summaryrefslogtreecommitdiffstats
path: root/include/astra/ParallelBeamStripKernelProjector2D.inl
blob: 31d222a63185375dc14a6d4308bf0ba8bea79db0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
/*
-----------------------------------------------------------------------
Copyright: 2010-2015, iMinds-Vision Lab, University of Antwerp
           2014-2015, CWI, Amsterdam

Contact: astra@uantwerpen.be
Website: http://sf.net/projects/astra-toolbox

This file is part of the ASTRA Toolbox.


The ASTRA Toolbox is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

The ASTRA Toolbox is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.

-----------------------------------------------------------------------
$Id$
*/

template <typename Policy>
void CParallelBeamStripKernelProjector2D::project(Policy& p)
{
	projectBlock_internal(0, m_pProjectionGeometry->getProjectionAngleCount(),
		                  0, m_pProjectionGeometry->getDetectorCount(), p);
}

template <typename Policy>
void CParallelBeamStripKernelProjector2D::projectSingleProjection(int _iProjection, Policy& p)
{
	projectBlock_internal(_iProjection, _iProjection + 1,
	                      0, m_pProjectionGeometry->getDetectorCount(), p);
}

template <typename Policy>
void CParallelBeamStripKernelProjector2D::projectSingleRay(int _iProjection, int _iDetector, Policy& p)
{
	projectBlock_internal(_iProjection, _iProjection + 1,
	                      _iDetector, _iDetector + 1, p);
}

//----------------------------------------------------------------------------------------
// PROJECT BLOCK
template <typename Policy>
void CParallelBeamStripKernelProjector2D::projectBlock_internal(int _iProjFrom, int _iProjTo, int _iDetFrom, int _iDetTo, Policy& p)
{
	// variables
	float32 detLX, detLY, detRX, detRY, S, T, update_c, update_r, offsetL, offsetR, invTminS;
	float32 inv_pixelLengthX, inv_pixelLengthY, pixelArea, res, fRxOverRy, fRyOverRx;
	int iVolumeIndex, iRayIndex, iAngle, iDetector;
	int row, row_top, row_bottom, col, col_left, col_right, colCount, rowCount, detCount;
	const SParProjection * proj = 0;
	
	// get vector geometry
	const CParallelVecProjectionGeometry2D* pVecProjectionGeometry;
	if (dynamic_cast<CParallelProjectionGeometry2D*>(m_pProjectionGeometry)) {
		pVecProjectionGeometry = dynamic_cast<CParallelProjectionGeometry2D*>(m_pProjectionGeometry)->toVectorGeometry();
	} else {
		pVecProjectionGeometry = dynamic_cast<CParallelVecProjectionGeometry2D*>(m_pProjectionGeometry);
	}

	// precomputations
	inv_pixelLengthX = 1.0f / m_pVolumeGeometry->getPixelLengthX();
	inv_pixelLengthY = 1.0f / m_pVolumeGeometry->getPixelLengthY();
	pixelArea = m_pVolumeGeometry->getPixelLengthX() * m_pVolumeGeometry->getPixelLengthY();
	colCount = m_pVolumeGeometry->getGridColCount();
	rowCount = m_pVolumeGeometry->getGridRowCount();
	detCount = pVecProjectionGeometry->getDetectorCount();

	// loop angles
	for (iAngle = _iProjFrom; iAngle < _iProjTo; ++iAngle) {

		proj = &pVecProjectionGeometry->getProjectionVectors()[iAngle];

		bool vertical = fabs(proj->fRayX) < fabs(proj->fRayY);
		if (vertical) {
			fRxOverRy = proj->fRayX/proj->fRayY;
			update_c = -m_pVolumeGeometry->getPixelLengthY() * fRxOverRy * inv_pixelLengthX;
			S = 0.5f - 0.5f*fabs(fRxOverRy);
			T = 0.5f + 0.5f*fabs(fRxOverRy);
			invTminS = 1.0f / (T-S);
		} else {
			fRyOverRx = proj->fRayY/proj->fRayX;
			update_r = -m_pVolumeGeometry->getPixelLengthX() * fRyOverRx * inv_pixelLengthY;
			S = 0.5f - 0.5f*fabs(fRyOverRx);
			T = 0.5f + 0.5f*fabs(fRyOverRx);
			invTminS = 1.0f / (T-S);
		}

		// loop detectors
		for (iDetector = _iDetFrom; iDetector < _iDetTo; ++iDetector) {
			
			iRayIndex = iAngle * detCount + iDetector;

			// POLICY: RAY PRIOR
			if (!p.rayPrior(iRayIndex)) continue;
	
			detLX = proj->fDetSX + iDetector * proj->fDetUX;
			detLY = proj->fDetSY + iDetector * proj->fDetUY;
			detRX = detLX + proj->fDetUX;
			detRY = detLY + proj->fDetUY;

