summaryrefslogtreecommitdiffstats
path: root/Wrappers
diff options
context:
space:
mode:
authorjakobsj <jakobsj@users.noreply.github.com>2018-05-08 12:11:28 +0100
committerEdoardo Pasca <edo.paskino@gmail.com>2018-05-08 13:11:28 +0200
commit57d3daad99869a69bf14b8b4a3326630088da36a (patch)
tree03e7b95ba16f4ffaec6322cdf838fa3879cbf039 /Wrappers
parentb14e71bdc72f864897793dd3e60c02a31886d292 (diff)
downloadframework-57d3daad99869a69bf14b8b4a3326630088da36a.tar.gz
framework-57d3daad99869a69bf14b8b4a3326630088da36a.tar.bz2
framework-57d3daad99869a69bf14b8b4a3326630088da36a.tar.xz
framework-57d3daad99869a69bf14b8b4a3326630088da36a.zip
Cvx (#118)
* add CVX test script * Add L1 and TV CVX and denoising. TV FBPD bug. * Fix TV2D bug and update cvx demo
Diffstat (limited to 'Wrappers')
-rwxr-xr-xWrappers/Python/ccpi/optimisation/funcs.py2
-rwxr-xr-xWrappers/Python/ccpi/optimisation/ops.py4
-rw-r--r--Wrappers/Python/wip/demo_compare_cvx.py250
3 files changed, 253 insertions, 3 deletions
diff --git a/Wrappers/Python/ccpi/optimisation/funcs.py b/Wrappers/Python/ccpi/optimisation/funcs.py
index d11d6c3..f5463a3 100755
--- a/Wrappers/Python/ccpi/optimisation/funcs.py
+++ b/Wrappers/Python/ccpi/optimisation/funcs.py
@@ -57,7 +57,7 @@ class Norm2(Function):
class TV2D(Norm2):
def __init__(self, gamma):
- super(TV2D,self).__init__(gamma, 2)
+ super(TV2D,self).__init__(gamma, 0)
self.op = FiniteDiff2D()
self.L = self.op.get_max_sing_val()
diff --git a/Wrappers/Python/ccpi/optimisation/ops.py b/Wrappers/Python/ccpi/optimisation/ops.py
index 26787f5..668b07e 100755
--- a/Wrappers/Python/ccpi/optimisation/ops.py
+++ b/Wrappers/Python/ccpi/optimisation/ops.py
@@ -163,10 +163,10 @@ class LinearOperatorMatrix(Operator):
super(LinearOperatorMatrix, self).__init__()
def direct(self,x):
- return DataContainer(numpy.dot(self.A,x.as_array()))
+ return type(x)(numpy.dot(self.A,x.as_array()))
def adjoint(self,x):
- return DataContainer(numpy.dot(self.A.transpose(),x.as_array()))
+ return type(x)(numpy.dot(self.A.transpose(),x.as_array()))
def size(self):
return self.A.shape
diff --git a/Wrappers/Python/wip/demo_compare_cvx.py b/Wrappers/Python/wip/demo_compare_cvx.py
new file mode 100644
index 0000000..cbfe50e
--- /dev/null
+++ b/Wrappers/Python/wip/demo_compare_cvx.py
@@ -0,0 +1,250 @@
+
+from ccpi.framework import ImageData, ImageGeometry, AcquisitionGeometry, DataContainer
+from ccpi.optimisation.algs import FISTA, FBPD, CGLS
+from ccpi.optimisation.funcs import Norm2sq, ZeroFun, Norm1, TV2D
+
+from ccpi.optimisation.ops import LinearOperatorMatrix, Identity
+
+# Requires CVXPY, see http://www.cvxpy.org/
+# CVXPY can be installed in anaconda using
+# conda install -c cvxgrp cvxpy libgcc
+
+# Whether to use or omit CVXPY
+use_cvxpy = True
+if use_cvxpy:
+ from cvxpy import *
+
+import numpy as np
+import matplotlib.pyplot as plt
+
+# Problem data.
+m = 30
+n = 20
+np.random.seed(1)
+Amat = np.random.randn(m, n)
+A = LinearOperatorMatrix(Amat)
+bmat = np.random.randn(m)
+bmat.shape = (bmat.shape[0],1)
+
+# A = Identity()
+# Change n to equal to m.
