summaryrefslogtreecommitdiffstats
path: root/python/astra/utils.pyx
blob: 53e84a9ef7db0b126f8463aa5bef987ef5c1174a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
#-----------------------------------------------------------------------
#Copyright 2013 Centrum Wiskunde & Informatica, Amsterdam
#
#Author: Daniel M. Pelt
#Contact: D.M.Pelt@cwi.nl
#Website: http://dmpelt.github.io/pyastratoolbox/
#
#
#This file is part of the Python interface to the
#All Scale Tomographic Reconstruction Antwerp Toolbox ("ASTRA Toolbox").
#
#The Python interface to the ASTRA Toolbox is free software: you can redistribute it and/or modify
#it under the terms of the GNU General Public License as published by
#the Free Software Foundation, either version 3 of the License, or
#(at your option) any later version.
#
#The Python interface to the ASTRA Toolbox is distributed in the hope that it will be useful,
#but WITHOUT ANY WARRANTY; without even the implied warranty of
#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
#GNU General Public License for more details.
#
#You should have received a copy of the GNU General Public License
#along with the Python interface to the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.
#
#-----------------------------------------------------------------------
# distutils: language = c++
# distutils: libraries = astra

import numpy as np
import six
from libcpp.string cimport string
from libcpp.list cimport list
from libcpp.vector cimport vector
from cython.operator cimport dereference as deref
from cpython.version cimport PY_MAJOR_VERSION

cimport PyXMLDocument
from .PyXMLDocument cimport XMLDocument
from .PyXMLDocument cimport XMLNode
from .PyIncludes cimport *


cdef XMLDocument * dict2XML(string rootname, dc):
    cdef XMLDocument * doc = PyXMLDocument.createDocument(rootname)
    cdef XMLNode * node = doc.getRootNode()
    try:
        readDict(node, dc)
    except:
        six.print_('Error reading XML')
        del doc
        doc = NULL
    finally:
        del node
    return doc

def convert_item(item):
    if isinstance(item, six.string_types):
        return item.encode('ascii')

    if type(item) is not dict:
        return item

    out_dict = {}
    for k in item:
        out_dict[convert_item(k)] = convert_item(item[k])
    return out_dict


def wrap_to_bytes(value):
    if isinstance(value, six.binary_type):
        return value
    s = str(value)
    if PY_MAJOR_VERSION == 3:
        s = s.encode('ascii')
    return s


def wrap_from_bytes(value):
    s = value
    if PY_MAJOR_VERSION == 3:
        s = s.decode('ascii')
    return s


cdef void readDict(XMLNode * root, _dc):
    cdef XMLNode * listbase
    cdef XMLNode * itm
    cdef int i
    cdef int j

    dc = convert_item(_dc)
    for item in dc:
        val = dc[item]
        if isinstance(val, np.ndarray):
            if val.size == 0:
                break
            listbase = root.addChildNode(item)
            listbase.addAttribute(< string > six.b('listsize'), < float32 > val.size)
            index = 0
            if val.ndim == 2:
                for i in range(val.shape[0]):
                    for j in range(val.shape[1]):
                        itm = listbase.addChildNode(six.b('ListItem'))
                        itm.addAttribute(< string > six.b('index'), < float32 > index)
                        itm.addAttribute( < string > six.b('value'), < float32 > val[i, j])
                        index += 1
                        del itm
            elif val.ndim == 1:
                for i in range(val.shape[0]):
                    itm = listbase.addChildNode(six.b('ListItem'))
                    itm.addAttribute(< string > six.b('index'), < float32 > index)
                    itm.addAttribute(< string > six.b('value'), < float32 > val[i])
                    index += 1
                    del itm
            else:
                raise Exception("Only 1 or 2 dimensions are allowed")
            del listbase
        elif isinstance(val, dict):
            if item == six.b('option') or item == six.b('options') or item == six.b('Option') or item == six.b('Options'):
                readOptions(root, val)
            else:
                itm = root.addChildNode(item)
                readDict(itm, val)
                del itm
        else:
            if item == six.b('type'):
                root.addAttribute(< string > six.b('type'), <string> wrap_to_bytes(val))
            else:
                itm = root.addChildNode(item, wrap_to_bytes(val))
                del itm

cdef void readOptions(XMLNode * node, dc):
    cdef XMLNode * listbase
    cdef XMLNode * itm
    cdef int i
    cdef int j
    for item in dc:
        val = dc[item]
        if node.hasOption(item):
            raise Exception('Duplicate Option: %s' % item)
        if isinstance(val, np.ndarray):
            if val.size == 0:
                break
            listbase = node.addChildNode(six.b('Option'))
            listbase.addAttribute(< string > six.b('key'), < string > item)
            listbase.addAttribute(< string > six.b('listsize'), < float32 > val.size)
            index = 0
            if val.ndim == 2:
                for i in range(val.shape[0]):
                    for j in range(val.shape[1]):
                        itm = listbase.addChildNode(six.b('ListItem'))
                        itm.addAttribute(< string > six.b('index'), < float32 > index)
                        itm.addAttribute( < string > six.b('value'), < float32 > val[i, j])
                        index += 1
                        del itm
            elif val.ndim == 1:
                for i in range(val.shape[0]):
                    itm = listbase.addChildNode(six.b('ListItem'))
                    itm.addAttribute(< string > six.b('index'), < float32 > index)
                    itm.addAttribute(< string > six.b('value'), < float32 > val[i])
                    index += 1
                    del itm
            else:
                raise Exception("Only 1 or 2 dimensions are allowed")
            del listbase
        else:
            node.addOption(item, wrap_to_bytes(val))

