summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorEdoardo Pasca <edo.paskino@gmail.com>2019-04-17 10:58:53 +0100
committerGitHub <noreply@github.com>2019-04-17 10:58:53 +0100
commit37feb345eae9f3598f38b8f587be62e2107bd0f4 (patch)
tree63768f93a34d923c5e63e6d2cac117ed969c6258
parent47cc9cb955bcde34c30e11c4458e61744786478e (diff)
parent95d4a1c4e8423440a290b8ab37032680f74d6b93 (diff)
downloadframework-37feb345eae9f3598f38b8f587be62e2107bd0f4.tar.gz
framework-37feb345eae9f3598f38b8f587be62e2107bd0f4.tar.bz2
framework-37feb345eae9f3598f38b8f587be62e2107bd0f4.tar.xz
framework-37feb345eae9f3598f38b8f587be62e2107bd0f4.zip
Merge pull request #250 from vais-ral/KL
Implementation of KullbackLeibler with memopt and tests
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/KullbackLeibler.py107
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py4
-rw-r--r--Wrappers/Python/test/test_functions.py55
-rw-r--r--_config.yml1
-rwxr-xr-xdocs/Makefile19
-rwxr-xr-xdocs/make.bat35
-rwxr-xr-xdocs/source/conf.py187
-rw-r--r--docs/source/framework.rst20
-rwxr-xr-xdocs/source/index.rst23
-rwxr-xr-xdocs/source/optimisation.md113
-rw-r--r--docs/source/optimisation.rst92
11 files changed, 607 insertions, 49 deletions
diff --git a/Wrappers/Python/ccpi/optimisation/functions/KullbackLeibler.py b/Wrappers/Python/ccpi/optimisation/functions/KullbackLeibler.py
index 18af154..e7e41f7 100644
--- a/Wrappers/Python/ccpi/optimisation/functions/KullbackLeibler.py
+++ b/Wrappers/Python/ccpi/optimisation/functions/KullbackLeibler.py
@@ -19,46 +19,119 @@
import numpy
from ccpi.optimisation.functions import Function
-from ccpi.optimisation.functions.ScaledFunction import ScaledFunction
-from ccpi.framework import DataContainer, ImageData, ImageGeometry
+from ccpi.optimisation.functions.ScaledFunction import ScaledFunction
+from ccpi.framework import ImageData, ImageGeometry
+import functools
class KullbackLeibler(Function):
- def __init__(self,data,**kwargs):
+ ''' Assume that data > 0
+
+ '''
+
+ def __init__(self,data, **kwargs):
super(KullbackLeibler, self).__init__()
self.b = data
self.bnoise = kwargs.get('bnoise', 0)
- self.sum_value = self.b + self.bnoise
- if (self.sum_value.as_array()<0).any():
- self.sum_value = numpy.inf
def __call__(self, x):
+ # TODO check
+
+ self.sum_value = x + self.bnoise
+ if (self.sum_value.as_array()<0).any():
+ self.sum_value = numpy.inf
+
if self.sum_value==numpy.inf:
return numpy.inf
else:
- return numpy.sum( x.as_array() - self.b.as_array() * numpy.log(self.sum_value.as_array()))
+ tmp = self.sum_value
+ #tmp.fill( numpy.log(tmp.as_array()) )
+ self.log(tmp)
+ return (x - self.b * tmp ).sum()
+
+# return numpy.sum( x.as_array() - self.b.as_array() * numpy.log(self.sum_value.as_array()))
+ def log(self, datacontainer):
+ '''calculates the in-place log of the datacontainer'''
+ if not functools.reduce(lambda x,y: x and y>0,
+ datacontainer.as_array().ravel(), True):
+ raise ValueError('KullbackLeibler. Cannot calculate log of negative number')
+ datacontainer.fill( numpy.log(datacontainer.as_array()) )
- def gradient(self, x):