+
+b = DataContainer(bmat)
+
+# Regularization parameter
+lam = 10
+
+# Create object instances with the test data A and b.
+f = Norm2sq(A,b,c=0.5)
+g0 = ZeroFun()
+
+# Initial guess
+x_init = DataContainer(np.zeros((n,1)))
+
+f.grad(x_init)
+
+# Run FISTA for least squares plus zero function.
+x_fista0, it0, timing0, criter0 = FISTA(x_init, f, g0)
+
+# Print solution and final objective/criterion value for comparison
+print("FISTA least squares plus zero function solution and objective value:")
+print(x_fista0.array)
+print(criter0[-1])
+
+if use_cvxpy:
+ # Compare to CVXPY
+
+ # Construct the problem.
+ x0 = Variable(n)
+ objective0 = Minimize(0.5*sum_squares(Amat*x0 - bmat) )
+ prob0 = Problem(objective0)
+
+ # The optimal objective is returned by prob.solve().
+ result0 = prob0.solve(verbose=False,solver=SCS,eps=1e-9)
+
+ # The optimal solution for x is stored in x.value and optimal objective value
+ # is in result as well as in objective.value
+ print("CVXPY least squares plus zero function solution and objective value:")
+ print(x0.value)
+ print(objective0.value)
+
+# Plot criterion curve to see FISTA converge to same value as CVX.
+iternum = np.arange(1,1001)
+plt.figure()
+plt.loglog(iternum[[0,-1]],[objective0.value, objective0.value], label='CVX LS')
+plt.loglog(iternum,criter0,label='FISTA LS')
+plt.legend()
+plt.show()
+
+# Create 1-norm object instance
+g1 = Norm1(lam)
+
+g1(x_init)
+g1.prox(x_init,0.02)
+
+# Combine with least squares and solve using generic FISTA implementation
+x_fista1, it1, timing1, criter1 = FISTA(x_init, f, g1)
+
+# Print for comparison
+print("FISTA least squares plus 1-norm solution and objective value:")
+print(x_fista1)
+print(criter1[-1])
+
+if use_cvxpy:
+ # Compare to CVXPY
+
+ # Construct the problem.
+ x1 = Variable(n)
+ objective1 = Minimize(0.5*sum_squares(Amat*x1 - bmat) + lam*norm(x1,1) )
+ prob1 = Problem(objective1)
+
+ # The optimal objective is returned by prob.solve().
+ result1 = prob1.solve(verbose=False,solver=SCS,eps=1e-9)
+
+ # The optimal solution for x is stored in x.value and optimal objective value
+ # is in result as well as in objective.value
+ print("CVXPY least squares plus 1-norm solution and objective value:")
+ print(x1.value)
+ print(objective1.value)
+
+# Now try another algorithm FBPD for same problem:
+x_fbpd1, itfbpd1, timingfbpd1, criterfbpd1 = FBPD(x_init, None, f, g1)
+print(x_fbpd1)
+print(criterfbpd1[-1])
+
+# Plot criterion curve to see both FISTA and FBPD converge to same value.
+# Note that FISTA is very efficient for 1-norm minimization so it beats
+# FBPD in this test by a lot. But FBPD can handle a larger class of problems
+# than FISTA can.
+plt.figure()
+plt.loglog(iternum[[0,-1]],[objective1.value, objective1.value], label='CVX LS+1')
+plt.loglog(iternum,criter1,label='FISTA LS+1')
+plt.legend()
+plt.show()
+
+plt.figure()
+plt.loglog(iternum[[0,-1]],[objective1.value, objective1.value], label='CVX LS+1')
+plt.loglog(iternum,criter1,label='FISTA LS+1')
+plt.loglog(iternum,criterfbpd1,label='FBPD LS+1')
+plt.legend()
+plt.show()
+
+# Now try 1-norm and TV denoising with FBPD, first 1-norm.
+
+# Set up phantom size NxN by creating ImageGeometry, initialising the
+# ImageData object with this geometry and empty array and finally put some
+# data into its array, and display as image.
