summaryrefslogtreecommitdiffstats
path: root/python/astra/operator.py
blob: a3abd5ae76524307106bd5c9cf82940aba2180ff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#-----------------------------------------------------------------------
#Copyright 2013 Centrum Wiskunde & Informatica, Amsterdam
#
#Author: Daniel M. Pelt
#Contact: D.M.Pelt@cwi.nl
#Website: http://dmpelt.github.io/pyastratoolbox/
#
#
#This file is part of the Python interface to the
#All Scale Tomographic Reconstruction Antwerp Toolbox ("ASTRA Toolbox").
#
#The Python interface to the ASTRA Toolbox is free software: you can redistribute it and/or modify
#it under the terms of the GNU General Public License as published by
#the Free Software Foundation, either version 3 of the License, or
#(at your option) any later version.
#
#The Python interface to the ASTRA Toolbox is distributed in the hope that it will be useful,
#but WITHOUT ANY WARRANTY; without even the implied warranty of
#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
#GNU General Public License for more details.
#
#You should have received a copy of the GNU General Public License
#along with the Python interface to the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.
#
#-----------------------------------------------------------------------

from . import data2d
from . import data3d
from . import projector
from . import projector3d
from . import creators
from . import algorithm
from . import functions
import numpy as np
from six.moves import range, reduce
import operator
import scipy.sparse.linalg

class OpTomo(scipy.sparse.linalg.LinearOperator):
    """Object that imitates a projection matrix with a given projector.

    This object can do forward projection by using the ``*`` operator::

        W = astra.OpTomo(proj_id)
        fp = W*image
        bp = W.T*sinogram

    It can also be used in minimization methods of the :mod:`scipy.sparse.linalg` module::

        W = astra.OpTomo(proj_id)
        output = scipy.sparse.linalg.lsqr(W,sinogram)

    :param proj_id: ID to a projector.
    :type proj_id: :class:`int`
    """

    def __init__(self,proj_id):
        self.dtype = np.float32
        try:
            self.vg = projector.volume_geometry(proj_id)
            self.pg = projector.projection_geometry(proj_id)
            self.data_mod = data2d
            self.appendString = ""
            if projector.is_cuda(proj_id):
                self.appendString += "_CUDA"
        except Exception:
            self.vg = projector3d.volume_geometry(proj_id)
            self.pg = projector3d.projection_geometry(proj_id)
            self.data_mod = data3d
            self.appendString = "3D"
            if projector3d.is_cuda(proj_id):
                self.appendString += "_CUDA"

        self.vshape = functions.geom_size(self.vg)
        self.vsize = reduce(operator.mul,self.vshape)
        self.sshape = functions.geom_size(self.pg)
        self.ssize = reduce(operator.mul,self.sshape)

        self.shape = (self.ssize, self.vsize)

        self.proj_id = proj_id

        self.T = OpTomoTranspose(self)

    def __checkArray(self, arr, shp):
        if len(arr.shape)==1:
            arr = arr.reshape(shp)
        if arr.dtype != np.float32:
            arr = arr.astype(np.float32)
        if arr.flags['C_CONTIGUOUS']==False:
            arr = np.ascontiguousarray(arr)
        return arr

    def matvec(self,v):
        """Implements the forward operator.

        :param v: Volume to forward project.
        :type v: :class:`numpy.ndarray`
        """
        v = self.__checkArray(v, self.vshape)
        vid = self.data_mod.link('-vol',self.vg,v)
        s = np.zeros(self.sshape,dtype=np.float32)
        sid = self.data_mod.link('-sino',self.pg,s)

        cfg = creators.astra_dict('FP'+self.appendString)
        cfg['ProjectionDataId'] = sid
        cfg['VolumeDataId'] = vid
        cfg['ProjectorId'] = self.proj_id
        fp_id = algorithm.create(cfg)
        algorithm.run(fp_id)

        algorithm.delete(fp_id)
        self.data_mod.delete([vid,sid])
        return s.flatten()

    def rmatvec(self,s):
        """Implements the transpose operator.

        :param s: The projection data.
        :type s: :class:`numpy.ndarray`
        """
        s = self.__checkArray(s, self.sshape)
        sid = self.data_mod.link('-sino',self.pg,s)
        v = np.zeros(self.vshape,dtype=np.float32)
        vid = self.data_mod.link('-vol',self.vg,v)

        cfg = creators.astra_dict('BP'+self.appendString)
        cfg['ProjectionDataId'] = sid
        cfg['ReconstructionDataId'] = vid
        cfg['ProjectorId'] = self.proj_id
        bp_id = algorithm.create(cfg)
        algorithm.run(bp_id)

        algorithm.delete(bp_id)
        self.data_mod.delete([vid,sid])
        return v.flatten()

    def matmat(self,m):
        """Implements the forward operator with a matrix.

        :param m: Volumes to forward project, arranged in columns.
        :type m: :class:`numpy.ndarray`
        """
        out = np.zeros((self.ssize,m.shape[1]),dtype=np.float32)
        for i in range(m.shape[1]):
            out[:,i] = self.matvec(m[:,i].flatten())
        return out

    def __mul__(self,v):
        """Provides easy forward operator by *.

        :param v: Volume to forward project.
        :type v: :class:`numpy.ndarray`
        """
        return self.matvec(v)

    def reconstruct(self, method, s, iterations=1, extraOptions = {}):
        """Reconstruct an object.

        :param method: Method to use for reconstruction.
        :type method: :class:`string`
        :param s: The projection data.
        :type s: :class:`numpy.ndarray`
        :param iterations: Number of iterations to use.
        :type iterations: :class:`int`
        :param extraOptions: Extra options to use during reconstruction (i.e. for cfg['option']).
        :type extraOptions: :class:`dict`
        """
        self.__checkArray(s, self.sshape)
        sid = self.data_mod.link('-sino',self.pg,s)
        v = np.zeros(self.vshape,dtype=np.float32)
        vid = self.data_mod.link('-vol',self.vg,v)
        cfg = creators.astra_dict(method)
        cfg['ProjectionDataId'] = sid
        cfg['ReconstructionDataId'] = vid
        cfg['ProjectorId'] = self.proj_id
        cfg['option'] = extraOptions
        alg_id = algorithm.create(cfg)
        algorithm.run(alg_id,iterations)
        algorithm.delete(alg_id)
        self.data_mod.delete([vid,sid])
        return v

class OpTomoTranspose(scipy.sparse.linalg.LinearOperator):
    """This object provides the transpose operation (``.T``) of the OpTomo object.

    Do not use directly, since it can be accessed as member ``.T`` of
    an :class:`OpTomo` object.
    """
    def __init__(self,parent):
        self.parent = parent
        self.dtype = np.float32
        self.shape = (parent.shape[1], parent.shape[0])

    def matvec(self, s):
        return self.parent.rmatvec(s)

    def rmatvec(self, v):
        return self.parent.matvec(v)

    def matmat(self, m):
        out = np.zeros((self.vsize,m.shape[1]),dtype=np.float32)
        for i in range(m.shape[1]):
            out[:,i] = self.matvec(m[:,i].flatten())
        return out

    def __mul__(self,v):
        return self.matvec(v)