summaryrefslogtreecommitdiffstats
path: root/Wrappers
diff options
context:
space:
mode:
authorEdoardo Pasca <edo.paskino@gmail.com>2018-04-04 14:30:37 +0100
committerGitHub <noreply@github.com>2018-04-04 14:30:37 +0100
commit08a1bcc85f9a239a1890a9cea1595934b4a8a162 (patch)
treef81bf3df2118b0a5d0b5b9a61098917f6d7d3050 /Wrappers
parented249eaeac7000de9f276bebb5ef73bf01fa467d (diff)
downloadframework-08a1bcc85f9a239a1890a9cea1595934b4a8a162.tar.gz
framework-08a1bcc85f9a239a1890a9cea1595934b4a8a162.tar.bz2
framework-08a1bcc85f9a239a1890a9cea1595934b4a8a162.tar.xz
framework-08a1bcc85f9a239a1890a9cea1595934b4a8a162.zip
Rename (#88)
* create optimisation package * renamed to framework * added FiniteDiff2D operator * fixed dependencies * fix import packages * added ccpiops.py and move processors.py * updated imports * renamed but not split * Removed reconstruction as moved to optimisation
Diffstat (limited to 'Wrappers')
-rwxr-xr-x[-rw-r--r--]Wrappers/Python/ccpi/optimisation/algs.py (renamed from Wrappers/Python/ccpi/reconstruction/algs.py)2
-rwxr-xr-x[-rw-r--r--]Wrappers/Python/ccpi/optimisation/funcs.py (renamed from Wrappers/Python/ccpi/reconstruction/funcs.py)33
-rwxr-xr-x[-rw-r--r--]Wrappers/Python/ccpi/optimisation/ops.py (renamed from Wrappers/Python/ccpi/reconstruction/ops.py)101
-rwxr-xr-xWrappers/Python/ccpi/processors.py804
-rw-r--r--Wrappers/Python/conda-recipe/meta.yaml4
-rw-r--r--Wrappers/Python/setup.py9
-rwxr-xr-xWrappers/Python/wip/simple_demo_ccpi.py6
-rwxr-xr-xWrappers/Python/wip/test_reader_reconstr.py8
8 files changed, 21 insertions, 946 deletions
diff --git a/Wrappers/Python/ccpi/reconstruction/algs.py b/Wrappers/Python/ccpi/optimisation/algs.py
index 46865a8..5942055 100644..100755
--- a/Wrappers/Python/ccpi/reconstruction/algs.py
+++ b/Wrappers/Python/ccpi/optimisation/algs.py
@@ -20,7 +20,7 @@
import numpy
import time
-from ccpi.reconstruction.funcs import BaseFunction
+from ccpi.optimisation.funcs import BaseFunction
def FISTA(x_init, f=None, g=None, opt=None):
'''Fast Iterative Shrinkage-Thresholding Algorithm
diff --git a/Wrappers/Python/ccpi/reconstruction/funcs.py b/Wrappers/Python/ccpi/optimisation/funcs.py
index 7a93b6e..0dbe28f 100644..100755
--- a/Wrappers/Python/ccpi/reconstruction/funcs.py
+++ b/Wrappers/Python/ccpi/optimisation/funcs.py
@@ -17,7 +17,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
-from ccpi.reconstruction.ops import Identity, FiniteDiff2D
+from ccpi.optimisation.ops import Identity, FiniteDiff2D
import numpy
@@ -39,14 +39,16 @@ class Norm2(BaseFunction):
def fun(self, x):
- xx = numpy.sqrt(numpy.sum(numpy.square(x.as_array()), self.direction, keepdims=True))
+ xx = numpy.sqrt(numpy.sum(numpy.square(x.as_array()), self.direction,
+ keepdims=True))
p = numpy.sum(self.gamma*xx)
return p
def prox(self, x, tau):
- xx = numpy.sqrt(numpy.sum( numpy.square(x.as_array()), self.direction, keepdims=True ))
+ xx = numpy.sqrt(numpy.sum( numpy.square(x.as_array()), self.direction,
+ keepdims=True ))
xx = numpy.maximum(0, 1 - tau*self.gamma / xx)
p = x.as_array() * xx
@@ -95,32 +97,7 @@ class Norm2sq(BaseFunction):
#return self.c* np.sum(np.square((self.A.direct(x) - self.b).ravel()))
return self.c*( ( (self.A.direct(x)-self.b)**2).sum() )
-## Define a class to represent a least squares data fidelity
-#class LeastSquares(BaseFunction):
-#
-# b = None
-# A = None
-# L = None
-#
-# def __init__(self, A, b):
-# self.A = A
-# #b.shape = (b.shape[0],1)
-# self.b = b
-#
-# # Compute the Lipschitz parameter from the operator
-# # Initialise to None instead and only call when needed.