+N = 64
+ig = ImageGeometry(voxel_num_x=N,voxel_num_y=N)
+Phantom = ImageData(geometry=ig)
+
+x = Phantom.as_array()
+x[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 0.5
+x[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 1
+
+plt.imshow(x)
+plt.title('Phantom image')
+plt.show()
+
+# Identity operator for denoising
+I = Identity()
+
+# Data and add noise
+y = I.direct(Phantom)
+y.array = y.array + 0.1*np.random.randn(N, N)
+
+plt.imshow(y.array)
+plt.title('Noisy image')
+plt.show()
+
+# Data fidelity term
+f_denoise = Norm2sq(I,y,c=0.5)
+
+# 1-norm regulariser
+lam1_denoise = 1.0
+g1_denoise = Norm1(lam1_denoise)
+
+# Initial guess
+x_init_denoise = ImageData(np.zeros((N,N)))
+
+# Combine with least squares and solve using generic FISTA implementation
+x_fista1_denoise, it1_denoise, timing1_denoise, criter1_denoise = FISTA(x_init_denoise, f_denoise, g1_denoise)
+
+print(x_fista1_denoise)
+print(criter1_denoise[-1])
+
+plt.imshow(x_fista1_denoise.as_array())
+plt.title('FISTA LS+1')
+plt.show()
+
+# Now denoise LS + 1-norm with FBPD
+x_fbpd1_denoise, itfbpd1_denoise, timingfbpd1_denoise, criterfbpd1_denoise = FBPD(x_init_denoise, None, f_denoise, g1_denoise)
+print(x_fbpd1_denoise)
+print(criterfbpd1_denoise[-1])
+
+plt.imshow(x_fbpd1_denoise.as_array())
+plt.title('FBPD LS+1')
+plt.show()
+
+if use_cvxpy:
+ # Compare to CVXPY
+
+ # Construct the problem.
+ x1_denoise = Variable(N**2,1)
+ objective1_denoise = Minimize(0.5*sum_squares(x1_denoise - y.array.flatten()) + lam1_denoise*norm(x1_denoise,1) )
+ prob1_denoise = Problem(objective1_denoise)
+
+ # The optimal objective is returned by prob.solve().
+ result1_denoise = prob1_denoise.solve(verbose=False,solver=SCS,eps=1e-12)
+
+ # The optimal solution for x is stored in x.value and optimal objective value
+ # is in result as well as in objective.value
+ print("CVXPY least squares plus 1-norm solution and objective value:")
+ print(x1_denoise.value)
+ print(objective1_denoise.value)
+
+x1_cvx = x1_denoise.value
+x1_cvx.shape = (N,N)
+
+plt.imshow(x1_cvx)
+plt.title('CVX LS+1')
+plt.show()
+
+# Now TV with FBPD
+lam_tv = 0.1
+gtv = TV2D(lam_tv)
+gtv(gtv.op.direct(x_init_denoise))
+
+opt_tv = {'tol': 1e-4, 'iter': 10000}
+
+x_fbpdtv_denoise, itfbpdtv_denoise, timingfbpdtv_denoise, criterfbpdtv_denoise = FBPD(x_init_denoise, None, f_denoise, gtv,opt=opt_tv)
+print(x_fbpdtv_denoise)
+print(criterfbpdtv_denoise[-1])
+
+plt.imshow(x_fbpdtv_denoise.as_array())
+plt.title('FBPD TV')
+plt.show()
+
+if use_cvxpy:
+ # Compare to CVXPY
+
+ # Construct the problem.
+ xtv_denoise = Variable(N,N)
+ objectivetv_denoise = Minimize(0.5*sum_squares(xtv_denoise - y.array) + lam_tv*tv(xtv_denoise) )
+ probtv_denoise = Problem(objectivetv_denoise)
+
+ # The optimal objective is returned by prob.solve().
+ resulttv_denoise = probtv_denoise.solve(verbose=False,solver=SCS,eps=1e-12)
+
+ # The optimal solution for x is stored in x.value and optimal objective value
+ # is in result as well as in objective.value
+ print("CVXPY least squares plus 1-norm solution and objective value:")
+ print(xtv_denoise.value)
+ print(objectivetv_denoise.value)
+
+plt.imshow(xtv_denoise.value)
+plt.title('CVX TV')
+plt.show()
+
+plt.loglog([0,opt_tv['iter']], [objectivetv_denoise.value,objectivetv_denoise.value], label='CVX TV')
+plt.loglog(criterfbpdtv_denoise, label='FBPD TV') \ No newline at end of file