summaryrefslogtreecommitdiffstats
path: root/Wrappers
diff options
context:
space:
mode:
Diffstat (limited to 'Wrappers')
-rw-r--r--Wrappers/Python/wip/demo_compare_RGLTK_TV_denoising.py170
1 files changed, 170 insertions, 0 deletions
diff --git a/Wrappers/Python/wip/demo_compare_RGLTK_TV_denoising.py b/Wrappers/Python/wip/demo_compare_RGLTK_TV_denoising.py
new file mode 100644
index 0000000..b8ccea9
--- /dev/null
+++ b/Wrappers/Python/wip/demo_compare_RGLTK_TV_denoising.py
@@ -0,0 +1,170 @@
+
+from ccpi.framework import ImageData, ImageGeometry, AcquisitionGeometry, DataContainer
+from ccpi.optimisation.algs import FISTA, FBPD, CGLS
+from ccpi.optimisation.funcs import Norm2sq, ZeroFun, Norm1, TV2D
+
+from ccpi.optimisation.ops import LinearOperatorMatrix, Identity
+
+from ccpi.plugins.regularisers import _ROF_TV_, _FGP_TV_
+
+# Requires CVXPY, see http://www.cvxpy.org/
+# CVXPY can be installed in anaconda using
+# conda install -c cvxgrp cvxpy libgcc
+
+# Whether to use or omit CVXPY
+use_cvxpy = True
+if use_cvxpy:
+ from cvxpy import *
+
+import numpy as np
+import matplotlib.pyplot as plt
+
+
+# Now try 1-norm and TV denoising with FBPD, first 1-norm.
+
+# Set up phantom size NxN by creating ImageGeometry, initialising the
+# ImageData object with this geometry and empty array and finally put some
+# data into its array, and display as image.
+N = 64
+ig = ImageGeometry(voxel_num_x=N,voxel_num_y=N)
+Phantom = ImageData(geometry=ig)
+
+x = Phantom.as_array()
+x[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 0.5
+x[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 1
+
+plt.imshow(x)
+plt.title('Phantom image')
+plt.show()
+
+# Identity operator for denoising
+I = Identity()
+
+# Data and add noise
+y = I.direct(Phantom)
+np.random.seed(0)
+y.array = y.array + 0.1*np.random.randn(N, N)
+
+plt.imshow(y.array)
+plt.title('Noisy image')
+plt.show()
+
+#%% TV parameter
+lam_tv = 1.0
+
+#%% Do CVX as high quality ground truth
+if use_cvxpy:
+ # Compare to CVXPY
+
+ # Construct the problem.
+ xtv_denoise = Variable(N,N)
+ objectivetv_denoise = Minimize(0.5*sum_squares(xtv_denoise - y.array) + lam_tv*tv(xtv_denoise) )
+ probtv_denoise = Problem(objectivetv_denoise)
+
+ # The optimal objective is returned by prob.solve().
+ resulttv_denoise = probtv_denoise.solve(verbose=False,solver=SCS,eps=1e-12)
+
+ # The optimal solution for x is stored in x.value and optimal objective value
+ # is in result as well as in objective.value
+ print("CVXPY least squares plus TV solution and objective value:")
+ # print(xtv_denoise.value)
+ # print(objectivetv_denoise.value)
+
+plt.imshow(xtv_denoise.value)
+plt.title('CVX TV')
+plt.show()
+print(objectivetv_denoise.value)
+
+
+#%% THen FBPD
+
+# Data fidelity term
+f_denoise = Norm2sq(I,y,c=0.5)
+
+# Initial guess
+x_init_denoise = ImageData(np.zeros((N,N)))
+
+gtv = TV2D(lam_tv)
+gtv(gtv.op.direct(x_init_denoise))
+
+opt_tv = {'tol': 1e-4, 'iter': 10000}
+
+x_fbpdtv_denoise, itfbpdtv_denoise, timingfbpdtv_denoise, criterfbpdtv_denoise = FBPD(x_init_denoise, None, f_denoise, gtv,opt=opt_tv)
+
+
+print("CVXPY least squares plus TV solution and objective value:")
+plt.imshow(x_fbpdtv_denoise.as_array())
+plt.title('FBPD TV')
+plt.show()
+
+print(criterfbpdtv_denoise[-1])
+
+#%%
+plt.loglog([0,opt_tv['iter']], [objectivetv_denoise.value,objectivetv_denoise.value], label='CVX TV')
+plt.loglog(criterfbpdtv_denoise, label='FBPD TV')
+plt.show()
+
+#%% FISTA with ROF-TV regularisation
+g_rof = _ROF_TV_(lambdaReg = lam_tv,iterationsTV=5000,tolerance=1e-5,time_marchstep=0.01,device='cpu')
+
+xtv_rof = g_rof.prox(y,1.0)
+
+print("CCPi-RGL TV ROF:")
+plt.imshow(xtv_rof.as_array())
+plt.title('ROF TV prox')
+plt.show()
+print(g_rof(xtv_rof))
+
+#%% FISTA with FGP-TV regularisation
+g_fgp = _FGP_TV_(lambdaReg = lam_tv,iterationsTV=5000,tolerance=1e-5,methodTV=0,nonnegativity=0,printing=0,device='cpu')
+
+xtv_fgp = g_fgp.prox(y,1.0)
+
+print("CCPi-RGL TV FGP:")
+plt.imshow(xtv_fgp.as_array())
+plt.title('FGP TV prox')
+plt.show()
+print(g_fgp(xtv_fgp))
+
+# Compare all reconstruction
+clims = (-0.2,1.2)
+dlims = (-0.2,0.2)
+cols = 3
+rows = 2
+current = 1
+
+fig = plt.figure()
+a=fig.add_subplot(rows,cols,current)
+a.set_title('FBPD')
+imgplot = plt.imshow(x_fbpdtv_denoise.as_array(),vmin=clims[0],vmax=clims[1])
+plt.axis('off')
+
+current = current + 1
+a=fig.add_subplot(rows,cols,current)
+a.set_title('ROF')
+imgplot = plt.imshow(xtv_rof.as_array(),vmin=clims[0],vmax=clims[1])
+plt.axis('off')
+
+current = current + 1
+a=fig.add_subplot(rows,cols,current)
+a.set_title('FGP')
+imgplot = plt.imshow(xtv_fgp.as_array(),vmin=clims[0],vmax=clims[1])
+plt.axis('off')
+
+current = current + 1
+a=fig.add_subplot(rows,cols,current)
+a.set_title('FISTA LS+1')
+imgplot = plt.imshow(x_fbpdtv_denoise.as_array()-xtv_denoise.value,vmin=dlims[0],vmax=dlims[1])
+plt.axis('off')
+
+current = current + 1
+a=fig.add_subplot(rows,cols,current)
+a.set_title('FBPD LS+1')
+imgplot = plt.imshow(xtv_rof.as_array()-xtv_denoise.value,vmin=dlims[0],vmax=dlims[1])
+plt.axis('off')
+
+current = current + 1
+a=fig.add_subplot(rows,cols,current)
+a.set_title('FBPD TV')
+imgplot = plt.imshow(xtv_fgp.as_array()-xtv_denoise.value,vmin=dlims[0],vmax=dlims[1])
+plt.axis('off')