/* ----------------------------------------------------------------------- Copyright: 2010-2015, iMinds-Vision Lab, University of Antwerp 2014-2015, CWI, Amsterdam Contact: astra@uantwerpen.be Website: http://sf.net/projects/astra-toolbox This file is part of the ASTRA Toolbox. The ASTRA Toolbox is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. The ASTRA Toolbox is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with the ASTRA Toolbox. If not, see . ----------------------------------------------------------------------- $Id$ */ template void CParallelBeamStripKernelProjector2D::project(Policy& p) { projectBlock_internal(0, m_pProjectionGeometry->getProjectionAngleCount(), 0, m_pProjectionGeometry->getDetectorCount(), p); } template void CParallelBeamStripKernelProjector2D::projectSingleProjection(int _iProjection, Policy& p) { projectBlock_internal(_iProjection, _iProjection + 1, 0, m_pProjectionGeometry->getDetectorCount(), p); } template void CParallelBeamStripKernelProjector2D::projectSingleRay(int _iProjection, int _iDetector, Policy& p) { projectBlock_internal(_iProjection, _iProjection + 1, _iDetector, _iDetector + 1, p); } //---------------------------------------------------------------------------------------- // PROJECT BLOCK // // Kernel limitations: isotropic pixels (PixelLengthX == PixelLengthY) // // For each angle/detector pair: // // Let DL=(DLx,DLy) denote the left of the detector (point) in volume coordinates, and // Let DR=(DRx,DRy) denote the right of the detector (point) in volume coordinates, and // let R=(Rx,Ry) denote the direction of the ray (vector). // // For mainly vertical rays (|Rx|<=|Ry|), // let E=(Ex,Ey) denote the centre of the most upper left pixel: // E = (WindowMinX + PixelLengthX/2, WindowMaxY - PixelLengthY/2), // and let F=(Fx,Fy) denote a vector to the next pixel // F = (PixelLengthX, 0) // // The intersection of the left edge of the strip (DL+aR) with the centre line of the upper row of pixels (E+bF) is // { DLx + a*Rx = Ex + b*Fx // { DLy + a*Ry = Ey + b*Fy // Solving for (a,b) results in: // a = (Ey + b*Fy - DLy)/Ry // = (Ey - DLy)/Ry // b = (DLx + a*Rx - Ex)/Fx // = (DLx + (Ey - DLy)*Rx/Ry - Ex)/Fx // // Define cL as the x-value of the intersection of the left edge of the strip with the upper row in pixel coordinates. // cL = b // // cR, the x-value of the intersection of the right edge of the strip with the upper row in pixel coordinates can be found similarly. // // The intersection of the ray (DL+aR) with the left line of the second row of pixels (E'+bF) with // E'=(WindowMinX + PixelLengthX/2, WindowMaxY - 3*PixelLengthY/2) // expressed in x-value pixel coordinates is // cL' = (DLx + (Ey' - DLy)*Rx/Ry - Ex)/Fx. // And thus: // deltac = cL' - cL = (DLx + (Ey' - DLy)*Rx/Ry - Ex)/Fx - (DLx + (Ey - DLy)*Rx/Ry - Ex)/Fx // = [(Ey' - DLy)*Rx/Ry - (Ey - DLy)*Rx/Ry]/Fx // = [Ey' - Ey]*(Rx/Ry)/Fx // = [Ey' - Ey]*(Rx/Ry)/Fx // = -PixelLengthY*(Rx/Ry)/Fx. // // The projection