diff options
author | Edoardo Pasca <edo.paskino@gmail.com> | 2018-01-30 17:41:15 +0000 |
---|---|---|
committer | Edoardo Pasca <edo.paskino@gmail.com> | 2018-01-30 17:41:15 +0000 |
commit | 88b14ee8048a92d5cb7de99ac237455ec4db90b6 (patch) | |
tree | 11cd99f5ccd9c7a34693f1d40061579885dc845a | |
parent | af5450ea4c3a47fca0e9917c6739f248bf3a79df (diff) | |
download | framework-88b14ee8048a92d5cb7de99ac237455ec4db90b6.tar.gz framework-88b14ee8048a92d5cb7de99ac237455ec4db90b6.tar.bz2 framework-88b14ee8048a92d5cb7de99ac237455ec4db90b6.tar.xz framework-88b14ee8048a92d5cb7de99ac237455ec4db90b6.zip |
Work in progress
-rw-r--r-- | Wrappers/Python/ccpi/framework.py | 481 | ||||
-rw-r--r-- | Wrappers/Python/conda-recipe/bld.bat | 1 | ||||
-rw-r--r-- | Wrappers/Python/test/regularizers.py | 219 |
3 files changed, 701 insertions, 0 deletions
diff --git a/Wrappers/Python/ccpi/framework.py b/Wrappers/Python/ccpi/framework.py new file mode 100644 index 0000000..5135c87 --- /dev/null +++ b/Wrappers/Python/ccpi/framework.py @@ -0,0 +1,481 @@ +# -*- coding: utf-8 -*- +# This work is part of the Core Imaging Library developed by +# Visual Analytics and Imaging System Group of the Science Technology +# Facilities Council, STFC + +# Copyright 2018 Edoardo Pasca + +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at + +# http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import abc +import numpy +import sys +from datetime import timedelta, datetime +import warnings + +if sys.version_info[0] >= 3 and sys.version_info[1] >= 4: + ABC = abc.ABC +else: + ABC = abc.ABCMeta('ABC', (), {}) + +def find_key(dic, val): + """return the key of dictionary dic given the value""" + return [k for k, v in dic.items() if v == val][0] + +class CCPiBaseClass(ABC): + def __init__(self, **kwargs): + self.acceptedInputKeywords = [] + self.pars = {} + self.debug = True + # add keyworded arguments as accepted input keywords and add to the + # parameters + for key, value in kwargs.items(): + self.acceptedInputKeywords.append(key) + #print ("key {0}".format(key)) + #self.setParameter(key.__name__=value) + self.setParameter(**{key:value}) + + def setParameter(self, **kwargs): + '''set named parameter for the reconstructor engine + + raises Exception if the named parameter is not recognized + + ''' + for key , value in kwargs.items(): + if key in self.acceptedInputKeywords: + self.pars[key] = value + else: + raise KeyError('Wrong parameter "{0}" for {1}'.format(key, + self.__class__.__name__ )) + # setParameter + + def getParameter(self, key): + if type(key) is str: + if key in self.acceptedInputKeywords: + return self.pars[key] + else: + raise KeyError('Unrecongnised parameter: {0} '.format(key) ) + elif type(key) is list: + outpars = [] + for k in key: + outpars.append(self.getParameter(k)) + return outpars + else: + raise Exception('Unhandled input {0}' .format(str(type(key)))) + #getParameter + def getParameterMap(self, key): + if type(key) is str: + if key in self.acceptedInputKeywords: + return self.pars[key] + else: + raise KeyError('Unrecongnised parameter: {0} '.format(key) ) + elif type(key) is list: + outpars = {} + for k in key: + outpars[k] = self.getParameter(k) + return outpars + else: + raise Exception('Unhandled input {0}' .format(str(type(key)))) + #getParameter + + def log(self, msg): + if self.debug: + print ("{0}: {1}".format(self.__class__.__name__, msg)) + +class DataSet(): + '''Generic class to hold data''' + + def __init__ (self, array, deep_copy=True, dimension_labels=None, + **kwargs): + '''Holds the data''' + + self.shape = numpy.shape(array) + self.number_of_dimensions = len (self.shape) + self.dimension_labels = {} + + if dimension_labels is not None and \ + len (dimension_labels) == self.number_of_dimensions: + for i in range(self.number_of_dimensions): + self.dimension_labels[i] = dimension_labels[i] + else: + for i in range(self.number_of_dimensions): + self.dimension_labels[i] = 'dimension_{0:02}'.format(i) + + if type(array) == numpy.ndarray: + if deep_copy: + self.array = array[:] + else: + self.array = array + else: + raise TypeError('Array must