1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
|
/*
-----------------------------------------------------------------------
Copyright: 2010-2018, imec Vision Lab, University of Antwerp
2014-2018, CWI, Amsterdam
Contact: astra@astra-toolbox.com
Website: http://www.astra-toolbox.com/
This file is part of the ASTRA Toolbox.
The ASTRA Toolbox is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The ASTRA Toolbox is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.
-----------------------------------------------------------------------
*/
template <typename Policy>
void CFanFlatBeamStripKernelProjector2D::project(Policy& p)
{
projectBlock_internal(0, m_pProjectionGeometry->getProjectionAngleCount(),
0, m_pProjectionGeometry->getDetectorCount(), p);
}
template <typename Policy>
void CFanFlatBeamStripKernelProjector2D::projectSingleProjection(int _iProjection, Policy& p)
{
projectBlock_internal(_iProjection, _iProjection + 1,
0, m_pProjectionGeometry->getDetectorCount(), p);
}
template <typename Policy>
void CFanFlatBeamStripKernelProjector2D::projectSingleRay(int _iProjection, int _iDetector, Policy& p)
{
projectBlock_internal(_iProjection, _iProjection + 1,
_iDetector, _iDetector + 1, p);
}
//----------------------------------------------------------------------------------------
// PROJECT BLOCK
template <typename Policy>
void CFanFlatBeamStripKernelProjector2D::projectBlock_internal(int _iProjFrom, int _iProjTo, int _iDetFrom, int _iDetTo, Policy& p)
{
ASTRA_ASSERT(m_bIsInitialized);
// Some variables
float32 theta;
int row, col;
int iAngle, iDetector;
float32 res;
int x1L, x1R;
float32 x2L, x2R;
int iVolumeIndex, iRayIndex;
CFanFlatProjectionGeometry2D* projgeom = static_cast<CFanFlatProjectionGeometry2D*>(m_pProjectionGeometry);
// Other precalculations
float32 PW = m_pVolumeGeometry->getPixelLengthX();
float32 PH = m_pVolumeGeometry->getPixelLengthY();
float32 DW = m_pProjectionGeometry->getDetectorWidth();
float32 inv_PW = 1.0f / PW;
float32 inv_PH = 1.0f / PH;
// calculate alpha's
float32 alpha;
float32* cos_alpha = new float32[m_pProjectionGeometry->getDetectorCount() + 1];
float32* sin_alpha = new float32[m_pProjectionGeometry->getDetectorCount() + 1];
for (int i = 0; i < m_pProjectionGeometry->getDetectorCount() + 1; ++i) {
alpha = -atan((i - m_pProjectionGeometry->getDetectorCount()*0.5f) * DW / projgeom->getSourceDetectorDistance());
cos_alpha[i] = cos(alpha);
sin_alpha[i] = sin(alpha);
}
// loop angles
for (iAngle = _iProjFrom; iAngle < _iProjTo; ++iAngle) {
// get values
theta = m_pProjectionGeometry->getProjectionAngle(iAngle);
bool switch_t = true;
if (theta >= 7*PIdiv4) theta -= 2*PI;
if (theta >= 3*PIdiv4) {
theta -= PI;
switch_t = false;
}
// Precalculate sin, cos, 1/cos
float32 sin_theta = sin(theta);
float32 cos_theta = cos(theta);
// [-45?,45?] and [135?,225?]