weight for a certain pixel is defined by the area between two points of // // _____ LengthPerRow // /| | |\ // / | | | \ // __/ | | | \__ 0 // -T -S 0 S T // with S = 1/2 - 1/2*|Rx/Ry|, T = 1/2 + 1/2*|Rx/Ry|, and LengthPerRow = pixelLengthX * sqrt(Rx^2+Ry^2) / |Ry| // // For a certain row, all columns that are 'hit' by this kernel lie in the interval // (col_left, col_right) = (floor(cL-1/2+S), floor(cR+3/2-S)) // // The offsets for both is // (offsetL, offsetR) = (cL - floor(col_left), cR - floor(col_left)) // // The projection weight is found by the difference between the integrated values of the kernel // offset <= -T Kernel = 0 // -T < offset <= -S Kernel = PixelArea/2*(T+offset)^2/(T-S) // -S < offset <= S Kernel = PixelArea/2 + offset // S < offset <= T Kernel = PixelArea - PixelArea/2*(T-offset)^2/(T-S) // T <= offset: Kernel = PixelArea // template void CParallelBeamStripKernelProjector2D::projectBlock_internal(int _iProjFrom, int _iProjTo, int _iDetFrom, int _iDetTo, Policy& p) { // get vector geometry const CParallelVecProjectionGeometry2D* pVecProjectionGeometry; if (dynamic_cast(m_pProjectionGeometry)) { pVecProjectionGeometry = dynamic_cast(m_pProjectionGeometry)->toVectorGeometry(); } else { pVecProjectionGeometry = dynamic_cast(m_pProjectionGeometry); } // precomputations const float32 pixelLengthX = m_pVolumeGeometry->getPixelLengthX(); const float32 pixelLengthY = m_pVolumeGeometry->getPixelLengthY(); const float32 pixelArea = pixelLengthX * pixelLengthY; const float32 inv_pixelLengthX = 1.0f / pixelLengthX; const float32 inv_pixelLengthY = 1.0f / pixelLengthY; const int colCount = m_pVolumeGeometry->getGridColCount(); const int rowCount = m_pVolumeGeometry->getGridRowCount(); const int detCount = pVecProjectionGeometry->getDetectorCount(); // loop angles #pragma omp parallel for for (int iAngle = _iProjFrom; iAngle < _iProjTo; ++iAngle) { // variables float32 DLx, DLy, DRx, DRy, Ex, Ey, S, T, deltac, deltar, offsetL, offsetR, invTminS; float32 res, RxOverRy, RyOverRx, cL, cR, rL, rR; int iVolumeIndex, iRayIndex, iDetector; int row, row_top, row_bottom, col, col_left, col_right; const SParProjection * proj = &pVecProjectionGeometry->getProjectionVectors()[iAngle]; bool vertical = fabs(proj->fRayX) < fabs(proj->fRayY); if (vertical) { RxOverRy = proj->fRayX/proj->fRayY; deltac = -m_pVolumeGeometry->getPixelLengthY() * RxOverRy * inv_pixelLengthX; S = 0.5f - 0.5f*fabs(RxOverRy); T = 0.5f + 0.5f*fabs(RxOverRy); invTminS = 1.0f / (T-S); } else { RyOverRx = proj->fRayY/proj->fRayX; deltar = -m_pVolumeGeometry->getPixelLengthX() * RyOverRx * inv_pixelLengthY; S = 0.5f - 0.5f*fabs(RyOverRx); T = 0.5f + 0.5f*fabs(RyOverRx); invTminS = 1.0f / (T-S); } Ex = m_pVolumeGeometry->getWindowMinY() + pixelLengthX*0.5f; Ey = m_pVolumeGeometry->getWindowMaxY() - pixelLengthY*0.5f; // loop detectors for (iDetector = _iDetFrom; iDetector < _iDetTo; ++iDetector) { iRayIndex = iAngle * detCount + iDetector; // POLICY: RAY PRIOR if (!p.rayPrior(iRayIndex)) continue; DLx = proj->fDetSX + iDetector * proj->fDetUX; DLy = proj->fDetSY + iDetector * proj->fDetUY; DRx = DLx + proj->fDetUX; DRy = DLy + proj->fDetUY; // vertically if (vertical) { // calculate cL and cR for row 0 cL = (DLx + (Ey - DLy)*RxOverRy - Ex) * inv_pixelLengthX; cR = (DRx + (Ey - DRy)*RxOverRy - Ex) * inv_pixelLengthX; if (cR < cL) { float32 tmp = cL; cL = cR; cR = tmp; } // loop rows for (row = 0; row < rowCount; ++row, cL += deltac, cR += deltac) { col_left = int(cL-0.5f+S); col_right = int(cR+1.5-S); if (col_left < 0) col_left = 0; if (col_right > colCount-1) col_right = colCount-1; float32 tmp = float32(col_left); offsetL = cL - tmp; offsetR = cR - tmp; // loop columns for (col = col_left; col <= col_right; ++col, offsetL -= 1.0f, offsetR -= 1.0f) { iVolumeIndex = row * colCount + col; // POLICY: PIXEL PRIOR + ADD + POSTERIOR if (p.pixelPrior(iVolumeIndex)) { // right ray edge if (T <= offsetR) res = 1.0f; else if (S < offsetR) res = 1.0f - 0.5f*(T-offsetR)*(T-offsetR)*invTminS; else if (-S < offsetR) res = 0.5f + offsetR; else if (-T < offsetR) res = 0.5f*(offsetR+T)*(offsetR+T)*invTminS; else res = 0.0f; // left ray edge if (T <= offsetL) res -= 1.0f; else if (S < offsetL) res -= 1.0f - 0.5f*(T-offsetL)*(T-offsetL)*invTminS; else if (-S < offsetL) res -= 0.5f + offsetL; else if (-T < offsetL) res -= 0.5f*(offsetL+T)*(offsetL+T)*invTminS; p.addWeight(iRayIndex, iVolumeIndex, pixelArea*res); p.pixelPosterior(iVolumeIndex); } } } } // horizontally else { // calculate rL and rR for row 0 rL = -(DLy + (Ex - DLx)*RyOverRx - Ey) * inv_pixelLengthY; rR = -(DRy + (Ex - DRx)*RyOverRx - Ey) * inv_pixelLengthY; if (rR < rL) { float32 tmp = rL; rL = rR; rR = tmp; } // loop columns for (col = 0; col < colCount; ++col, rL += deltar, rR += deltar) { row_top = int(rL-0.5f+S); row_bottom = int(rR+1.5-S); if (row_top < 0) row_top = 0; if (row_bottom > rowCount-1) row_bottom = rowCount-1; float32 tmp = float32(row_top); offsetL = rL - tmp; offsetR = rR - tmp; // loop rows for (row = row_top; row <= row_bottom; ++row, offsetL -= 1.0f, offsetR -= 1.0f) { iVolumeIndex = row * colCount + col; // POLICY: PIXEL PRIOR + ADD + POSTERIOR if (p.pixelPrior(iVolumeIndex)) { // right ray edge if (T <= offsetR) res = 1.0f; else if (S < offsetR) res = 1.0f - 0.5f*(T-offsetR)*(T-offsetR)*invTminS; else if (-S < offsetR) res = 0.5f + offsetR; else if (-T < offsetR) res = 0.5f*(offsetR+T)*(offsetR+T)*invTminS; else res = 0.0f; // left ray edge if (T <= offsetL) res -= 1.0f; else if (S < offsetL) res -= 1.0f - 0.5f*(T-offsetL)*(T-offsetL)*invTminS; else if (-S < offsetL) res -= 0.5f + offsetL; else if (-T < offsetL) res -= 0.5f*(offsetL+T)*(offsetL+T)*invTminS; p.addWeight(iRayIndex, iVolumeIndex, pixelArea*res); p.pixelPosterior(iVolumeIndex); } } } } // POLICY: RAY POSTERIOR p.rayPosterior(iRayIndex); } // end loop detector } // end loop angles if (dynamic_cast(m_pProjectionGeometry)) delete pVecProjectionGeometry; }