diff options
author | Jakob Jorgensen, WS at HMXIF <jakob.jorgensen@manchester.ac.uk> | 2018-07-31 22:37:51 +0100 |
---|---|---|
committer | Jakob Jorgensen, WS at HMXIF <jakob.jorgensen@manchester.ac.uk> | 2018-07-31 22:37:51 +0100 |
commit | 2341ba146f16e79b097f55b1efa281bc06eef472 (patch) | |
tree | 8bc9dd93ca80f3ac94d3c8f175345941d10c4030 /Wrappers/Python | |
parent | df5b9b9f93d0dd666d571be6ce2f7afd864fbbf4 (diff) | |
download | framework-2341ba146f16e79b097f55b1efa281bc06eef472.tar.gz framework-2341ba146f16e79b097f55b1efa281bc06eef472.tar.bz2 framework-2341ba146f16e79b097f55b1efa281bc06eef472.tar.xz framework-2341ba146f16e79b097f55b1efa281bc06eef472.zip |
Added IMAT white-beam demo loading summed fits files
Diffstat (limited to 'Wrappers/Python')
-rw-r--r-- | Wrappers/Python/wip/demo_imat_whitebeam.py | 128 |
1 files changed, 128 insertions, 0 deletions
diff --git a/Wrappers/Python/wip/demo_imat_whitebeam.py b/Wrappers/Python/wip/demo_imat_whitebeam.py new file mode 100644 index 0000000..af3d568 --- /dev/null +++ b/Wrappers/Python/wip/demo_imat_whitebeam.py @@ -0,0 +1,128 @@ +# This script demonstrates how to load IMAT fits data +# into the CIL optimisation framework and run reconstruction methods. +# +# This demo loads the summedImg files which are the non-spectral images +# resulting from summing projections over all spectral channels. + +# needs dxchange: conda install -c conda-forge dxchange +# needs astropy: conda install astropy + + +# All third-party imports. +import numpy +from scipy.io import loadmat +import matplotlib.pyplot as plt +from dxchange.reader import read_fits + +# All own imports. +from ccpi.framework import AcquisitionData, AcquisitionGeometry, ImageGeometry, ImageData +from ccpi.astra.ops import AstraProjectorSimple, AstraProjector3DSimple +from ccpi.optimisation.algs import CGLS, FISTA +from ccpi.optimisation.funcs import Norm2sq, Norm1 + +# Load and display a couple of summed projection as examples +pathname0 = '/media/jakob/050d8d45-fab3-4285-935f-260e6c5f162c1/Data/neutrondata/PSI_phantom_IMAT/DATA/Sample/angle0/' +filename0 = 'IMAT00004675_Tomo_test_000_SummedImg.fits' + +data0 = read_fits(pathname0 + filename0) + +pathname10 = '/media/jakob/050d8d45-fab3-4285-935f-260e6c5f162c1/Data/neutrondata/PSI_phantom_IMAT/DATA/Sample/angle10/' +filename10 = 'IMAT00004685_Tomo_test_000_SummedImg.fits' + +data10 = read_fits(pathname10 + filename10) + +# Load a flat field (more are available, should we average over them?) +flat1 = read_fits('/media/jakob/050d8d45-fab3-4285-935f-260e6c5f162c1/Data/neutrondata/PSI_phantom_IMAT/DATA/OpenBeam_aft1/IMAT00004932_Tomo_test_000_SummedImg.fits') + +# Apply flat field and display after flat-field correction and negative log +data0_rel = data0 / flat1 +data10_rel = data10 / flat1 + +plt.imshow(data0_rel) +plt.colorbar() +plt.show() + +plt.imshow(-numpy.log(data0_rel)) +plt.colorbar() +plt.show() + +plt.imshow(data10_rel) +plt.colorbar() +plt.show() + +plt.imshow(-numpy.log(data10_rel)) +plt.colorbar() +plt.show() + +# Set up for loading all summed images at 250 angles. +pathname = '/media/jakob/050d8d45-fab3-4285-935f-260e6c5f162c1/Data/neutrondata/PSI_phantom_IMAT/DATA/Sample/angle{}/' +filename = 'IMAT0000{}_Tomo_test_000_SummedImg.fits' + +# Dimensions +num_angles = 250 +imsize = 512 + +# Initialise array +data = numpy.zeros((num_angles,imsize,imsize)) + +# Load only 0-249, as 250 is at repetition of zero degrees just like image 0 +for i in range(0,250): + curimfile = (pathname + filename).format(i, i+4675) + data[i,:,:] = read_fits(curimfile) + +# Apply flat field and take negative log +data_rel = -numpy.log(data/flat1) + +# Permute order to get: angles, vertical, horizontal, as default in framework. +data_rel = numpy.transpose(data_rel,(0,2,1)) + +# Set angles to use +angles = numpy.linspace(-numpy.pi,numpy.pi,num_angles,endpoint=False) + +# Create 3D acquisition geometry and acquisition data +ag = AcquisitionGeometry('parallel', + '3D', + angles, + pixel_num_h=imsize, + pixel_num_v=imsize) +b = AcquisitionData(data_rel, geometry=ag) + +# Reduce to single (noncentral) slice by extracting relevant parameters from data and its +# geometry. Perhaps create function to extract central slice automatically? +b2d = b.subset(vertical=128) +ag2d = AcquisitionGeometry('parallel', + '2D', + ag.angles, + pixel_num_h=ag.pixel_num_h) +b2d.geometry = ag2d + +# Create 2D image geometry +ig2d = ImageGeometry(voxel_num_x=ag2d.pixel_num_h, + voxel_num_y=ag2d.pixel_num_h) + +# Create GPU projector/backprojector operator with ASTRA. +Aop = AstraProjectorSimple(ig2d,ag2d,'gpu') + +# Demonstrate operator is working by applying simple backprojection. +z = Aop.adjoint(b2d) +plt.imshow(z.array) +plt.title('Simple backprojection') +plt.colorbar() +plt.show() + +# Set initial guess ImageData with zeros for algorithms, and algorithm options. +x_init = ImageData(numpy.zeros((imsize,imsize)), + geometry=ig2d) +opt_CGLS = {'tol': 1e-4, 'iter': 20} + +# Run CGLS algorithm and display reconstruction. +x_CGLS, it_CGLS, timing_CGLS, criter_CGLS = CGLS(x_init, Aop, b2d, opt_CGLS) + +plt.imshow(x_CGLS.array) +plt.title('CGLS') +plt.colorbar() +plt.show() + +plt.semilogy(criter_CGLS) +plt.title('CGLS Criterion vs iterations') +plt.show()
\ No newline at end of file |