#----------------------------------------------------------------------- #Copyright 2013 Centrum Wiskunde & Informatica, Amsterdam # #Author: Daniel M. Pelt #Contact: D.M.Pelt@cwi.nl #Website: http://dmpelt.github.io/pyastratoolbox/ # # #This file is part of the Python interface to the #All Scale Tomographic Reconstruction Antwerp Toolbox ("ASTRA Toolbox"). # #The Python interface to the ASTRA Toolbox is free software: you can redistribute it and/or modify #it under the terms of the GNU General Public License as published by #the Free Software Foundation, either version 3 of the License, or #(at your option) any later version. # #The Python interface to the ASTRA Toolbox is distributed in the hope that it will be useful, #but WITHOUT ANY WARRANTY; without even the implied warranty of #MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #GNU General Public License for more details. # #You should have received a copy of the GNU General Public License #along with the Python interface to the ASTRA Toolbox. If not, see . # #----------------------------------------------------------------------- from six.moves import range import astra import numpy as np vol_geom = astra.create_vol_geom(256, 256) proj_geom = astra.create_proj_geom('parallel', 1.0, 384, np.linspace(0,np.pi,180,False)) # As before, create a sinogram from a phantom import scipy.io P = scipy.io.loadmat('phantom.mat')['phantom256'] proj_id = astra.create_projector('line',proj_geom,vol_geom) sinogram_id, sinogram = astra.create_sino(P, proj_id,useCUDA=True) import pylab pylab.gray() pylab.figure(1) pylab.imshow(P) pylab.figure(2) pylab.imshow(sinogram) # Create a data object for the reconstruction rec_id = astra.data2d.create('-vol', vol_geom) # Set up the parameters for a reconstruction algorithm using the GPU cfg = astra.astra_dict('SIRT_CUDA') cfg['ReconstructionDataId'] = rec_id cfg['ProjectionDataId'] = sinogram_id # Create the algorithm object from the configuration structure alg_id = astra.algorithm.create(cfg) # Run 1500 iterations of the algorithm one at a time, keeping track of errors nIters = 1500 phantom_error = np.zeros(nIters) residual_error = np.zeros(nIters) for i in range(nIters): # Run a single iteration astra.algorithm.run(alg_id, 1) residual_error[i] = astra.algorithm.get_res_norm(alg_id) rec = astra.data2d.get(rec_id) phantom_error[i] = np.sqrt(((rec - P)**2).sum()) # Get the result rec = astra.data2d.get(rec_id) pylab.figure(3) pylab.imshow(rec) pylab.figure(4) pylab.plot(residual_error) pylab.figure(5) pylab.plot(phantom_error) pylab.show() # Clean up. astra.algorithm.delete(alg_id) astra.data2d.delete(rec_id) astra.data2d.delete(sinogram_id) astra.projector.delete(proj_id)