-# self.L = self.A.get_max_sing_val()**2
-#
-# def grad(self, x):
-# #return np.dot(self.A.transpose(), (np.dot(self.A,x) - self.b) )
-# return self.A.adjoint( self.A.direct(x) - self.b )
-#
-# def fun(self, x):
-# # p = np.dot(self.A, x)
-# return 0.5*( ( (self.A.direct(x)-self.b)**2).sum() )
-# Define a class to represent the zero-function, to test pure least squares
-# minimization using FISTA
class ZeroFun(BaseFunction):
def __init__(self,gamma=0,L=1):
diff --git a/Wrappers/Python/ccpi/reconstruction/ops.py b/Wrappers/Python/ccpi/optimisation/ops.py
index 2d8e90d..6460986 100644..100755
--- a/Wrappers/Python/ccpi/reconstruction/ops.py
+++ b/Wrappers/Python/ccpi/optimisation/ops.py
@@ -19,8 +19,6 @@
import numpy
from scipy.sparse.linalg import svds
-from ccpi.framework import DataContainer, ImageGeometry , ImageData
-from ccpi.processors import CCPiBackwardProjector, CCPiForwardProjector
# Maybe operators need to know what types they take as inputs/outputs
# to not just use generic DataContainer
@@ -33,49 +31,9 @@ class Operator(object):
return x
def size(self):
# To be defined for specific class
- return None
-
-# Or should we rather have an attribute isLinear instead of separate class?
-
-#class OperatorLinear(Operator):
-#
-# def __init__():
-
-class ForwardBackProjector(Operator):
-
- # The constructor should set up everything, ie at least hold equivalent of
- # projection geometry and volume geometry, so that when calling direct and
- # adjoint methods, only the volume/sinogram is needed as input. Quite
- # similar to opTomo operator.
-
- def __init__(self):
- # do nothing
- i = 1
- super(ForwardBackProjector, self).__init__()
-
-
-class LinearOperatorMatrix(Operator):
- def __init__(self,A):
- self.A = A
- self.s1 = None # Largest singular value, initially unknown
- super(LinearOperatorMatrix, self).__init__()
-
- def direct(self,x):
- return DataContainer(numpy.dot(self.A,x.as_array()))
-
- def adjoint(self,x):
- return DataContainer(numpy.dot(self.A.transpose(),x.as_array()))
-
- def size(self):
- return self.A.shape
-
+ raise NotImplementedError
def get_max_sing_val(self):
- # If unknown, compute and store. If known, simply return it.
- if self.s1 is None:
- self.s1 = svds(self.A,1,return_singular_vectors=False)[0]
- return self.s1
- else:
- return self.s1
+ raise NotImplementedError
class Identity(Operator):
def __init__(self):
@@ -133,7 +91,6 @@ class FiniteDiff2D(Operator):
def get_max_sing_val(self):
return self.s1
-
def PowerMethodNonsquareOld(op,numiters):
# Initialise random
# Jakob's
@@ -200,57 +157,3 @@ def PowerMethodNonsquare(op,numiters):
s[it] = (x1*x0).sum() / (x0*x0).sum()
x0 = (1.0/x1norm)*x1
return numpy.sqrt(s[-1]), numpy.sqrt(s), x0
-
-class CCPiProjectorSimple(Operator):
- """ASTRA projector modified to use DataSet and geometry."""
- def __init__(self, geomv, geomp):
- super(CCPiProjectorSimple, self).__init__()
-
- # Store volume and sinogram geometries.
- self.acquisition_geometry = geomp
- self.volume_geometry = geomv
-
- self.fp = CCPiForwardProjector(image_geometry=geomv,
- acquisition_geometry=geomp,
- output_axes_order=['angle','vertical','horizontal'])
-
- self.bp = CCPiBackwardProjector(image_geometry=geomv,
- acquisition_geometry=geomp,
- output_axes_order=['horizontal_x','horizontal_y','vertical'])
-
- # Initialise empty for singular value.
- self.s1 = None
-
- def direct(self, image_data):
- self.fp.set_input(image_data)
- out = self.fp.get_output()
- return out
-
- def adjoint(self, acquisition_data):
- self.bp.set_input(acquisition_data)
- out = self.bp.get_output()
- return out
-
- #def delete(self):
- # astra.data2d.delete(self.proj_id)
-
- def get_max_sing_val(self):
- a = PowerMethodNonsquare(self,10)
- self.s1 = a[0]
- return self.s1
-
- def size(self):
- # Only implemented for 3D
- return ( (self.acquisition_geometry.angles.size, \
- self.acquisition_geometry.pixel_num_v,
- self.acquisition_geometry.pixel_num_h), \
- (self.volume_geometry.voxel_num_x, \
- self.volume_geometry.voxel_num_y,
- self.volume_geometry.voxel_num_z) )
- def create_image_data(self):
- x0 = ImageData(geometry = self.volume_geometry,
- dimension_labels=self.bp.output_axes_order)#\
- #.subset(['horizontal_x','horizontal_y','vertical'])
- print (x0)
- x0.fill(numpy.random.randn(*x0.shape))
- return x0 \ No newline at end of file
diff --git a/Wrappers/Python/ccpi/processors.py b/Wrappers/Python/ccpi/processors.py
deleted file mode 100755
index 8f60cf4..0000000
--- a/Wrappers/Python/ccpi/processors.py
+++ /dev/null
@@ -1,804 +0,0 @@
-# -*- coding: utf-8 -*-
-# This work is part of the Core Imaging Library developed by
-# Visual Analytics and Imaging System Group of the Science Technology
-# Facilities Council, STFC
-
-# Copyright 2018 Edoardo Pasca
-
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-
-# http://www.apache.org/licenses/LICENSE-2.0
-
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License
-
-from ccpi.framework import DataSetProcessor, DataContainer, AcquisitionData,\
- AcquisitionGeometry, ImageGeometry, ImageData
-from ccpi.reconstruction.parallelbeam import alg as pbalg
-import numpy
-import h5py
-from scipy import ndimage
-
-import matplotlib.pyplot as plt
-
-
-class Normalizer(DataSetProcessor):
- '''Normalization based on flat and dark
-
- This processor read in a AcquisitionData and normalises it based on
- the instrument reading with and without incident photons or neutrons.