+ def gradient(self, x, out=None):
#TODO Division check
- return 1 - self.b/(x + self.bnoise)
-
- def convex_conjugate(self, x, out=None):
- pass
+ if out is None:
+ return 1 - self.b/(x + self.bnoise)
+ else:
+ x.add(self.bnoise, out=out)
+ self.b.divide(out, out=out)
+ out.subtract(1, out=out)
+ out *= -1
+
+ def convex_conjugate(self, x):
+
+ tmp = self.b/( 1 - x )
+ self.log(tmp)
+ return (self.b * ( tmp - 1 ) - self.bnoise * (x - 1)).sum()
+# return self.b * ( ImageData(numpy.log(self.b/(1-x)) - 1 )) - self.bnoise * (x - 1)
def proximal(self, x, tau, out=None):
- z = x + tau * self.bnoise
- return (z + 1) - ((z-1)**2 + 4 * tau * self.b).sqrt()
-
+ if out is None:
+ return 0.5 *( (x - self.bnoise - tau) + ( (x + self.bnoise - tau)**2 + 4*tau*self.b ) .sqrt() )
+ else:
+ tmp = 0.5 *( (x - self.bnoise - tau) +
+ ( (x + self.bnoise - tau)**2 + 4*tau*self.b ) .sqrt()
+ )
+ x.add(self.bnoise, out=out)
+ out -= tau
+ out *= out
+ tmp = self.b * (4 * tau)
+ out.add(tmp, out=out)
+ out.sqrt(out=out)
+
+ x.subtract(self.bnoise, out=tmp)
+ tmp -= tau
+
+ out += tmp
+
+ out *= 0.5
+
+
def proximal_conjugate(self, x, tau, out=None):
- pass
+
+
+ if out is None:
+ z = x + tau * self.bnoise
+ return (z + 1) - ((z-1)**2 + 4 * tau * self.b).sqrt()
+ else:
+ z_m = x + tau * self.bnoise - 1
+ self.b.multiply(4*tau, out=out)
+ z_m.multiply(z_m, out=z_m)
+ out += z_m
+ out.sqrt(out=out)
+ # z = z_m + 2
+ z_m.sqrt(out=z_m)
+ z_m += 2
+ out *= -1
+ out += z_m
+
+
+ def __rmul__(self, scalar):
+
+ ''' Multiplication of L2NormSquared with a scalar
+
+ Returns: ScaledFunction
+
+ '''
+
+ return ScaledFunction(self, scalar)
@@ -79,4 +152,4 @@ if __name__ == '__main__':
- \ No newline at end of file
+
diff --git a/Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py b/Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py
index 1946d67..2bb4ca7 100644
--- a/Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py
+++ b/Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py
@@ -93,8 +93,8 @@ class L2NormSquared(Function):
if self.b is None:
return x/(1+2*tau)
else:
- tmp = x
- tmp -= self.b
+ tmp = x.subtract(self.b)
+ #tmp -= self.b
tmp /= (1+2*tau)
tmp += self.b
return tmp
diff --git a/Wrappers/Python/test/test_functions.py b/Wrappers/Python/test/test_functions.py
index b428c12..af419c7 100644
--- a/Wrappers/Python/test/test_functions.py
+++ b/Wrappers/Python/test/test_functions.py
@@ -9,7 +9,7 @@ Created on Sat Mar 2 19:24:37 2019
import numpy as np
#from ccpi.optimisation.funcs import Function
-from ccpi.optimisation.functions import Function
+from ccpi.optimisation.functions import Function, KullbackLeibler
from ccpi.framework import DataContainer, ImageData, ImageGeometry
from ccpi.optimisation.operators import Identity
from ccpi.optimisation.operators import BlockOperator
@@ -99,6 +99,7 @@ class TestFunction(unittest.TestCase):
def test_L2NormSquared(self):
# TESTS for L2 and scalar * L2
+ print ("Test L2NormSquared")
M, N, K = 2,3,5
ig = ImageGeometry(voxel_num_x=M, voxel_num_y = N, voxel_num_z = K)
@@ -324,7 +325,7 @@ class TestFunction(unittest.TestCase):