be NumpyArray, passed {0}'\ + .format(type(array))) + + def as_array(self, dimensions=None): + '''Returns the DataSet as Numpy Array + + Returns the pointer to the array if dimensions is not set. + If dimensions is set, it first creates a new DataSet with the subset + and then it returns the pointer to the array''' + if dimensions is not None: + return self.subset(dimensions).as_array() + return self.array + + def subset(self, dimensions=None): + '''Creates a DataSet containing a subset of self according to the + labels in dimensions''' + if dimensions is None: + return self.array.copy() + else: + # check that all the requested dimensions are in the array + # this is done by checking the dimension_labels + proceed = True + unknown_key = '' + # axis_order contains the order of the axis that the user wants + # in the output DataSet + axis_order = [] + if type(dimensions) == list: + for dl in dimensions: + if dl not in self.dimension_labels.values(): + proceed = False + unknown_key = dl + break + else: + axis_order.append(find_key(self.dimension_labels, dl)) + if not proceed: + raise KeyError('Unknown key specified {0}'.format(dl)) + + # slice away the unwanted data from the array + unwanted_dimensions = self.dimension_labels.copy() + left_dimensions = [] + for ax in sorted(axis_order): + this_dimension = unwanted_dimensions.pop(ax) + left_dimensions.append(this_dimension) + #print ("unwanted_dimensions {0}".format(unwanted_dimensions)) + #print ("left_dimensions {0}".format(left_dimensions)) + #new_shape = [self.shape[ax] for ax in axis_order] + #print ("new_shape {0}".format(new_shape)) + command = "self.array" + for i in range(self.number_of_dimensions): + if self.dimension_labels[i] in unwanted_dimensions.values(): + command = command + "[0]" + else: + command = command + "[:]" + #print ("command {0}".format(command)) + cleaned = eval(command) + # cleaned has collapsed dimensions in the same order of + # self.array, but we want it in the order stated in the + # "dimensions". + # create axes order for numpy.transpose + axes = [] + for key in dimensions: + #print ("key {0}".format( key)) + for i in range(len( left_dimensions )): + ld = left_dimensions[i] + #print ("ld {0}".format( ld)) + if ld == key: + axes.append(i) + #print ("axes {0}".format(axes)) + + cleaned = numpy.transpose(cleaned, axes).copy() + + return DataSet(cleaned , True, dimensions) + + def fill(self, array): + '''fills the internal numpy array with the one provided''' + if numpy.shape(array) != numpy.shape(self.array): + raise ValueError('Cannot fill with the provided array.' + \ + 'Expecting {0} got {1}'.format( + numpy.shape(self.array), + numpy.shape(array))) + self.array = array[:] + + + + + + +class VolumeData(DataSet): + '''DataSet for holding 2D or 3D dataset''' + def __init__(self, + array, + deep_copy=True, + dimension_labels=None, + **kwargs): + + if type(array) == DataSet: + # if the array is a DataSet get the info from there + if not ( array.number_of_dimensions == 2 or \ + array.number_of_dimensions == 3 ): + raise ValueError('Number of dimensions are not 2 or 3: {0}'\ + .format(array.number_of_dimensions)) + + DataSet.__init__(self, array.as_array(), deep_copy, + array.dimension_labels, **kwargs) + elif type(array) == numpy.ndarray: + if not ( array.ndim == 3 or array.ndim == 2 ): + raise ValueError( + 'Number of dimensions are not 3 or 2 : {0}'\ + .format(array.ndim)) + + if dimension_labels is None: + if array.ndim == 3: + dimension_labels = ['horizontal_x' , + 'horizontal_y' , + 'vertical'] + else: + dimension_labels = ['horizontal' , + 'vertical'] + + DataSet.__init__(self, array, deep_copy, dimension_labels, **kwargs) + + + # load metadata from kwargs if present + for key, value in kwargs.items(): + if (type(value) == list or type(value) == tuple) and \ + ( len (value) == 3 and len (value) == 2) : + if key == 'origin' : + self.origin = value + if key == 'spacing' : + self.spacing = value + + +class SinogramData(DataSet): + '''DataSet for holding 2D or 3D sinogram''' + def __init__(self, + array, + deep_copy=True, + dimension_labels=None, + **kwargs): + + if type(array) == DataSet: + # if the array is a DataSet get the info from there + if not ( array.number_of_dimensions == 2 or \ + array.number_of_dimensions == 3 ): + raise ValueError('Number of dimensions are not 2 or 3: {0}'\ + .format(array.number_of_dimensions)) + + DataSet.