-
- Input: AcquisitionData
- Parameter: 2D projection with flat field (or stack)
- 2D projection with dark field (or stack)
- Output: AcquisitionDataSetn
- '''
-
- def __init__(self, flat_field = None, dark_field = None, tolerance = 1e-5):
- kwargs = {
- 'flat_field' : None,
- 'dark_field' : None,
- # very small number. Used when there is a division by zero
- 'tolerance' : tolerance
- }
-
- #DataSetProcessor.__init__(self, **kwargs)
- super(Normalizer, self).__init__(**kwargs)
- if not flat_field is None:
- self.set_flat_field(flat_field)
- if not dark_field is None:
- self.set_dark_field(dark_field)
-
- def check_input(self, dataset):
- if dataset.number_of_dimensions == 3:
- return True
- else:
- raise ValueError("Expected input dimensions is 2 or 3, got {0}"\
- .format(dataset.number_of_dimensions))
-
- def set_dark_field(self, df):
- if type(df) is numpy.ndarray:
- if len(numpy.shape(df)) == 3:
- raise ValueError('Dark Field should be 2D')
- elif len(numpy.shape(df)) == 2:
- self.dark_field = df
- elif issubclass(type(df), DataSet):
- self.dark_field = self.set_dark_field(df.as_array())
-
- def set_flat_field(self, df):
- if type(df) is numpy.ndarray:
- if len(numpy.shape(df)) == 3:
- raise ValueError('Flat Field should be 2D')
- elif len(numpy.shape(df)) == 2:
- self.flat_field = df
- elif issubclass(type(df), DataSet):
- self.flat_field = self.set_flat_field(df.as_array())
-
- @staticmethod
- def normalize_projection(projection, flat, dark, tolerance):
- a = (projection - dark)
- b = (flat-dark)
- with numpy.errstate(divide='ignore', invalid='ignore'):
- c = numpy.true_divide( a, b )
- c[ ~ numpy.isfinite( c )] = tolerance # set to not zero if 0/0
- return c
-
- def process(self):
-
- projections = self.get_input()
- dark = self.dark_field
- flat = self.flat_field
-
- if not (projections.shape[1:] == dark.shape and \
- projections.shape[1:] == flat.shape):
- raise ValueError('Flats/Dark and projections size do not match.')
-
-
- a = numpy.asarray(
- [ Normalizer.normalize_projection(
- projection, flat, dark, self.tolerance) \
- for projection in projections.as_array() ]
- )
- y = type(projections)( a , True,
- dimension_labels=projections.dimension_labels,
- geometry=projections.geometry)
- return y
-
-
-class CenterOfRotationFinder(DataSetProcessor):
- '''Processor to find the center of rotation in a parallel beam experiment
-
- This processor read in a AcquisitionDataSet and finds the center of rotation
- based on Nghia Vo's method. https://doi.org/10.1364/OE.22.019078
-
- Input: AcquisitionDataSet
-
- Output: float. center of rotation in pixel coordinate
- '''
-
- def __init__(self):
- kwargs = {
-
- }
-
- #DataSetProcessor.__init__(self, **kwargs)
- super(CenterOfRotationFinder, self).__init__(**kwargs)
-
- def check_input(self, dataset):
- if dataset.number_of_dimensions == 3:
- if dataset.geometry.geom_type == 'parallel':
- return True
- else:
- raise ValueError('{0} is suitable only for parallel beam geometry'\
- .format(self.__class__.__name__))
- else:
- raise ValueError("Expected input dimensions is 3, got {0}"\
- .format(dataset.number_of_dimensions))
-
-
- # #########################################################################
- # Copyright (c) 2015, UChicago Argonne, LLC. All rights reserved. #
- # #
- # Copyright 2015. UChicago Argonne, LLC. This software was produced #
- # under U.S. Government contract DE-AC02-06CH11357 for Argonne National #
- # Laboratory (ANL), which is operated by UChicago Argonne, LLC for the #
- # U.S. Department of Energy. The U.S. Government has rights to use, #
- # reproduce, and distribute this software. NEITHER THE GOVERNMENT NOR #
- # UChicago Argonne, LLC MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR #
- # ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. If software is #
- # modified to produce derivative works, such modified software should #
- # be clearly marked, so as not to confuse it with the version available #
- # from ANL. #
- # #
- # Additionally, redistribution and use in source and binary forms, with #
- # or without modification, are permitted provided that the following #
- # conditions are met: #
- # #
- # * Redistributions of source code must retain the above copyright #
- # notice, this list of conditions and the following disclaimer. #
- # #
- # * Redistributions in binary form must reproduce the above copyright #
- # notice, this list of conditions and the following disclaimer in #
- # the documentation and/or other materials provided with the #
- # distribution. #
- # #
- # * Neither the name of UChicago Argonne, LLC, Argonne National #
- # Laboratory, ANL, the U.S. Government, nor the names of its #
- # contributors may be used to endorse or promote products derived #
- # from this software without specific prior written permission. #
- # #
- # THIS SOFTWARE IS PROVIDED BY UChicago Argonne, LLC AND CONTRIBUTORS #
- # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT #
- # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS #
- # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL UChicago #
- # Argonne, LLC OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, #
- # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, #
- # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; #
- # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER #
- # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT #
- # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN #
- # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE #
- # POSSIBILITY OF SUCH DAMAGE. #
- # #########################################################################
-
- @staticmethod
- def as_ndarray(arr, dtype=None, copy=False):
- if not isinstance(arr, numpy.ndarray):
- arr = numpy.array(arr, dtype=dtype, copy=copy)
- return arr
-
- @staticmethod
- def as_dtype(arr, dtype, copy=False):
- if not arr.dtype == dtype:
- arr = numpy.array(arr, dtype=dtype, copy=copy)
- return arr
-
- @staticmethod
- def as_float32(arr):
- arr = CenterOfRotationFinder.as_ndarray(arr, numpy.float32)
- return CenterOfRotationFinder.as_dtype(arr, numpy.float32)
-
-
-
-
- @staticmethod
- def find_center_vo(tomo, ind=None, smin=-40, smax=40, srad=10, step=0.5,
- ratio=2., drop=20):
- """
- Find rotation axis location using Nghia Vo's method. :cite:`Vo:14`.