a1 = f_no_scaled(U)
a2 = f_scaled(U)
- self.assertNumpyArrayAlmostEqual(a1.as_array(),a2.as_array())
+ self.assertNumpyArrayAlmostEqual(a1,a2)
tmp = [ el**2 for el in U.containers ]
@@ -341,32 +342,26 @@ class TestFunction(unittest.TestCase):
f_no_scaled.proximal_conjugate(U, 1, out=z3)
self.assertBlockDataContainerEqual(z3,z1)
-#
-# f1 = L2NormSq(alpha=1, b=noisy_data)
-# print(f1(noisy_data))
-#
-# f2 = L2NormSq(alpha=5, b=noisy_data).composition_with(op2)
-# print(f2(noisy_data))
-#
-# print(f1.gradient(noisy_data).as_array())
-# print(f2.gradient(noisy_data).as_array())
-##
-# print(f1.proximal(noisy_data,1).as_array())
-# print(f2.proximal(noisy_data,1).as_array())
-#
-#
-# f3 = mixed_L12Norm(alpha = 1).composition_with(op1)
-# print(f3(noisy_data))
-#
-# print(ImageData(op1.direct(noisy_data).power(2).sum(axis=0)).sqrt().sum())
-#
-# print( 5*(op2.direct(d) - noisy_data).power(2).sum(), f2(d))
-#
-# from functions import mixed_L12Norm as mixed_L12Norm_old
-#
-# print(mixed_L12Norm_old(op1,None,alpha)(noisy_data))
-
-
- #
-
+ def test_KullbackLeibler(self):
+ print ("test_KullbackLeibler")
+ N, M = 2,3
+ ig = ImageGeometry(N, M)
+ data = ig.allocate(ImageGeometry.RANDOM_INT)
+ x = ig.allocate(ImageGeometry.RANDOM_INT)
+ bnoise = ig.allocate(ImageGeometry.RANDOM_INT)
+
+ out = ig.allocate()
+
+ f = KullbackLeibler(data, bnoise=bnoise)
+
+ grad = f.gradient(x)
+ f.gradient(x, out=out)
+ numpy.testing.assert_array_equal(grad.as_array(), out.as_array())
+
+ prox = f.proximal(x,1.2)
+ f.proximal(x, 1.2, out=out)
+ numpy.testing.assert_array_equal(prox.as_array(), out.as_array())
+ proxc = f.proximal_conjugate(x,1.2)
+ f.proximal_conjugate(x, 1.2, out=out)
+ numpy.testing.assert_array_equal(proxc.as_array(), out.as_array()) \ No newline at end of file
diff --git a/_config.yml b/_config.yml
new file mode 100644
index 0000000..c741881
--- /dev/null
+++ b/_config.yml
@@ -0,0 +1 @@
+theme: jekyll-theme-slate \ No newline at end of file
diff --git a/docs/Makefile b/docs/Makefile
new file mode 100755
index 0000000..4801716
--- /dev/null
+++ b/docs/Makefile
@@ -0,0 +1,19 @@
+# Minimal makefile for Sphinx documentation
+#
+
+# You can set these variables from the command line.
+SPHINXOPTS =
+SPHINXBUILD = sphinx-build
+SOURCEDIR = source
+BUILDDIR = docs/build
+
+# Put it first so that "make" without argument is like "make help".
+help:
+ @$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
+
+.PHONY: help Makefile
+
+# Catch-all target: route all unknown targets to Sphinx using the new
+# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
+%: Makefile
+ @$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) \ No newline at end of file
diff --git a/docs/make.bat b/docs/make.bat
new file mode 100755
index 0000000..f88c76c
--- /dev/null
+++ b/docs/make.bat
@@ -0,0 +1,35 @@
+@ECHO OFF
+
+pushd %~dp0
+
+REM Command file for Sphinx documentation
+
+if "%SPHINXBUILD%" == "" (
+ set SPHINXBUILD=sphinx-build
+)
+set SOURCEDIR=source
+set BUILDDIR=docs/build
+
+if "%1" == "" goto help
+
+%SPHINXBUILD% >NUL 2>NUL
+if errorlevel 9009 (
+ echo.