if (theta < PIdiv4) {
// loop detectors
for (iDetector = _iDetFrom; iDetector < _iDetTo; ++iDetector) {
iRayIndex = iAngle * m_pProjectionGeometry->getDetectorCount() + iDetector;
// POLICY: RAY PRIOR
if (!p.rayPrior(iRayIndex)) continue;
float32 dist_srcDetPixSquared = projgeom->getSourceDetectorDistance() * projgeom->getSourceDetectorDistance() + (iDetector + 0.5f - m_pProjectionGeometry->getDetectorCount()*0.5f) * (iDetector + 0.5f - m_pProjectionGeometry->getDetectorCount()*0.5f) * DW * DW;
dist_srcDetPixSquared = dist_srcDetPixSquared * dist_srcDetPixSquared / (projgeom->getSourceDetectorDistance() * projgeom->getSourceDetectorDistance() * DW * DW);
//float32 InvRayWidthSquared = (projgeom->getSourceDetectorDistance() * projgeom->getSourceDetectorDistance()) / dist_srcDetPixSquared;
float32 sin_theta_left, cos_theta_left;
float32 sin_theta_right, cos_theta_right;
// get theta_l = alpha_left + theta and theta_r = alpha_right + theta
float32 t_l, t_r;
if (!switch_t) {
sin_theta_left = sin_theta * cos_alpha[iDetector+1] + cos_theta * sin_alpha[iDetector+1];
sin_theta_right = sin_theta * cos_alpha[iDetector] + cos_theta * sin_alpha[iDetector];
cos_theta_left = cos_theta * cos_alpha[iDetector+1] - sin_theta * sin_alpha[iDetector+1];
cos_theta_right = cos_theta * cos_alpha[iDetector] - sin_theta * sin_alpha[iDetector];
t_l = sin_alpha[iDetector+1] * projgeom->getOriginSourceDistance();
t_r = sin_alpha[iDetector] * projgeom->getOriginSourceDistance();
} else {
sin_theta_left = sin_theta * cos_alpha[iDetector] + cos_theta * sin_alpha[iDetector];
sin_theta_right = sin_theta * cos_alpha[iDetector+1] + cos_theta * sin_alpha[iDetector+1];
cos_theta_left = cos_theta * cos_alpha[iDetector] - sin_theta * sin_alpha[iDetector];
cos_theta_right = cos_theta * cos_alpha[iDetector+1] - sin_theta * sin_alpha[iDetector+1];
t_l = -sin_alpha[iDetector] * projgeom->getOriginSourceDistance();
t_r = -sin_alpha[iDetector+1] * projgeom->getOriginSourceDistance();
}
float32 inv_cos_theta_left = 1.0f / cos_theta_left;
float32 inv_cos_theta_right = 1.0f / cos_theta_right;
float32 updateX_left = sin_theta_left * inv_cos_theta_left; // tan(theta_left)
float32 updateX_right = sin_theta_right * inv_cos_theta_right; // tan(theta_right)
// Precalculate kernel limits
// BUG: If updateX_left > 1 (which can happen if theta_left >= pi/4 > theta), then T_l > U_l, and the expressions for res are no longer correct
float32 S_l = -0.5f * updateX_left;
if (S_l > 0) {S_l = -S_l;}
float32 T_l = -S_l;
float32 U_l = 1.0f + S_l;
float32 V_l = 1.0f - S_l;
float32 inv_4T_l = 0.25f / T_l;
float32 S_r = -0.5f * updateX_right;
if (S_r > 0) {S_r = -S_r;}
float32 T_r = -S_r;
float32 U_r = 1.0f + S_r;
float32 V_r = 1.0f - S_r;
float32 inv_4T_r = 0.25f / T_r;
// calculate strip extremes (volume coordinates)
float32 PL = (t_l - sin_theta_left * m_pVolumeGeometry->pixelRowToCenterY(0)) * inv_cos_theta_left;
float32 PR = (t_r - sin_theta_right * m_pVolumeGeometry->pixelRowToCenterY(0)) * inv_cos_theta_right;
float32 PLimitL = PL + S_l * PH;
float32 PLimitR = PR - S_r * PH;
// calculate strip extremes (pixel coordinates)
float32 XLimitL = (PLimitL - m_pVolumeGeometry->getWindowMinX()) * inv_PW;
float32 XLimitR = (PLimitR - m_pVolumeGeometry->getWindowMinX()) * inv_PW;
float32 xL = (PL - m_pVolumeGeometry->getWindowMinX()) * inv_PW;
float32 xR = (PR - m_pVolumeGeometry->getWindowMinX()) * inv_PW;
// for each row
for (row = 0; row < m_pVolumeGeometry->getGridRowCount(); ++row) {
// get strip extremes in column indices
x1L = int((XLimitL > 0.0f) ? XLimitL : XLimitL-1.0f);
x1R = int((XLimitR > 0.0f) ? XLimitR : XLimitR-1.0f);
// get coords w.r.t leftmost column hit by strip
x2L = xL - x1L;
x2R = xR - x1L;