__init__(self, array.as_array(), deep_copy, + array.dimension_labels, **kwargs) + elif type(array) == numpy.ndarray: + if not ( array.ndim == 3 or array.ndim == 2 ): + raise ValueError('Number of dimensions are != 3: {0}'\ + .format(array.ndim)) + if dimension_labels is None: + if array.ndim == 3: + dimension_labels = ['angle' , + 'horizontal' , + 'vertical'] + else: + dimension_labels = ['angle' , + 'horizontal'] + DataSet.__init__(self, array, deep_copy, dimension_labels, **kwargs) + + # finally copy the instrument geometry + if 'instrument_geometry' in kwargs.keys(): + self.instrument_geometry = kwargs['instrument_geometry'] + else: + # assume it is parallel beam + pass + + +class InstrumentGeometry(CCPiBaseClass): + def __init__(self, **kwargs): + CCPiBaseClass.__init__(self, **kwargs) + + def convertToAstra(): + pass + + + +class DataSetProcessor(CCPiBaseClass): + '''Abstract class for a DataSetProcessor + + inputs: dictionary of inputs + outputs: dictionary of outputs + ''' + + def __init__(self, **inputs): + if 'hold_input' in inputs.keys(): + hold_input = inputs.pop('hold_input') + else: + hold_input = True + if 'hold_output' in inputs.keys(): + hold_output = inputs.pop('hold_output') + else: + hold_output = True + + self.number_of_inputs = len (inputs) + #pars = ['hold_output', 'hold_input'] + wargs = {} + wargs['hold_output'] = hold_output + wargs['hold_input'] = hold_input + wargs['output'] = None + + # add the hold_output and hold_input to the wargs + for key, value in wargs.items(): + if not key in inputs.keys(): + inputs[key] = value + + self.runTime = None + self.mTime = datetime.now() + + CCPiBaseClass.__init__(self, **inputs) + + def getOutput(self): + shouldRun = False + if self.runTime is None: + shouldRun = True + elif self.mTime > self.runTime: + shouldRun = True + + if self.getParameter('hold_output'): + if shouldRun: + output = self.__execute__() + self.setParameter(output=output) + return self.getParameter( 'output' ) + else: + return self.__execute__() + + def __execute__(self): + print ("__execute__") + self.runTime = datetime.now() + return self.apply() + + def apply(self): + raise NotImplementedError('The apply method is not implemented!') + + + +class AX(DataSetProcessor): + '''Example DataSetProcessor + The AXPY routines perform a vector multiplication operation defined as + + y := a*x + where: + + a is a scalar + + x a DataSet. + ''' + + def __init__(self, scalar, input_dataset, **wargs): + kwargs = {'scalar':scalar, + 'input_dataset':input_dataset, + 'output': None + } + for key, value in wargs.items(): + kwargs[key] = value + DataSetProcessor.__init__(self, **kwargs) + + + + def apply(self): + a, x = self.getParameter(['scalar' , 'input_dataset' ]) + y = DataSet( a * x.as_array() , True, + dimension_labels=x.dimension_labels ) + #self.setParameter(output_dataset=y) + return y + + + + +class PixelByPixelDataSetProcessor(DataSetProcessor): + '''Example DataSetProcessor + + This processor applies a python function to each pixel of the DataSet + + f is a python function + + x a DataSet. + ''' + + def __init__(self, pyfunc, input_dataset): + kwargs = {'pyfunc':pyfunc, + 'input_dataset':input_dataset, + 'output_dataset': None} + DataSetProcessor.