switch_t; int iAngle, iDetector, iVolumeIndex, iRayIndex; int row, col, x1; float32 P,x,x2; // loop angles for (iAngle = _iProjFrom; iAngle < _iProjTo; ++iAngle) { // get theta theta = m_pProjectionGeometry->getProjectionAngle(iAngle); switch_t = false; if (theta >= 7*PIdiv4) theta -= 2*PI; if (theta >= 3*PIdiv4) { theta -= PI; switch_t = true; } // precalculate sin, cos, 1/cos sin_theta = sin(theta); cos_theta = cos(theta); inv_cos_theta = 1.0f / cos_theta; inv_sin_theta = 1.0f / sin_theta; // precalculate kernel limits lengthPerRow = m_pVolumeGeometry->getPixelLengthY() * inv_cos_theta; updatePerRow = sin_theta * inv_cos_theta; inv_pixelLengthX = 1.0f / m_pVolumeGeometry->getPixelLengthX(); // precalculate kernel limits lengthPerCol = m_pVolumeGeometry->getPixelLengthX() * inv_sin_theta; updatePerCol = cos_theta * inv_sin_theta; inv_pixelLengthY = 1.0f / m_pVolumeGeometry->getPixelLengthY(); // loop detectors for (iDetector = _iDetFrom; iDetector < _iDetTo; ++iDetector) { iRayIndex = iAngle * m_pProjectionGeometry->getDetectorCount() + iDetector; // POLICY: RAY PRIOR if (!p.rayPrior(iRayIndex)) continue; // get t t = m_pProjectionGeometry->indexToDetectorOffset(iDetector); if (switch_t) { t = -t; } // vertically if (theta <= PIdiv4) { // calculate x for row 0 P = (t - sin_theta * m_pVolumeGeometry->pixelRowToCenterY(0)) * inv_cos_theta; x = m_pVolumeGeometry->coordXToColF(P) - 0.5f; // for each row for (row = 0; row < m_pVolumeGeometry->getGridRowCount(); ++row) { // get coords x1 = int((x > 0.0f) ? x : x-1.0f); x2 = x - x1; x += updatePerRow; // add weights if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridColCount()) { iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1); // POLICY: PIXEL PRIOR + ADD + POSTERIOR if (p.pixelPrior(iVolumeIndex)) { p.addWeight(iRayIndex, iVolumeIndex, (1.0f - x2) * lengthPerRow); p.pixelPosterior(iVolumeIndex); } } if (x1+1 >= 0 && x1+1 < m_pVolumeGeometry->getGridColCount()) { iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1+1); // POLICY: PIXEL PRIOR + ADD + POSTERIOR if (p.pixelPrior(iVolumeIndex)) { p.addWeight(iRayIndex, iVolumeIndex, (x2) * lengthPerRow); p.pixelPosterior(iVolumeIndex); } } } } // horizontally else if (PIdiv4 <= theta && theta <= 3*PIdiv4) { // calculate point P P = (t - cos_theta * m_pVolumeGeometry->pixelColToCenterX(0)) * inv_sin_theta; x = m_pVolumeGeometry->coordYToRowF(P) - 0.5f; // for each row for (col = 0; col < m_pVolumeGeometry->getGridColCount(); ++col) { // get coords x1 = int((x > 0.0f) ? x : x-1.0f); x2 = x - x1; x += updatePerCol; // add weights if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridRowCount()) { iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1, col); // POLICY: PIXEL PRIOR + ADD + POSTERIOR if (p.pixelPrior(iVolumeIndex)) { p.addWeight(iRayIndex, iVolumeIndex, (1.0f - x2) * lengthPerCol); p.pixelPosterior(iVolumeIndex); } } if (x1+1 >= 0 && x1+1 < m_pVolumeGeometry->getGridRowCount()) { iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1+1, col); // POLICY: PIXEL PRIOR + ADD + POSTERIOR if (p.pixelPrior(iVolumeIndex)) { p.addWeight(iRayIndex, iVolumeIndex, x2 * lengthPerCol); p.pixelPosterior(iVolumeIndex); } } } } // POLICY: RAY POSTERIOR p.rayPosterior(iRayIndex); } // end loop detector } // end loop angles }