-
- Parameters
- ----------
- tomo : ndarray
- 3D tomographic data.
- ind : int, optional
- Index of the slice to be used for reconstruction.
- smin, smax : int, optional
- Reference to the horizontal center of the sinogram.
- srad : float, optional
- Fine search radius.
- step : float, optional
- Step of fine searching.
- ratio : float, optional
- The ratio between the FOV of the camera and the size of object.
- It's used to generate the mask.
- drop : int, optional
- Drop lines around vertical center of the mask.
-
- Returns
- -------
- float
- Rotation axis location.
-
- Notes
- -----
- The function may not yield a correct estimate, if:
-
- - the sample size is bigger than the field of view of the camera.
- In this case the ``ratio`` argument need to be set larger
- than the default of 2.0.
-
- - there is distortion in the imaging hardware. If there's
- no correction applied, the center of the projection image may
- yield a better estimate.
-
- - the sample contrast is weak. Paganin's filter need to be applied
- to overcome this.
-
- - the sample was changed during the scan.
- """
- tomo = CenterOfRotationFinder.as_float32(tomo)
-
- if ind is None:
- ind = tomo.shape[1] // 2
- _tomo = tomo[:, ind, :]
-
-
-
- # Reduce noise by smooth filters. Use different filters for coarse and fine search
- _tomo_cs = ndimage.filters.gaussian_filter(_tomo, (3, 1))
- _tomo_fs = ndimage.filters.median_filter(_tomo, (2, 2))
-
- # Coarse and fine searches for finding the rotation center.
- if _tomo.shape[0] * _tomo.shape[1] > 4e6: # If data is large (>2kx2k)
- #_tomo_coarse = downsample(numpy.expand_dims(_tomo_cs,1), level=2)[:, 0, :]
- #init_cen = _search_coarse(_tomo_coarse, smin, smax, ratio, drop)
- #fine_cen = _search_fine(_tomo_fs, srad, step, init_cen*4, ratio, drop)
- init_cen = CenterOfRotationFinder._search_coarse(_tomo_cs, smin,
- smax, ratio, drop)
- fine_cen = CenterOfRotationFinder._search_fine(_tomo_fs, srad,
- step, init_cen,
- ratio, drop)
- else:
- init_cen = CenterOfRotationFinder._search_coarse(_tomo_cs,
- smin, smax,
- ratio, drop)
- fine_cen = CenterOfRotationFinder._search_fine(_tomo_fs, srad,
- step, init_cen,
- ratio, drop)
-
- #logger.debug('Rotation center search finished: %i', fine_cen)
- return fine_cen
-
-
- @staticmethod
- def _search_coarse(sino, smin, smax, ratio, drop):
- """
- Coarse search for finding the rotation center.
- """
- (Nrow, Ncol) = sino.shape
- centerfliplr = (Ncol - 1.0) / 2.0
-
- # Copy the sinogram and flip left right, the purpose is to
- # make a full [0;2Pi] sinogram
- _copy_sino = numpy.fliplr(sino[1:])
-
- # This image is used for compensating the shift of sinogram 2
- temp_img = numpy.zeros((Nrow - 1, Ncol), dtype='float32')
- temp_img[:] = sino[-1]
-
- # Start coarse search in which the shift step is 1
- listshift = numpy.arange(smin, smax + 1)
- listmetric = numpy.zeros(len(listshift), dtype='float32')
- mask = CenterOfRotationFinder._create_mask(2 * Nrow - 1, Ncol,
- 0.5 * ratio * Ncol, drop)
- for i in listshift:
- _sino = numpy.roll(_copy_sino, i, axis=1)
- if i >= 0:
- _sino[:, 0:i] = temp_img[:, 0:i]
- else:
- _sino[:, i:] = temp_img[:, i:]
- listmetric[i - smin] = numpy.sum(numpy.abs(numpy.fft.fftshift(
- #pyfftw.interfaces.numpy_fft.fft2(
- # numpy.vstack((sino, _sino)))
- numpy.fft.fft2(numpy.vstack((sino, _sino)))
- )) * mask)
- minpos = numpy.argmin(listmetric)
- return centerfliplr + listshift[minpos] / 2.0
-
- @staticmethod
- def _search_fine(sino, srad, step, init_cen, ratio, drop):
- """
- Fine search for finding the rotation center.
- """
- Nrow, Ncol = sino.shape
- centerfliplr = (Ncol + 1.0) / 2.0 - 1.0
- # Use to shift the sinogram 2 to the raw CoR.