+ echo.The 'sphinx-build' command was not found. Make sure you have Sphinx
+ echo.installed, then set the SPHINXBUILD environment variable to point
+ echo.to the full path of the 'sphinx-build' executable. Alternatively you
+ echo.may add the Sphinx directory to PATH.
+ echo.
+ echo.If you don't have Sphinx installed, grab it from
+ echo.http://sphinx-doc.org/
+ exit /b 1
+)
+
+%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS%
+goto end
+
+:help
+%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS%
+
+:end
+popd
diff --git a/docs/source/conf.py b/docs/source/conf.py
new file mode 100755
index 0000000..406877b
--- /dev/null
+++ b/docs/source/conf.py
@@ -0,0 +1,187 @@
+# -*- coding: utf-8 -*-
+#
+# Configuration file for the Sphinx documentation builder.
+#
+# This file does only contain a selection of the most common options. For a
+# full list see the documentation:
+# http://www.sphinx-doc.org/en/master/config
+
+# -- Path setup --------------------------------------------------------------
+
+# If extensions (or modules to document with autodoc) are in another directory,
+# add these directories to sys.path here. If the directory is relative to the
+# documentation root, use os.path.abspath to make it absolute, like shown here.
+#
+# import os
+# import sys
+# sys.path.insert(0, os.path.abspath('.'))
+
+
+# -- Project information -----------------------------------------------------
+
+project = 'CCPi-Framework'
+copyright = '2019, Edoardo Pasca'
+author = 'Edoardo Pasca'
+
+# The short X.Y version
+version = ''
+# The full version, including alpha/beta/rc tags
+release = '19.02'
+
+
+# -- General configuration ---------------------------------------------------
+
+# If your documentation needs a minimal Sphinx version, state it here.
+#
+# needs_sphinx = '1.0'
+
+# Add any Sphinx extension module names here, as strings. They can be
+# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
+# ones.
+extensions = [
+ 'sphinx.ext.autodoc',
+ 'sphinx.ext.doctest',
+ 'sphinx.ext.todo',
+ 'sphinx.ext.coverage',
+ 'sphinx.ext.mathjax',
+ 'sphinx.ext.viewcode',
+]
+
+# Add any paths that contain templates here, relative to this directory.
+templates_path = ['docstemplates']
+
+# The suffix(es) of source filenames.
+# You can specify multiple suffix as a list of string:
+#
+source_suffix = ['.rst', '.md']
+#source_suffix = '.rst'
+
+# The master toctree document.
+master_doc = 'index'
+
+# The language for content autogenerated by Sphinx. Refer to documentation
+# for a list of supported languages.
+#
+# This is also used if you do content translation via gettext catalogs.
+# Usually you set "language" from the command line for these cases.
+language = 'en'
+
+# List of patterns, relative to source directory, that match files and
+# directories to ignore when looking for source files.
+# This pattern also affects html_static_path and html_extra_path.
+exclude_patterns = []
+
+# The name of the Pygments (syntax highlighting) style to use.
+pygments_style = None
+
+
+# -- Options for HTML output -------------------------------------------------
+
+# The theme to use for HTML and HTML Help pages. See the documentation for
+# a list of builtin themes.
+#
+html_theme = 'classic'
+
+# Theme options are theme-specific and customize the look and feel of a theme
+# further. For a list of options available for each theme, see the
+# documentation.
+#
+# html_theme_options = {}
+
+# Add any paths that contain custom static files (such as style sheets) here,
+# relative to this directory. They are copied after the builtin static files,
+# so a file named "default.css" will overwrite the builtin "default.css".
+html_static_path = ['docsstatic']
+
+# Custom sidebar templates, must be a dictionary that maps document names
+# to template names.
+#
+# The default sidebars (for documents that don't match any pattern) are
+# defined by theme itself. Builtin themes are using these templates by
+# default: ``['localtoc.html', 'relations.html', 'sourcelink.html',
+# 'searchbox.html']``.