// update strip extremes for the next row
XLimitL += updateX_left;
XLimitR += updateX_right;
xL += updateX_left;
xR += updateX_right;
float32 diffSrcYSquared;
if (switch_t)
diffSrcYSquared = m_pVolumeGeometry->pixelRowToCenterY(row) + cos_theta * projgeom->getOriginSourceDistance();
else
diffSrcYSquared = m_pVolumeGeometry->pixelRowToCenterY(row) - cos_theta * projgeom->getOriginSourceDistance();
diffSrcYSquared = diffSrcYSquared * diffSrcYSquared;
// for each affected col
for (col = x1L; col <= x1R; ++col) {
if (col < 0 || col >= m_pVolumeGeometry->getGridColCount()) { x2L -= 1.0f; x2R -= 1.0f; continue; }
iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, col);
// POLICY: PIXEL PRIOR
if (!p.pixelPrior(iVolumeIndex)) { x2L -= 1.0f; x2R -= 1.0f; continue; }
// right
if (x2R >= V_r) res = 1.0f;
else if (x2R > U_r) res = x2R - (x2R-U_r)*(x2R-U_r)*inv_4T_r;
else if (x2R >= T_r) res = x2R;
else if (x2R > S_r) res = (x2R-S_r)*(x2R-S_r) * inv_4T_r;
else { x2L -= 1.0f; x2R -= 1.0f; p.pixelPosterior(iVolumeIndex); continue; }
// left
if (x2L <= S_l) {}
else if (x2L < T_l) res -= (x2L-S_l)*(x2L-S_l) * inv_4T_l;
else if (x2L <= U_l) res -= x2L;
else if (x2L < V_l) res -= x2L - (x2L-U_l)*(x2L-U_l)*inv_4T_l;
else { x2L -= 1.0f; x2R -= 1.0f; p.pixelPosterior(iVolumeIndex); continue; }
float32 diffSrcX;
if (switch_t)
diffSrcX = m_pVolumeGeometry->pixelColToCenterX(col) - sin_theta * projgeom->getOriginSourceDistance();
else
diffSrcX = m_pVolumeGeometry->pixelColToCenterX(col) + sin_theta * projgeom->getOriginSourceDistance();
float32 scale = sqrt(dist_srcDetPixSquared / (diffSrcYSquared + diffSrcX * diffSrcX));
// POLICY: ADD
p.addWeight(iRayIndex, iVolumeIndex, PW*PH * res * scale);
// POLICY: PIXEL POSTERIOR
p.pixelPosterior(iVolumeIndex);
x2L -= 1.0f;
x2R -= 1.0f;
} // end col loop
} // end row loop
// POLICY: RAY POSTERIOR
p.rayPosterior(iRayIndex);
} // end detector loop
// [45?,135?] and [225?,315?]
// horizontaly
} else {
// loop detectors
for (iDetector = _iDetFrom; iDetector < _iDetTo; ++iDetector) {
iRayIndex = iAngle * m_pProjectionGeometry->getDetectorCount() + iDetector;
// POLICY: RAY PRIOR
if (!p.rayPrior(iRayIndex)) continue;
float32 dist_srcDetPixSquared = projgeom->getSourceDetectorDistance() * projgeom->getSourceDetectorDistance() + (iDetector + 0.5f - m_pProjectionGeometry->getDetectorCount()*0.5f) * (iDetector + 0.5f - m_pProjectionGeometry->getDetectorCount()*0.5f) * DW * DW;
dist_srcDetPixSquared = dist_srcDetPixSquared * dist_srcDetPixSquared / (projgeom->getSourceDetectorDistance() * projgeom->getSourceDetectorDistance() * DW * DW);
// get theta_l = alpha_left + theta and theta_r = alpha_right + theta
float32 sin_theta_left, cos_theta_left;
float32 sin_theta_right, cos_theta_right;
float32 t_l, t_r;
if (!switch_t) {
sin_theta_left = sin_theta * cos_alpha[iDetector] + cos_theta * sin_alpha[iDetector];
sin_theta_right = sin_theta * cos_alpha[iDetector+1] + cos_theta * sin_alpha[iDetector+1];
cos_theta_left = cos_theta * cos_alpha[iDetector] - sin_theta * sin_alpha[iDetector];
cos_theta_right = cos_theta * cos_alpha[iDetector+1] - sin_theta * sin_alpha[iDetector+1];
t_l = sin_alpha[iDetector] * projgeom->getOriginSourceDistance();
t_r = sin_alpha[iDetector+1] * projgeom->getOriginSourceDistance();
} else {
sin_theta_left = sin_theta * cos_alpha[iDetector+1] + cos_theta * sin_alpha[iDetector+1];
sin_theta_right = sin_theta * cos_alpha[iDetector] + cos_theta * sin_alpha[iDetector];
cos_theta_left = cos_theta * cos_alpha[iDetector+1] - sin_theta * sin_alpha[iDetector+1];
cos_theta_right = cos_theta * cos_alpha[iDetector] - sin_theta * sin_alpha[iDetector];
t_l = -sin_alpha[iDetector+1] * projgeom->getOriginSourceDistance();
