diff options
author | Edoardo Pasca <edo.paskino@gmail.com> | 2019-10-19 21:18:47 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2019-10-19 21:18:47 +0100 |
commit | e00b88c681f0c906576c4cff0ac7db872ce5ff59 (patch) | |
tree | 658479025a3569e6635f39ba4c1705becc61b2af | |
parent | 8839dffdee7ef1fff72eb305bf09fe30917ec238 (diff) | |
download | framework-plugins-e00b88c681f0c906576c4cff0ac7db872ce5ff59.tar.gz framework-plugins-e00b88c681f0c906576c4cff0ac7db872ce5ff59.tar.bz2 framework-plugins-e00b88c681f0c906576c4cff0ac7db872ce5ff59.tar.xz framework-plugins-e00b88c681f0c906576c4cff0ac7db872ce5ff59.zip |
Revert "added FGP_dTV (#32)" (#34)
This reverts commit 8839dffdee7ef1fff72eb305bf09fe30917ec238.
-rw-r--r-- | Wrappers/Python/ccpi/plugins/regularisers.py | 45 |
1 files changed, 0 insertions, 45 deletions
diff --git a/Wrappers/Python/ccpi/plugins/regularisers.py b/Wrappers/Python/ccpi/plugins/regularisers.py index ef79231..6ed9fb2 100644 --- a/Wrappers/Python/ccpi/plugins/regularisers.py +++ b/Wrappers/Python/ccpi/plugins/regularisers.py @@ -91,51 +91,6 @@ class FGP_TV(Function): out = x.copy() out.fill(res) return out - -class FGP_dTV(Function): - def __init__(self, refdata, regularisation_parameter, iterations, - tolerance, eta_const, methodTV, nonneg, device='cpu'): - # set parameters - self.lambdaReg = regularisation_parameter - self.iterationsTV = iterations - self.tolerance = tolerance - self.methodTV = methodTV - self.nonnegativity = nonneg - self.device = device # string for 'cpu' or 'gpu' - self.refData = np.asarray(refdata.as_array(), dtype=np.float32) - self.eta = eta_const - - def __call__(self,x): - # evaluate objective function of TV gradient - EnergyValTV = TV_ENERGY(np.asarray(x.as_array(), dtype=np.float32), np.asarray(x.as_array(), dtype=np.float32), self.lambdaReg, 2) - return 0.5*EnergyValTV[0] - def proximal(self,x,tau, out=None): - pars = {'algorithm' : FGP_dTV, \ - 'input' : np.asarray(x.as_array(), dtype=np.float32),\ - 'regularization_parameter':self.lambdaReg*tau, \ - 'number_of_iterations' :self.iterationsTV ,\ - 'tolerance_constant':self.tolerance,\ - 'methodTV': self.methodTV ,\ - 'nonneg': self.nonnegativity ,\ - 'eta_const' : self.eta,\ - 'refdata':self.refData} - #inputData, refdata, regularisation_parameter, iterations, - # tolerance_param, eta_const, methodTV, nonneg, device='cpu' - res , info = regularisers.FGP_dTV(pars['input'], - pars['refdata'], - pars['regularization_parameter'], - pars['number_of_iterations'], - pars['tolerance_constant'], - pars['eta_const'], - pars['methodTV'], - pars['nonneg'], - self.device) - if out is not None: - out.fill(res) - else: - out = x.copy() - out.fill(res) - return out class SB_TV(Function): def __init__(self,lambdaReg,iterationsTV,tolerance,methodTV,printing,device): |