+#
+# html_sidebars = {}
+
+
+# -- Options for HTMLHelp output ---------------------------------------------
+
+# Output file base name for HTML help builder.
+htmlhelp_basename = 'CCPi-Frameworkdoc'
+
+
+# -- Options for LaTeX output ------------------------------------------------
+
+latex_elements = {
+ # The paper size ('letterpaper' or 'a4paper').
+ #
+ # 'papersize': 'letterpaper',
+
+ # The font size ('10pt', '11pt' or '12pt').
+ #
+ # 'pointsize': '10pt',
+
+ # Additional stuff for the LaTeX preamble.
+ #
+ # 'preamble': '',
+
+ # Latex figure (float) alignment
+ #
+ # 'figure_align': 'htbp',
+}
+
+# Grouping the document tree into LaTeX files. List of tuples
+# (source start file, target name, title,
+# author, documentclass [howto, manual, or own class]).
+latex_documents = [
+ (master_doc, 'CCPi-Framework.tex', 'CCPi-Framework Documentation',
+ 'Edoardo Pasca', 'manual'),
+]
+
+
+# -- Options for manual page output ------------------------------------------
+
+# One entry per manual page. List of tuples
+# (source start file, name, description, authors, manual section).
+man_pages = [
+ (master_doc, 'ccpi-framework', 'CCPi-Framework Documentation',
+ [author], 1)
+]
+
+
+# -- Options for Texinfo output ----------------------------------------------
+
+# Grouping the document tree into Texinfo files. List of tuples
+# (source start file, target name, title, author,
+# dir menu entry, description, category)
+texinfo_documents = [
+ (master_doc, 'CCPi-Framework', 'CCPi-Framework Documentation',
+ author, 'CCPi-Framework', 'One line description of project.',
+ 'Miscellaneous'),
+]
+
+
+# -- Options for Epub output -------------------------------------------------
+
+# Bibliographic Dublin Core info.
+epub_title = project
+
+# The unique identifier of the text. This can be a ISBN number
+# or the project homepage.
+#
+# epub_identifier = ''
+
+# A unique identification for the text.
+#
+# epub_uid = ''
+
+# A list of files that should not be packed into the epub file.
+epub_exclude_files = ['search.html']
+
+
+# -- Extension configuration -------------------------------------------------
+
+# -- Options for todo extension ----------------------------------------------
+
+# If true, `todo` and `todoList` produce output, else they produce nothing.
+todo_include_todos = True
diff --git a/docs/source/framework.rst b/docs/source/framework.rst
new file mode 100644
index 0000000..4da0d6a
--- /dev/null
+++ b/docs/source/framework.rst
@@ -0,0 +1,20 @@
+DataContainers and Geometry
+========================================
+|
+
+.. autoclass:: ccpi.framework.DataContainer
+ :members:
+.. autoclass:: ccpi.framework.ImageData
+ :members:
+.. autoclass:: ccpi.framework.AcquisitionData
+ :members:
+.. autoclass:: ccpi.framework.AcquisitionGeometry
+ :members:
+.. autoclass:: ccpi.framework.ImageGeometry
+ :members:
+.. autoclass:: ccpi.framework.DataProcessor
+ :members:
+
+|
+
+:ref:`Return Home <mastertoc>`
diff --git a/docs/source/index.rst b/docs/source/index.rst
new file mode 100755
index 0000000..4342bec
--- /dev/null
+++ b/docs/source/index.rst
@@ -0,0 +1,23 @@
+.. CCPi-Framework documentation master file, created by
+ sphinx-quickstart on Tue Mar 19 15:12:44 2019.
+ You can adapt this file completely to your liking, but it should at least
+ contain the root `toctree` directive.
+
+Welcome to CCPi-Framework's documentation!