t_r = -sin_alpha[iDetector] * projgeom->getOriginSourceDistance();
}
float32 inv_sin_theta_left = 1.0f / sin_theta_left;
float32 inv_sin_theta_right = 1.0f / sin_theta_right;
float32 updateX_left = cos_theta_left * inv_sin_theta_left;
float32 updateX_right = cos_theta_right * inv_sin_theta_right;
// Precalculate kernel limits
// BUG: If updateX_left > 1 (which can happen if theta_left < pi/4 <= theta), then T_l > U_l, and the expressions for res are no longer correct
float32 S_l = -0.5f * updateX_left;
if (S_l > 0) { S_l = -S_l; }
float32 T_l = -S_l;
float32 U_l = 1.0f + S_l;
float32 V_l = 1.0f - S_l;
float32 inv_4T_l = 0.25f / T_l;
float32 S_r = -0.5f * updateX_right;
if (S_r > 0) { S_r = -S_r; }
float32 T_r = -S_r;
float32 U_r = 1.0f + S_r;
float32 V_r = 1.0f - S_r;
float32 inv_4T_r = 0.25f / T_r;
// calculate strip extremes (volume coordinates)
float32 PL = (t_l - cos_theta_left * m_pVolumeGeometry->pixelColToCenterX(0)) * inv_sin_theta_left;
float32 PR = (t_r - cos_theta_right * m_pVolumeGeometry->pixelColToCenterX(0)) * inv_sin_theta_right;
float32 PLimitL = PL - S_l * PW;
float32 PLimitR = PR + S_r * PW;
// calculate strip extremes (pixel coordinates)
float32 XLimitL = (m_pVolumeGeometry->getWindowMaxY() - PLimitL) * inv_PH;
float32 XLimitR = (m_pVolumeGeometry->getWindowMaxY() - PLimitR) * inv_PH;
float32 xL = (m_pVolumeGeometry->getWindowMaxY() - PL) * inv_PH;
float32 xR = (m_pVolumeGeometry->getWindowMaxY() - PR) * inv_PH;
// for each col
for (col = 0; col < m_pVolumeGeometry->getGridColCount(); ++col) {
// get strip extremes in column indices
x1L = int((XLimitL > 0.0f) ? XLimitL : XLimitL-1.0f);
x1R = int((XLimitR > 0.0f) ? XLimitR : XLimitR-1.0f);
// get coords w.r.t leftmost column hit by strip
x2L = xL - x1L;
x2R = xR - x1L;
// update strip extremes for the next row
XLimitL += updateX_left;
XLimitR += updateX_right;
xL += updateX_left;
xR += updateX_right;
float32 diffSrcXSquared;
if (switch_t)
diffSrcXSquared = m_pVolumeGeometry->pixelColToCenterX(col) - sin_theta * projgeom->getOriginSourceDistance();
else
diffSrcXSquared = m_pVolumeGeometry->pixelColToCenterX(col) + sin_theta * projgeom->getOriginSourceDistance();
diffSrcXSquared = diffSrcXSquared * diffSrcXSquared;
// for each affected row
for (row = x1L; row <= x1R; ++row) {
if (row < 0 || row >= m_pVolumeGeometry->getGridRowCount()) { x2L -= 1.0f; x2R -= 1.0f; continue; }
iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, col);
// POLICY: PIXEL PRIOR
if (!p.pixelPrior(iVolumeIndex)) { x2L -= 1.0f; x2R -= 1.0f; continue; }
// right
if (x2R >= V_r) res = 1.0f;
else if (x2R > U_r) res = x2R - (x2R-U_r)*(x2R-U_r)*inv_4T_r;
else if (x2R >= T_r) res = x2R;
else if (x2R > S_r) res = (x2R-S_r)*(x2R-S_r) * inv_4T_r;
else { x2L -= 1.0f; x2R -= 1.0f; p.pixelPosterior(iVolumeIndex); continue; }
// left
if (x2L <= S_l) {}
else if (x2L < T_l) res -= (x2L-S_l)*(x2L-S_l) * inv_4T_l;
else if (x2L <= U_l) res -= x2L;
else if (x2L < V_l) res -= x2L - (x2L-U_l)*(x2L-U_l)*inv_4T_l;
else { x2L -= 1.0f; x2R -= 1.0f; p.pixelPosterior(iVolumeIndex); continue; }
float32 diffSrcY;
if (switch_t)
diffSrcY = m_pVolumeGeometry->pixelRowToCenterY(row) + cos_theta * projgeom->getOriginSourceDistance();
else
diffSrcY = m_pVolumeGeometry->pixelRowToCenterY(row) - cos_theta * projgeom->getOriginSourceDistance();
float32 scale = sqrt(dist_srcDetPixSquared / (diffSrcXSquared + diffSrcY * diffSrcY));
// POLICY: ADD
p.addWeight(iRayIndex, iVolumeIndex, PW*PH * res * scale);
// POLICY: PIXEL POSTERIOR
p.pixelPosterior(iVolumeIndex);
x2L -= 1.0f;
x2R -= 1.0f;
} // end col loop
} // end row loop
// POLICY: RAY POSTERIOR
p.rayPosterior(iRayIndex);
} // end detector loop
} // end theta switch
} // end angle loop
delete[] cos_alpha;
delete[] sin_alpha;
}
|