cdef vectorToNumpy(vector[float32] inp):
    cdef int i
    cdef int sz = inp.size()
    ret = np.empty(sz)
    for i in range(sz):
        ret[i] = inp[i]
    return ret

cdef XMLNode2dict(XMLNode * node):
    cdef XMLNode * subnode
    cdef list[XMLNode * ] nodes
    cdef list[XMLNode * ].iterator it
    dct = {}
    if node.hasAttribute(six.b('type')):
        dct['type'] = node.getAttribute(six.b('type'))
    nodes = node.getNodes()
    it = nodes.begin()
    while it != nodes.end():
        subnode = deref(it)
        if subnode.hasAttribute(six.b('listsize')):
            dct[subnode.getName(
                )] = vectorToNumpy(subnode.getContentNumericalArray())
        else:
            dct[subnode.getName()] = subnode.getContent()
        del subnode
    return dct

cdef XML2dict(XMLDocument * xml):
    cdef XMLNode * node = xml.getRootNode()
    dct = XMLNode2dict(node)
    del node;
    return dct;

cdef createProjectionGeometryStruct(CProjectionGeometry2D * geom):
    cdef int i
    cdef CFanFlatVecProjectionGeometry2D * fanvecGeom
    # cdef SFanProjection* p
    dct = {}
    dct['DetectorCount'] = geom.getDetectorCount()
    if not geom.isOfType(< string > six.b('fanflat_vec')):
        dct['DetectorWidth'] = geom.getDetectorWidth()
        angles = np.empty(geom.getProjectionAngleCount())
        for i in range(geom.getProjectionAngleCount()):
            angles[i] = geom.getProjectionAngle(i)
        dct['ProjectionAngles'] = angles
    else:
        raise Exception("Not yet implemented")
        # fanvecGeom = <CFanFlatVecProjectionGeometry2D*> geom
        # vecs = np.empty(fanvecGeom.getProjectionAngleCount()*6)
        # iDetCount = pVecGeom.getDetectorCount()
        # for i in range(fanvecGeom.getProjectionAngleCount()):
        #	p = &fanvecGeom.getProjectionVectors()[i];
        #	out[6*i + 0] = p.fSrcX
        #	out[6*i + 1] = p.fSrcY
        #	out[6*i + 2] = p.fDetSX + 0.5f*iDetCount*p.fDetUX
        #	out[6*i + 3] = p.fDetSY + 0.5f*iDetCount*p.fDetUY
        #	out[6*i + 4] = p.fDetUX
        #	out[6*i + 5] = p.fDetUY
        # dct['Vectors'] = vecs
    if (geom.isOfType(< string > six.b('parallel'))):
        dct["type"] = "parallel"
    elif (geom.isOfType(< string > six.b('fanflat'))):
        raise Exception("Not yet implemented")
        # astra::CFanFlatProjectionGeometry2D* pFanFlatGeom = dynamic_cast<astra::CFanFlatProjectionGeometry2D*>(_pProjGeom)
        # mGeometryInfo["DistanceOriginSource"] = mxCreateDoubleScalar(pFanFlatGeom->getOriginSourceDistance())
        # mGeometryInfo["DistanceOriginDetector"] =
        # mxCreateDoubleScalar(pFanFlatGeom->getOriginDetectorDistance())
        dct["type"] = "fanflat"
    elif (geom.isOfType(< string > six.b('sparse_matrix'))):
        raise Exception("Not yet implemented")
        # astra::CSparseMatrixProjectionGeometry2D* pSparseMatrixGeom =
        # dynamic_cast<astra::CSparseMatrixProjectionGeometry2D*>(_pProjGeom);
        dct["type"] = "sparse_matrix"
        # dct["MatrixID"] =
        # mxCreateDoubleScalar(CMatrixManager::getSingleton().getIndex(pSparseMatrixGeom->getMatrix()))
    elif(geom.isOfType(< string > six.b('fanflat_vec'))):
        dct["type"] = "fanflat_vec"
    return dct

cdef createVolumeGeometryStruct(CVolumeGeometry2D * geom):
    mGeometryInfo = {}
    mGeometryInfo["GridColCount"] = geom.getGridColCount()
    mGeometryInfo["GridRowCount"] = geom.getGridRowCount()

    mGeometryOptions = {}
    mGeometryOptions["WindowMinX"] = geom.getWindowMinX()
    mGeometryOptions["WindowMaxX"] = geom.getWindowMaxX()
    mGeometryOptions["WindowMinY"] = geom.getWindowMinY()
    mGeometryOptions["WindowMaxY"] = geom.getWindowMaxY()

    mGeometryInfo["option"] = mGeometryOptions
    return mGeometryInfo