+==========================================
+
+.. toctree::
+ :maxdepth: 2
+ :caption: Contents:
+ :name: mastertoc
+
+
+ framework
+ optimisation
+
+Indices and tables
+==================
+
+* :ref:`genindex`
+* :ref:`modindex`
+* :ref:`search`
diff --git a/docs/source/optimisation.md b/docs/source/optimisation.md
new file mode 100755
index 0000000..a3b9039
--- /dev/null
+++ b/docs/source/optimisation.md
@@ -0,0 +1,113 @@
+Optimisation framework
+======================
+
+This package allows rapid prototyping of optimisation-based
+reconstruction problems, i.e. defining and solving different
+optimization problems to enforce different properties on the
+reconstructed image.
+
+Firstly, it provides an object-oriented framework for defining
+mathematical operators and functions as well a collection of useful
+example operators and functions. Both smooth and non-smooth functions
+can be used.
+
+Further, it provides a number of high-level generic implementations of
+optimisation algorithms to solve genericlly formulated optimisation
+problems constructed from operator and function objects.
+
+The fundamental components are:
+
+- Operator: A class specifying a (currently linear) operator
+- Function: A class specifying mathematical functions such as a least
+ squares data fidelity.
+- Algorithm: Implementation of an iterative optimisation algorithm to
+ solve a particular generic optimisation problem. Algorithms are
+ iterable Python object which can be run in a for loop. Can be
+ stopped and warm restarted.
+
+Algorithm
+---------
+
+A number of generic algorithm implementations are provided including
+Gradient Descent CGLS and FISTA. An algorithm is designed for a
+particular generic optimisation problem accepts and number of Functions
+and/or Operators as input to define a specific instance of the generic
+optimisation problem to be solved. They are iterable objects which can
+be run in a for loop. The user can provide a stopping criterion
+different than the default max\_iteration.
+
+New algorithms can be easily created by extending the Algorithm class.
+The user is required to implement only 4 methods: set\_up, \_\_init\_\_,
+update and update\_objective.
+
+- `set_up` and `__init__` are used to configure the algorithm
+- `update` is the actual iteration updating the solution
+- `update_objective` defines how the objective is calculated.
+
+For example, the implementation of the update of the Gradient Descent
+algorithm to minimise a Function will only be:
+
+The `Algorithm` provides the infrastructure to continue iteration, to
+access the values of the objective function in subsequent iterations,
+the time for each iteration.
+
+::: {.autoclass members="" private-members="" special-members=""}
+ccpi.optimisation.algorithms.Algorithm
+:::
+
+::: {.autoclass members=""}
+ccpi.optimisation.algorithms.GradientDescent
+:::
+
+::: {.autoclass members=""}
+ccpi.optimisation.algorithms.CGLS
+:::
+
+::: {.autoclass members=""}
+ccpi.optimisation.algorithms.FISTA
+:::
+
+Operator
+--------
+
+The two most important methods are `direct` and `adjoint` methods that
+describe the result of applying the operator, and its adjoint
+respectively, onto a compatible `DataContainer` input. The output is
+another `DataContainer` object or subclass hereof. An important special
+case is to represent the tomographic forward and backprojection
+operations.
+
+::: {.autoclass members=""}
+ccpi.optimisation.operators.Operator
+:::
+
+::: {.autoclass members=""}
+ccpi.optimisation.operators.LinearOperator
+:::
+
+::: {.autoclass members=""}
+ccpi.optimisation.operators.ScaledOperator
+:::
+
+Function
+--------
+
+A `Function` represents a mathematical function of one or more inputs
+and is intended to accept `DataContainers` as input as well as any
+additional parameters.
+
+Fixed parameters can be passed in during the creation of the function
+object. The methods of the function reflect the properties of it, for
+example, if the function represented is differentiable the function
+should contain a method `gradient` which should return the gradient of
+the function evaluated at an input point. If the function is not
+differentiable but allows a simple proximal operator, the method
+`proximal` should return the proximal operator evaluated at an input
+point. The function value is evaluated by calling the function itself,
+e.g. `f(x)` for a `Function f` and input point `x`.