__init__(self, **kwargs) + + + + def apply(self): + pyfunc, x = self.getParameter(['pyfunc' , 'input_dataset' ]) + + eval_func = numpy.frompyfunc(pyfunc,1,1) + + + y = DataSet( eval_func( x.as_array() ) , True, + dimension_labels=x.dimension_labels ) + return y + + +if __name__ == '__main__': + shape = (2,3,4,5) + size = shape[0] + for i in range(1, len(shape)): + size = size * shape[i] + #print("a refcount " , sys.getrefcount(a)) + a = numpy.asarray([i for i in range( size )]) + print("a refcount " , sys.getrefcount(a)) + a = numpy.reshape(a, shape) + print("a refcount " , sys.getrefcount(a)) + ds = DataSet(a, False, ['X', 'Y','Z' ,'W']) + print("a refcount " , sys.getrefcount(a)) + print ("ds label {0}".format(ds.dimension_labels)) + subset = ['W' ,'X'] + b = ds.subset( subset ) + print("a refcount " , sys.getrefcount(a)) + print ("b label {0} shape {1}".format(b.dimension_labels, + numpy.shape(b.as_array()))) + c = ds.subset(['Z','W','X']) + print("a refcount " , sys.getrefcount(a)) + + # Create a VolumeData sharing the array with c + volume0 = VolumeData(c.as_array(), False, dimensions = c.dimension_labels) + volume1 = VolumeData(c, False) + + print ("volume0 {0} volume1 {1}".format(id(volume0.array), + id(volume1.array))) + + # Create a VolumeData copying the array from c + volume2 = VolumeData(c.as_array(), dimensions = c.dimension_labels) + volume3 = VolumeData(c) + + print ("volume2 {0} volume3 {1}".format(id(volume2.array), + id(volume3.array))) + + # single number DataSet + sn = DataSet(numpy.asarray([1])) + + ax = AX(scalar = 2 , input_dataset=c) + #ax.apply() + print ("ax in {0} out {1}".format(c.as_array().flatten(), + ax.getOutput().as_array().flatten())) + axm = AX(hold_output=False, scalar = 0.5 , input_dataset=ax.getOutput()) + #axm.apply() + print ("axm in {0} out {1}".format(c.as_array(), axm.getOutput().as_array())) + + # create a PixelByPixelDataSetProcessor + + #define a python function which will take only one input (the pixel value) + pyfunc = lambda x: -x if x > 20 else x + clip = PixelByPixelDataSetProcessor(pyfunc,c) + #clip.apply() + + print ("clip in {0} out {1}".format(c.as_array(), clip.getOutput().as_array())) + + + # pipeline +# Pipeline +# Pipeline.setProcessor(0, ax) +# Pipeline.setProcessor(1, axm) +# Pipeline.execute() +
\ No newline at end of file diff --git a/Wrappers/Python/conda-recipe/bld.bat b/Wrappers/Python/conda-recipe/bld.bat index 2f090eb..4b4c7f5 100644 --- a/Wrappers/Python/conda-recipe/bld.bat +++ b/Wrappers/Python/conda-recipe/bld.bat @@ -6,4 +6,5 @@ exit 1 ROBOCOPY /E "%RECIPE_DIR%\.." "%SRC_DIR%" %PYTHON% setup.py build_py +%PYTHON% setup.py install if errorlevel 1 exit 1 diff --git a/Wrappers/Python/test/regularizers.py b/Wrappers/Python/test/regularizers.py new file mode 100644 index 0000000..003340c --- /dev/null +++ b/Wrappers/Python/test/regularizers.py @@ -0,0 +1,219 @@ +# -*- coding: utf-8 -*- +""" +Created on Tue Jan 30 16:19:03 2018 + +@author: ofn77899 +""" + +import matplotlib.pyplot as plt +import numpy as np +import os +from enum import Enum +import timeit +from ccpi.filters.cpu_regularizers_boost import SplitBregman_TV , FGP_TV ,\ + LLT_model, PatchBased_Regul ,\ + TGV_PD +from ccpi.framework import DataSetProcessor, DataSet + +class SplitBregmanTVRegularizer(DataSetProcessor): + '''Regularizers DataSetProcessor + ''' + + + + def __init__(self, input , regularization_parameter , number_of_iterations = 35 ,\ + tolerance_constant = 0.0001 , TV_penalty= 0, **wargs): + kwargs = {'regularization_parameter':regularization_parameter, + 'number_of_iterations':number_of_iterations, + 'tolerance_constant':tolerance_constant, + 'TV_penalty':TV_penalty, + 'input' : input, + 'output': None + } + for key, value in wargs.items(): + kwargs[key] = value + DataSetProcessor.__init__(self, **kwargs) + + + + def apply(self): + pars = self.getParameterMap(['input' , 'regularization_parameter' , + 'number_of_iterations', 'tolerance_constant' , + 'TV_penalty' ]) + + out = SplitBregman_TV (pars['input'].as_array(), pars['regularization_parameter'], + pars['number_of_iterations'], + pars['tolerance_constant'], + pars['TV_penalty']) + print (type(out)) + y = DataSet( out[0] , False ) + #self.setParameter(output_dataset=y) + return y + +class FGPTVRegularizer(DataSetProcessor): + '''Regularizers DataSetProcessor + ''' + + + + def __init__(self, input , regularization_parameter , number_of_iterations = 35 ,\ + tolerance_constant = 0.0001 , TV_penalty= 0, **wargs): + kwargs = {'regularization_parameter':regularization_parameter, + 'number_of_iterations':number_of_iterations, + 'tolerance_constant':tolerance_constant, + 'TV_penalty':TV_penalty, + 'input' : input, + 'output': None + } + for key, value in wargs.items(): + kwargs[key] = value + DataSetProcessor.