- shiftsino = numpy.int16(2 * (init_cen - centerfliplr))
- _copy_sino = numpy.roll(numpy.fliplr(sino[1:]), shiftsino, axis=1)
- if init_cen <= centerfliplr:
- lefttake = numpy.int16(numpy.ceil(srad + 1))
- righttake = numpy.int16(numpy.floor(2 * init_cen - srad - 1))
- else:
- lefttake = numpy.int16(numpy.ceil(
- init_cen - (Ncol - 1 - init_cen) + srad + 1))
- righttake = numpy.int16(numpy.floor(Ncol - 1 - srad - 1))
- Ncol1 = righttake - lefttake + 1
- mask = CenterOfRotationFinder._create_mask(2 * Nrow - 1, Ncol1,
- 0.5 * ratio * Ncol, drop)
- numshift = numpy.int16((2 * srad) / step) + 1
- listshift = numpy.linspace(-srad, srad, num=numshift)
- listmetric = numpy.zeros(len(listshift), dtype='float32')
- factor1 = numpy.mean(sino[-1, lefttake:righttake])
- num1 = 0
- for i in listshift:
- _sino = ndimage.interpolation.shift(
- _copy_sino, (0, i), prefilter=False)
- factor2 = numpy.mean(_sino[0,lefttake:righttake])
- _sino = _sino * factor1 / factor2
- sinojoin = numpy.vstack((sino, _sino))
- listmetric[num1] = numpy.sum(numpy.abs(numpy.fft.fftshift(
- #pyfftw.interfaces.numpy_fft.fft2(
- # sinojoin[:, lefttake:righttake + 1])
- numpy.fft.fft2(sinojoin[:, lefttake:righttake + 1])
- )) * mask)
- num1 = num1 + 1
- minpos = numpy.argmin(listmetric)
- return init_cen + listshift[minpos] / 2.0
-
- @staticmethod
- def _create_mask(nrow, ncol, radius, drop):
- du = 1.0 / ncol
- dv = (nrow - 1.0) / (nrow * 2.0 * numpy.pi)
- centerrow = numpy.ceil(nrow / 2) - 1
- centercol = numpy.ceil(ncol / 2) - 1
- # added by Edoardo Pasca
- centerrow = int(centerrow)
- centercol = int(centercol)
- mask = numpy.zeros((nrow, ncol), dtype='float32')
- for i in range(nrow):
- num1 = numpy.round(((i - centerrow) * dv / radius) / du)
- (p1, p2) = numpy.int16(numpy.clip(numpy.sort(
- (-num1 + centercol, num1 + centercol)), 0, ncol - 1))
- mask[i, p1:p2 + 1] = numpy.ones(p2 - p1 + 1, dtype='float32')
- if drop < centerrow:
- mask[centerrow - drop:centerrow + drop + 1,
- :] = numpy.zeros((2 * drop + 1, ncol), dtype='float32')
- mask[:,centercol-1:centercol+2] = numpy.zeros((nrow, 3), dtype='float32')
- return mask
-
- def process(self):
-
- projections = self.get_input()
-
- cor = CenterOfRotationFinder.find_center_vo(projections.as_array())
-
- return cor
-
-class CCPiForwardProjector(DataSetProcessor):
- '''Normalization based on flat and dark
-
- This processor read in a AcquisitionData and normalises it based on
- the instrument reading with and without incident photons or neutrons.
-
- Input: AcquisitionData
- Parameter: 2D projection with flat field (or stack)
- 2D projection with dark field (or stack)
- Output: AcquisitionDataSetn
- '''
-
- def __init__(self,
- image_geometry = None,
- acquisition_geometry = None,
- output_axes_order = None):
- if output_axes_order is None:
- # default ccpi projector image storing order
- output_axes_order = ['angle','vertical','horizontal']
-
- kwargs = {
- 'image_geometry' : image_geometry,
- 'acquisition_geometry' : acquisition_geometry,
- 'output_axes_order' : output_axes_order,
- 'default_image_axes_order' : ['horizontal_x','horizontal_y','vertical'],
- 'default_acquisition_axes_order' : ['angle','vertical','horizontal']
- }
-
- super(CCPiForwardProjector, self).__init__(**kwargs)
-
- def check_input(self, dataset):
- if dataset.number_of_dimensions == 3 or dataset.number_of_dimensions == 2:
- # sort in the order that this projector needs it
- return True
- else:
- raise ValueError("Expected input dimensions is 2 or 3, got {0}"\
- .format(dataset.number_of_dimensions))
-
- def process(self):
-
- volume = self.get_input()
- volume_axes = volume.get_data_axes_order(new_order=self.default_image_axes_order)
- if not volume_axes == [0,1,2]:
- volume.array = numpy.transpose(volume.array, volume_axes)
- pixel_per_voxel = 1 # should be estimated from image_geometry and
- # acquisition_geometry
- if self.acquisition_geometry.geom_type == 'parallel':
- #int msize = ndarray_volume.shape(0) > ndarray_volume.shape(1) ? ndarray_volume.shape(0) : ndarray_volume.shape(1);
- #int detector_width = msize;
- # detector_width is the max between the shape[0] and shape[1]
-
-
- #double rotation_center = (double)detector_width/2.;
- #int detector_height = ndarray_volume.shape(2);
-
- #int number_of_projections = ndarray_angles.shape(0);
-
- ##numpy_3d pixels(reinterpret_cast<float*>(ndarray_volume.get_data()),
- #boost::extents[number_of_projections][detector_height][detector_width]);
-
- pixels = pbalg.pb_forward_project(volume.as_array(),
- self.acquisition_geometry.angles,
- pixel_per_voxel)
- out = AcquisitionData(geometry=self.acquisition_geometry,
- label_dimensions=self.default_acquisition_axes_order)
- out.fill(pixels)
- out_axes = out.get_data_axes_order(new_order=self.output_axes_order)
- if not out_axes == [0,1,2]:
- out.array = numpy.transpose(out.array, out_axes)
- return out
- else:
- raise ValueError('Cannot process cone beam')
-
-class CCPiBackwardProjector(DataSetProcessor):
- '''Backward projector
-
- This processor reads in a AcquisitionData and performs a backward projection,
- i.e. project to reconstruction space.