			// vertically
			if (vertical) {

				// calculate cL and cR for row 0
				float32 xL = detLX + fRxOverRy*(m_pVolumeGeometry->pixelRowToCenterY(0)-detLY);
				float32 cL = (xL - m_pVolumeGeometry->getWindowMinX()) * inv_pixelLengthX - 0.5f;
				float32 xR = detRX + fRxOverRy*(m_pVolumeGeometry->pixelRowToCenterY(0)-detRY);
				float32 cR = (xR - m_pVolumeGeometry->getWindowMinX()) * inv_pixelLengthX - 0.5f;

				if (cR < cL) {
					float32 tmp = cL;
					cL = cR;
					cR = tmp;
				}

				// for each row
				for (row = 0; row < rowCount; ++row, cL += update_c, cR += update_c) {

					col_left = int(cL-0.5f+S);
					col_right = int(cR+1.5-S);

					if (col_left < 0) col_left = 0; 
					if (col_right > colCount-1) col_right = colCount-1; 

					offsetL = cL - float32(col_left);
					offsetR = cR - float32(col_left);

					// for each column
					for (col = col_left; col <= col_right; ++col, offsetL -= 1.0f, offsetR -= 1.0f) {

						iVolumeIndex = row * colCount + col;

						// POLICY: PIXEL PRIOR + ADD + POSTERIOR
						if (p.pixelPrior(iVolumeIndex)) {

							// right ray edge
							if (T <= offsetR) 		res = 1.0f;
							else if (S < offsetR) 	res = 1.0f - 0.5f*(T-offsetR)*(T-offsetR)*invTminS;
							else if (-S < offsetR) 	res = 0.5f + offsetR;
							else if (-T < offsetR) 	res = 0.5f*(offsetR+T)*(offsetR+T)*invTminS;
							else 					res = 0.0f;

							// left ray edge
							if (T <= offsetL) 		res -= 1.0f;
							else if (S < offsetL) 	res -= 1.0f - 0.5f*(T-offsetL)*(T-offsetL)*invTminS;
							else if (-S < offsetL)  res -= 0.5f + offsetL;
							else if (-T < offsetL)  res -= 0.5f*(offsetL+T)*(offsetL+T)*invTminS;

							p.addWeight(iRayIndex, iVolumeIndex, pixelArea*res);
							p.pixelPosterior(iVolumeIndex);
						}
					}
				}
			}

			// horizontally
			else {

				// calculate rL and rR for row 0
				float32 yL = detLY + fRyOverRx*(m_pVolumeGeometry->pixelColToCenterX(0)-detLX);
				float32 rL = (m_pVolumeGeometry->getWindowMaxY() - yL) * inv_pixelLengthY - 0.5f;
				float32 yR = detRY + fRyOverRx*(m_pVolumeGeometry->pixelColToCenterX(0)-detRX);
				float32 rR = (m_pVolumeGeometry->getWindowMaxY() - yR) * inv_pixelLengthY - 0.5f;

				if (rR < rL) {
					float32 tmp = rL;
					rL = rR;
					rR = tmp;
				}

				// for each column
				for (col = 0; col < colCount; ++col, rL += update_r, rR += update_r) {

					row_top = int(rL-0.5f+S);
					row_bottom = int(rR+1.5-S);

					if (row_top < 0) row_top = 0; 
					if (row_bottom > rowCount-1) row_bottom = rowCount-1; 

					offsetL = rL - float32(row_top);
					offsetR = rR - float32(row_top);

					// for each row
					for (row = row_top; row <= row_bottom; ++row, offsetL -= 1.0f, offsetR -= 1.0f) {

						iVolumeIndex = row * colCount + col;

						// POLICY: PIXEL PRIOR + ADD + POSTERIOR
						if (p.pixelPrior(iVolumeIndex)) {

							// right ray edge
							if (T <= offsetR) 		res = 1.0f;
							else if (S < offsetR) 	res = 1.0f - 0.5f*(T-offsetR)*(T-offsetR)*invTminS;
							else if (-S < offsetR) 	res = 0.5f + offsetR;
							else if (-T < offsetR) 	res = 0.5f*(offsetR+T)*(offsetR+T)*invTminS;
							else 					res = 0.0f;

							// left ray edge
							if (T <= offsetL) 		res -= 1.0f;
							else if (S < offsetL) 	res -= 1.0f - 0.5f*(T-offsetL)*(T-offsetL)*invTminS;
							else if (-S < offsetL)  res -= 0.5f + offsetL;
							else if (-T < offsetL)  res -= 0.5f*(offsetL+T)*(offsetL+T)*invTminS;


							p.addWeight(iRayIndex, iVolumeIndex, pixelArea*res);
							p.pixelPosterior(iVolumeIndex);
						}
					}
				}
			}
	
			// POLICY: RAY POSTERIOR
			p.rayPosterior(iRayIndex);
	
		} // end loop detector
	} // end loop angles

}