__init__(self, **kwargs) + + + + def apply(self): + + pars = self.getParameterMap(['input' , 'regularization_parameter' , + 'number_of_iterations', 'tolerance_constant' , + 'TV_penalty' ]) + + if issubclass(type(pars['input']) , DataSetProcessor): + pars['input'] = pars['input'].getOutput() + + out = FGP_TV (pars['input'].as_array(), + pars['regularization_parameter'], + pars['number_of_iterations'], + pars['tolerance_constant'], + pars['TV_penalty']) + y = DataSet( out[0] , False ) + #self.setParameter(output_dataset=y) + return y + + def chain(self, other): + if issubclass(type(other) , DataSetProcessor): + self.setParameter(input = other.getOutput()[0]) + + +if __name__ == '__main__': + filename = os.path.join(".." , ".." , ".." , ".." , + "CCPi-FISTA_Reconstruction", "data" , + "lena_gray_512.tif") + Im = plt.imread(filename) + Im = np.asarray(Im, dtype='float32') + + perc = 0.15 + u0 = Im + np.random.normal(loc = Im , + scale = perc * Im , + size = np.shape(Im)) + # map the u0 u0->u0>0 + f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) + u0 = f(u0).astype('float32') + + lena = DataSet(u0, False, ['X','Y']) + + ## plot + fig = plt.figure() + + a=fig.add_subplot(2,3,1) + a.set_title('noise') + imgplot = plt.imshow(u0#,cmap="gray" + ) + + reg_output = [] + ############################################################################## + # Call regularizer + + ####################### SplitBregman_TV ##################################### + # u = SplitBregman_TV(single(u0), 10, 30, 1e-04); + + start_time = timeit.default_timer() + pars = {'algorithm' : SplitBregman_TV , \ + 'input' : lena, + 'regularization_parameter':40 , \ + 'number_of_iterations' :350 ,\ + 'tolerance_constant':0.01 , \ + 'TV_penalty': 0 + } + + + reg = SplitBregmanTVRegularizer(pars['input'], + pars['regularization_parameter'], + pars['number_of_iterations'], + pars['tolerance_constant'], + pars['TV_penalty'], + hold_input=False, hold_output=True) + splitbregman = reg.getOutput() + + #txtstr = printParametersToString(pars) + #txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) + #print (txtstr) + + + a=fig.add_subplot(2,3,2) + + + # these are matplotlib.patch.Patch properties + props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) + # place a text box in upper left in axes coords + a.text(0.05, 0.95, 'SplitBregman', transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) + imgplot = plt.imshow(splitbregman.as_array(),\ + #cmap="gray" + ) + pars = {'algorithm' : FGP_TV , \ + 'input' : lena, + 'regularization_parameter':5e-5, \ + 'number_of_iterations' :10 ,\ + 'tolerance_constant':0.001,\ + 'TV_penalty': 0 +} + reg2 = FGPTVRegularizer(pars['input'], + pars['regularization_parameter'], + pars['number_of_iterations'], + pars['tolerance_constant'], + pars['TV_penalty'], + hold_input=False, hold_output=True) + fgp = reg2.getOutput() + + #txtstr = printParametersToString(pars) + #txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) + #print (txtstr) + + + a=fig.add_subplot(2,3,3) + + + # these are matplotlib.patch.Patch properties + props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) + # place a text box in upper left in axes coords + a.text(0.05, 0.95, 'FGPTV', transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) + imgplot = plt.imshow(fgp.as_array(),\ + #cmap="gray" + ) + + reg3 = FGPTVRegularizer(reg, + pars['regularization_parameter'], + pars['number_of_iterations'], + pars['tolerance_constant'], + pars['TV_penalty'], + hold_input=False, hold_output=True) + chain = reg3.getOutput() + + #txtstr = printParametersToString(pars) + #txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) + #print (txtstr) + + + a=fig.add_subplot(2,3,4) + + + # these are matplotlib.patch.Patch properties + props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) + # place a text box in upper left in axes coords + a.text(0.05, 0.95, 'chain', transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) + imgplot = plt.imshow(chain.as_array(),\ + #cmap="gray" + ) + plt.show()
\ No newline at end of file |