- Notice that it assumes that the center of rotation is in the middle
- of the horizontal axis: in case when that's not the case it can be chained
- with the AcquisitionDataPadder.
-
- Input: AcquisitionData
- Parameter: 2D projection with flat field (or stack)
- 2D projection with dark field (or stack)
- Output: AcquisitionDataSetn
- '''
-
- def __init__(self,
- image_geometry = None,
- acquisition_geometry = None,
- output_axes_order=None):
- if output_axes_order is None:
- # default ccpi projector image storing order
- output_axes_order = ['horizontal_x','horizontal_y','vertical']
- kwargs = {
- 'image_geometry' : image_geometry,
- 'acquisition_geometry' : acquisition_geometry,
- 'output_axes_order' : output_axes_order,
- 'default_image_axes_order' : ['horizontal_x','horizontal_y','vertical'],
- 'default_acquisition_axes_order' : ['angle','vertical','horizontal']
- }
-
- super(CCPiBackwardProjector, self).__init__(**kwargs)
-
- def check_input(self, dataset):
- if dataset.number_of_dimensions == 3 or dataset.number_of_dimensions == 2:
- #number_of_projections][detector_height][detector_width
-
- return True
- else:
- raise ValueError("Expected input dimensions is 2 or 3, got {0}"\
- .format(dataset.number_of_dimensions))
-
- def process(self):
- projections = self.get_input()
- projections_axes = projections.get_data_axes_order(new_order=self.default_acquisition_axes_order)
- if not projections_axes == [0,1,2]:
- projections.array = numpy.transpose(projections.array, projections_axes)
-
- pixel_per_voxel = 1 # should be estimated from image_geometry and acquisition_geometry
- image_geometry = ImageGeometry(voxel_num_x = self.acquisition_geometry.pixel_num_h,
- voxel_num_y = self.acquisition_geometry.pixel_num_h,
- voxel_num_z = self.acquisition_geometry.pixel_num_v)
- # input centered/padded acquisitiondata
- center_of_rotation = projections.get_dimension_size('horizontal') / 2
- #print (center_of_rotation)
- if self.acquisition_geometry.geom_type == 'parallel':
- back = pbalg.pb_backward_project(
- projections.as_array(),
- self.acquisition_geometry.angles,
- center_of_rotation,
- pixel_per_voxel
- )
- out = ImageData(geometry=self.image_geometry,
- dimension_labels=self.default_image_axes_order)
-
- out_axes = out.get_data_axes_order(new_order=self.output_axes_order)
- if not out_axes == [0,1,2]:
- back = numpy.transpose(back, out_axes)
- out.fill(back)
-
- return out
-
- else:
- raise ValueError('Cannot process cone beam')
-
-class AcquisitionDataPadder(DataSetProcessor):
- '''Normalization based on flat and dark
-
- This processor read in a AcquisitionData and normalises it based on
- the instrument reading with and without incident photons or neutrons.
-
- Input: AcquisitionData
- Parameter: 2D projection with flat field (or stack)
- 2D projection with dark field (or stack)
- Output: AcquisitionDataSetn
- '''
-
- def __init__(self,
- center_of_rotation = None,
- acquisition_geometry = None,
- pad_value = 1e-5):
- kwargs = {
- 'acquisition_geometry' : acquisition_geometry,
- 'center_of_rotation' : center_of_rotation,
- 'pad_value' : pad_value
- }
-
- super(AcquisitionDataPadder, self).__init__(**kwargs)
-
- def check_input(self, dataset):
- if self.acquisition_geometry is None:
- self.acquisition_geometry = dataset.geometry
- if dataset.number_of_dimensions == 3:
- return True
- else:
- raise ValueError("Expected input dimensions is 2 or 3, got {0}"\
- .format(dataset.number_of_dimensions))
-
- def process(self):
- projections = self.get_input()
- w = projections.get_dimension_size('horizontal')
- delta = w - 2 * self.center_of_rotation
-
- padded_width = int (
- numpy.ceil(abs(delta)) + w
- )
- delta_pix = padded_width - w
-
- voxel_per_pixel = 1
- geom = pbalg.pb_setup_geometry_from_acquisition(projections.as_array(),
- self.acquisition_geometry.angles,
- self.center_of_rotation,
- voxel_per_pixel )
-
- padded_geometry = self.acquisition_geometry.clone()
-
- padded_geometry.pixel_num_h = geom['n_h']
- padded_geometry.pixel_num_v = geom['n_v']
-
- delta_pix_h = padded_geometry.pixel_num_h - self.acquisition_geometry.pixel_num_h
- delta_pix_v = padded_geometry.pixel_num_v - self.acquisition_geometry.pixel_num_v
-
- if delta_pix_h == 0:
- delta_pix_h = delta_pix
- padded_geometry.pixel_num_h = padded_width
- #initialize a new AcquisitionData with values close to 0
- out = AcquisitionData(geometry=padded_geometry)
- out = out + self.pad_value