+
+::: {.autoclass members=""}
+ccpi.optimisation.functions.Function
+:::
+
+`Return Home <mastertoc>`{.interpreted-text role="ref"}
diff --git a/docs/source/optimisation.rst b/docs/source/optimisation.rst
new file mode 100644
index 0000000..7c1eda6
--- /dev/null
+++ b/docs/source/optimisation.rst
@@ -0,0 +1,92 @@
+Optimisation framework
+**********************
+This package allows rapid prototyping of optimisation-based reconstruction problems, i.e. defining and solving different optimization problems to enforce different properties on the reconstructed image.
+
+Firstly, it provides an object-oriented framework for defining mathematical operators and functions as well a collection of useful example operators and functions. Both smooth and non-smooth functions can be used.
+
+Further, it provides a number of high-level generic implementations of optimisation algorithms to solve genericlly formulated optimisation problems constructed from operator and function objects.
+
+The fundamental components are:
+
++ Operator: A class specifying a (currently linear) operator
++ Function: A class specifying mathematical functions such as a least squares data fidelity.
++ Algorithm: Implementation of an iterative optimisation algorithm to solve a particular generic optimisation problem. Algorithms are iterable Python object which can be run in a for loop. Can be stopped and warm restarted.
+
+Algorithm
+=========
+
+A number of generic algorithm implementations are provided including
+Gradient Descent CGLS and FISTA. An algorithm is designed for a
+particular generic optimisation problem accepts and number of
+Functions and/or Operators as input to define a specific instance of
+the generic optimisation problem to be solved.
+They are iterable objects which can be run in a for loop.
+The user can provide a stopping criterion different than the default max_iteration.
+
+New algorithms can be easily created by extending the Algorithm class. The user is required to implement only 4 methods: set_up, __init__, update and update_objective.
+
++ :code:`set_up` and :code:`__init__` are used to configure the algorithm
++ :code:`update` is the actual iteration updating the solution
++ :code:`update_objective` defines how the objective is calculated.
+
+For example, the implementation of the update of the Gradient Descent
+algorithm to minimise a Function will only be:
+
+.. code-block :: python
+
+ def update(self):
+ self.x += -self.rate * self.objective_function.gradient(self.x)
+ def update_objective(self):
+ self.loss.append(self.objective_function(self.x))
+
+The :code:`Algorithm` provides the infrastructure to continue iteration, to access the values of the objective function in subsequent iterations, the time for each iteration.
+
+.. autoclass:: ccpi.optimisation.algorithms.Algorithm
+ :members:
+ :private-members:
+ :special-members:
+.. autoclass:: ccpi.optimisation.algorithms.GradientDescent
+ :members:
+.. autoclass:: ccpi.optimisation.algorithms.CGLS
+ :members:
+.. autoclass:: ccpi.optimisation.algorithms.FISTA
+ :members:
+
+Operator
+========
+The two most important methods are :code:`direct` and :code:`adjoint`
+methods that describe the result of applying the operator, and its
+adjoint respectively, onto a compatible :code:`DataContainer` input.
+The output is another :code:`DataContainer` object or subclass
+hereof. An important special case is to represent the tomographic
+forward and backprojection operations.
+
+.. autoclass:: ccpi.optimisation.operators.Operator
+ :members:
+.. autoclass:: ccpi.optimisation.operators.LinearOperator
+ :members:
+.. autoclass:: ccpi.optimisation.operators.ScaledOperator
+ :members:
+
+Function
+========
+
+A :code:`Function` represents a mathematical function of one or more inputs
+and is intended to accept :code:`DataContainers` as input as well as any
+additional parameters.
+
+Fixed parameters can be passed in during the creation of the function object.
+The methods of the function reflect the properties of it, for example, if the function
+represented is differentiable the function should contain a method :code:`gradient`
+which should return the gradient of the function evaluated at an input point.
+If the function is not differentiable but allows a simple proximal operator,
+the method :code:`proximal` should return the proximal operator evaluated at an
+input point. The function value is evaluated by calling the function itself,
+e.g. :code:`f(x)` for a :code:`Function f` and input point :code:`x`.
+
+
+.. autoclass:: ccpi.optimisation.functions.Function
+ :members:
+
+
+:ref:`Return Home <mastertoc>`