diff options
| -rw-r--r-- | Wrappers/Python/ccpi/plugins/regularisers.py | 12 | 
1 files changed, 6 insertions, 6 deletions
| diff --git a/Wrappers/Python/ccpi/plugins/regularisers.py b/Wrappers/Python/ccpi/plugins/regularisers.py index d8ba997..5031f4d 100644 --- a/Wrappers/Python/ccpi/plugins/regularisers.py +++ b/Wrappers/Python/ccpi/plugins/regularisers.py @@ -36,10 +36,10 @@ class ROF_TV(Function):          # evaluate objective function of TV gradient          EnergyValTV = TV_ENERGY(np.asarray(x.as_array(), dtype=np.float32), np.asarray(x.as_array(), dtype=np.float32), self.lambdaReg, 2)          return 0.5*EnergyValTV[0] -    def prox(self,x,Lipshitz): +    def prox(self,x,tau):          pars = {'algorithm' : ROF_TV, \                 'input' : np.asarray(x.as_array(), dtype=np.float32),\ -                'regularization_parameter':self.lambdaReg*Lipshitz, \ +                'regularization_parameter':self.lambdaReg*tau, \                  'number_of_iterations' :self.iterationsTV ,\                  'time_marching_parameter':self.time_marchstep} @@ -63,10 +63,10 @@ class FGP_TV(Function):          # evaluate objective function of TV gradient          EnergyValTV = TV_ENERGY(np.asarray(x.as_array(), dtype=np.float32), np.asarray(x.as_array(), dtype=np.float32), self.lambdaReg, 2)          return 0.5*EnergyValTV[0] -    def prox(self,x,Lipshitz): +    def prox(self,x,tau):          pars = {'algorithm' : FGP_TV, \                 'input' : np.asarray(x.as_array(), dtype=np.float32),\ -                'regularization_parameter':self.lambdaReg*Lipshitz, \ +                'regularization_parameter':self.lambdaReg*tau, \                  'number_of_iterations' :self.iterationsTV ,\                  'tolerance_constant':self.tolerance,\                  'methodTV': self.methodTV ,\ @@ -96,10 +96,10 @@ class SB_TV(Function):          # evaluate objective function of TV gradient          EnergyValTV = TV_ENERGY(np.asarray(x.as_array(), dtype=np.float32), np.asarray(x.as_array(), dtype=np.float32), self.lambdaReg, 2)          return 0.5*EnergyValTV[0] -    def prox(self,x,Lipshitz): +    def prox(self,x,tau):          pars = {'algorithm' : SB_TV, \                 'input' : np.asarray(x.as_array(), dtype=np.float32),\ -                'regularization_parameter':self.lambdaReg*Lipshitz, \ +                'regularization_parameter':self.lambdaReg*tau, \                  'number_of_iterations' :self.iterationsTV ,\                  'tolerance_constant':self.tolerance,\                  'methodTV': self.methodTV ,\ | 