-
-
- #pad in the horizontal-vertical plane -> slice on angles
- if delta > 0:
- #pad left of middle
- command = "out.array["
- for i in range(out.number_of_dimensions):
- if out.dimension_labels[i] == 'horizontal':
- value = '{0}:{1}'.format(delta_pix_h, delta_pix_h+w)
- command = command + str(value)
- else:
- if out.dimension_labels[i] == 'vertical' :
- value = '{0}:'.format(delta_pix_v)
- command = command + str(value)
- else:
- command = command + ":"
- if i < out.number_of_dimensions -1:
- command = command + ','
- command = command + '] = projections.array'
- #print (command)
- else:
- #pad right of middle
- command = "out.array["
- for i in range(out.number_of_dimensions):
- if out.dimension_labels[i] == 'horizontal':
- value = '{0}:{1}'.format(0, w)
- command = command + str(value)
- else:
- if out.dimension_labels[i] == 'vertical' :
- value = '{0}:'.format(delta_pix_v)
- command = command + str(value)
- else:
- command = command + ":"
- if i < out.number_of_dimensions -1:
- command = command + ','
- command = command + '] = projections.array'
- #print (command)
- #cleaned = eval(command)
- exec(command)
- return out
-
-#class FiniteDifferentiator(DataSetProcessor):
-# def __init__(self):
-# kwargs = {
-#
-# }
-#
-# super(FiniteDifferentiator, self).__init__(**kwargs)
-#
-# def check_input(self, dataset):
-# return True
-#
-# def process(self):
-# axis = 0
-# d1 = numpy.diff(x,n=1,axis=axis)
-# d1 = numpy.resize(d1, numpy.shape(x))
-
-
-
-def loadNexus(filename):
- '''Load a dataset stored in a NeXuS file (HDF5)'''
- ###########################################################################
- ## Load a dataset
- nx = h5py.File(filename, "r")
-
- data = nx.get('entry1/tomo_entry/data/rotation_angle')
- angles = numpy.zeros(data.shape)
- data.read_direct(angles)
-
- data = nx.get('entry1/tomo_entry/data/data')
- stack = numpy.zeros(data.shape)
- data.read_direct(stack)
- data = nx.get('entry1/tomo_entry/instrument/detector/image_key')
-
- itype = numpy.zeros(data.shape)
- data.read_direct(itype)
- # 2 is dark field
- darks = [stack[i] for i in range(len(itype)) if itype[i] == 2 ]
- dark = darks[0]
- for i in range(1, len(darks)):
- dark += darks[i]
- dark = dark / len(darks)
- #dark[0][0] = dark[0][1]
-
- # 1 is flat field
- flats = [stack[i] for i in range(len(itype)) if itype[i] == 1 ]
- flat = flats[0]
- for i in range(1, len(flats)):
- flat += flats[i]
- flat = flat / len(flats)
- #flat[0][0] = dark[0][1]
-
-
- # 0 is projection data
- proj = [stack[i] for i in range(len(itype)) if itype[i] == 0 ]
- angle_proj = [angles[i] for i in range(len(itype)) if itype[i] == 0 ]
- angle_proj = numpy.asarray (angle_proj)
- angle_proj = angle_proj.astype(numpy.float32)
-
- return angle_proj , numpy.asarray(proj) , dark, flat
-
-
-
-if __name__ == '__main__':
- angles, proj, dark, flat = loadNexus('../../../data/24737_fd.nxs')
-
- parallelbeam = AcquisitionGeometry('parallel', '3D' ,
- angles=angles,
- pixel_num_h=numpy.shape(proj)[2],
- pixel_num_v=numpy.shape(proj)[1],
- )
-
- dim_labels = ['angles' , 'vertical' , 'horizontal']
- sino = AcquisitionData( proj , geometry=parallelbeam,
- dimension_labels=dim_labels)
-
- normalizer = Normalizer()
- normalizer.set_input(sino)
- normalizer.set_flat_field(flat)
- normalizer.set_dark_field(dark)
- norm = normalizer.get_output()
- #print ("Processor min {0} max {1}".format(norm.as_array().min(), norm.as_array().max()))
-
- #norm1 = numpy.asarray(
- # [Normalizer.normalize_projection( p, flat, dark, 1e-5 )
- # for p in proj]
- # )
-
- #print ("Numpy min {0} max {1}".format(norm1.min(), norm1.max()))
-
- cor_finder = CenterOfRotationFinder()
- cor_finder.set_input(sino)
- cor = cor_finder.get_output()
- print ("center of rotation {0} == 86.25?".format(cor))
-
-
- padder = AcquisitionDataPadder(center_of_rotation=cor,
- pad_value=0.75,
- acquisition_geometry=normalizer.get_output().geometry)
- #padder.set_input(normalizer.get_output())
- padder.set_input_processor(normalizer)
-
- #print ("padder ", padder.get_output())
-
- volume_geometry = ImageGeometry()
-
- back = CCPiBackwardProjector(acquisition_geometry=parallelbeam,
- image_geometry=volume_geometry)
- back.set_input_processor(padder)
- #back.set_input(padder.get_output())
- #print (back.image_geometry)
- forw = CCPiForwardProjector(acquisition_geometry=parallelbeam,
- image_geometry=volume_geometry)
- forw.set_input_processor(back)
-
-
- out = padder.get_output()
- fig = plt.figure()
- # projections row
- a = fig.add_subplot(1,4,1)
- a.imshow(norm.array[80])
- a.set_title('orig')
- a = fig.add_subplot(1,4,2)
- a.imshow(out.array[80])
- a.set_title('padded')
-
- a = fig.add_subplot(1,4,3)
- a.imshow(back.get_output().as_array()[15])
- a.set_title('back')
-
- a = fig.add_subplot(1,4,4)
- a.imshow(forw.get_output().as_array()[80])
- a.set_title('forw')
-
-
- plt.show()
-
-# back = CCPiBackwardProjector(acquisition_geometry=parallelbeam,
-# image_geometry=volume_geometry)
-
-# int msize = ndarray_volume.shape(0) > ndarray_volume.shape(1) ? ndarray_volume.shape(0) : ndarray_volume.shape(1);#
-# int detector_width = msize;
-
-# double rotation_center = (double)detector_width/2.;
-# int detector_height = ndarray_volume.shape(2);
-# int number_of_projections = ndarray_angles.shape(0);
-# std::cout << "pb_forward_project rotation_center " << rotation_center << std::endl;
-# boost::extents[number_of_projections][detector_height][detector_width]);
-
-
- conebeam = AcquisitionGeometry('cone', '3D' ,
- angles=angles,
- pixel_num_h=numpy.shape(proj)[2],
- pixel_num_v=numpy.shape(proj)[1],
- )
-
- try:
- sino2 = AcquisitionData( proj , geometry=conebeam)
- cor_finder.set_input(sino2)
- cor = cor_finder.get_output()
- except ValueError as err:
- print (err) \ No newline at end of file
diff --git a/Wrappers/Python/conda-recipe/meta.yaml b/Wrappers/Python/conda-recipe/meta.yaml
index 9813f78..25d097d 100644
--- a/Wrappers/Python/conda-recipe/meta.yaml
+++ b/Wrappers/Python/conda-recipe/meta.yaml
@@ -13,11 +13,13 @@ requirements:
build:
- python
- numpy
- - distutils
+ - setuptools
run:
- python
- numpy
+ #- ccpi-reconstruction
+ - matplotlib
about:
home: http://www.ccpi.ac.uk
diff --git a/Wrappers/Python/setup.py b/Wrappers/Python/setup.py
index 8dd16bd..b4fabbd 100644
--- a/Wrappers/Python/setup.py
+++ b/Wrappers/Python/setup.py
@@ -22,10 +22,7 @@ from distutils.core import setup
import os
import sys
-cil_version=os.environ['CIL_VERSION']
-if cil_version == '':
- print("Please set the environmental variable CIL_VERSION")
- sys.exit(1)
+
cil_version=os.environ['CIL_VERSION']
if cil_version == '':
@@ -33,9 +30,9 @@ if cil_version == '':
sys.exit(1)
setup(
- name="ccpi-common",
+ name="ccpi-framework",
version=cil_version,
- packages=['ccpi' , 'ccpi.reconstruction' , 'ccpi.io'],
+ packages=['ccpi' , 'ccpi.io', 'ccpi.optimisation'],
# Project uses reStructuredText, so ensure that the docutils get
# installed or upgraded on the target machine
diff --git a/Wrappers/Python/wip/simple_demo_ccpi.py b/Wrappers/Python/wip/simple_demo_ccpi.py
index 4eeaaae..d2cd6f5 100755
--- a/Wrappers/Python/wip/simple_demo_ccpi.py
+++ b/Wrappers/Python/wip/simple_demo_ccpi.py
@@ -2,9 +2,9 @@
#sys.path.append("..")
from ccpi.framework import ImageData , AcquisitionData, ImageGeometry, AcquisitionGeometry
-from ccpi.reconstruction.algs import FISTA, FBPD, CGLS
-from ccpi.reconstruction.funcs import Norm2sq, Norm1 , TV2D
-from ccpi.astra.astra_ops import AstraProjectorSimple
+from ccpi.optimisation.algs import FISTA, FBPD, CGLS
+from ccpi.optimisation.funcs import Norm2sq, Norm1 , TV2D
+#from ccpi.astra.astra_ops import AstraProjectorSimple
from ccpi.reconstruction.ops import CCPiProjectorSimple
from ccpi.reconstruction.parallelbeam import alg as pbalg
from ccpi.processors import CCPiForwardProjector, CCPiBackwardProjector
diff --git a/Wrappers/Python/wip/test_reader_reconstr.py b/Wrappers/Python/wip/test_reader_reconstr.py
index 325437c..65a3381 100755
--- a/Wrappers/Python/wip/test_reader_reconstr.py
+++ b/Wrappers/Python/wip/test_reader_reconstr.py
@@ -6,11 +6,11 @@ Created on Wed Mar 21 14:26:21 2018
"""
from ccpi.framework import ImageData , AcquisitionData, ImageGeometry, AcquisitionGeometry
-from ccpi.reconstruction.algs import FISTA, FBPD, CGLS
-from ccpi.reconstruction.funcs import Norm2sq, Norm1
-from ccpi.reconstruction.ops import CCPiProjectorSimple
+from ccpi.optimisation.algs import FISTA, FBPD, CGLS
+from ccpi.optimisation.funcs import Norm2sq, Norm1
+from ccpi.reconstruction.ccpiops import CCPiProjectorSimple
from ccpi.reconstruction.parallelbeam import alg as pbalg
-from ccpi.processors import CCPiForwardProjector, CCPiBackwardProjector , \
+from ccpi.reconstruction.processors import CCPiForwardProjector, CCPiBackwardProjector , \
Normalizer , CenterOfRotationFinder , AcquisitionDataPadder
from ccpi.io.reader import NexusReader