summaryrefslogtreecommitdiffstats
path: root/Wrappers
diff options
context:
space:
mode:
authorjakobsj <jakobsj@users.noreply.github.com>2018-03-14 14:56:07 +0000
committerEdoardo Pasca <edo.paskino@gmail.com>2018-03-14 14:56:07 +0000
commitf6ea543d826dc223be79d037ab000ee17c0e7b9b (patch)
tree0a4d24ef12db645a12c38253c52c1d5654191f22 /Wrappers
parent918ceb4031fcca0e62b1f8f61ff46924221ef75e (diff)
downloadframework-f6ea543d826dc223be79d037ab000ee17c0e7b9b.tar.gz
framework-f6ea543d826dc223be79d037ab000ee17c0e7b9b.tar.bz2
framework-f6ea543d826dc223be79d037ab000ee17c0e7b9b.tar.xz
framework-f6ea543d826dc223be79d037ab000ee17c0e7b9b.zip
Merge tv demo (#60)
* Moved geometries into framework and removed all references to geoms. * Merged TV demo into simple_demo * Common colormap disply recons
Diffstat (limited to 'Wrappers')
-rwxr-xr-xWrappers/Python/ccpi/processors.py938
-rw-r--r--Wrappers/Python/wip/simple_demo.py48
-rw-r--r--Wrappers/Python/wip/simple_demo_tv.py99
3 files changed, 504 insertions, 581 deletions
diff --git a/Wrappers/Python/ccpi/processors.py b/Wrappers/Python/ccpi/processors.py
index 9138a27..87acf92 100755
--- a/Wrappers/Python/ccpi/processors.py
+++ b/Wrappers/Python/ccpi/processors.py
@@ -1,470 +1,470 @@
-# -*- coding: utf-8 -*-
-# This work is part of the Core Imaging Library developed by
-# Visual Analytics and Imaging System Group of the Science Technology
-# Facilities Council, STFC
-
-# Copyright 2018 Edoardo Pasca
-
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-
-# http://www.apache.org/licenses/LICENSE-2.0
-
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License
-
-from ccpi.framework import DataSetProcessor, DataSet, VolumeData, SinogramData, ImageGeometry, AcquisitionGeometry
-import numpy
-import h5py
-from scipy import ndimage
-
-class Normalizer(DataSetProcessor):
- '''Normalization based on flat and dark
-
- This processor read in a SinogramDataSet and normalises it based on
- the instrument reading with and without incident photons or neutrons.
-
- Input: SinogramDataSet
- Parameter: 2D projection with flat field (or stack)
- 2D projection with dark field (or stack)
- Output: SinogramDataSetn
- '''
-
- def __init__(self, flat_field = None, dark_field = None, tolerance = 1e-5):
- kwargs = {
- 'flat_field' : None,
- 'dark_field' : None,
- # very small number. Used when there is a division by zero
- 'tolerance' : tolerance
- }
-
- #DataSetProcessor.__init__(self, **kwargs)
- super(Normalizer, self).__init__(**kwargs)
- if not flat_field is None:
- self.setFlatField(flat_field)
- if not dark_field is None:
- self.setDarkField(dark_field)
-
- def checkInput(self, dataset):
- if dataset.number_of_dimensions == 3:
- return True
- else:
- raise ValueError("Expected input dimensions is 2 or 3, got {0}"\
- .format(dataset.number_of_dimensions))
-
- def setDarkField(self, df):
- if type(df) is numpy.ndarray:
- if len(numpy.shape(df)) == 3:
- raise ValueError('Dark Field should be 2D')
- elif len(numpy.shape(df)) == 2:
- self.dark_field = df
- elif issubclass(type(df), DataSet):
- self.dark_field = self.setDarkField(df.as_array())
-
- def setFlatField(self, df):
- if type(df) is numpy.ndarray:
- if len(numpy.shape(df)) == 3:
- raise ValueError('Flat Field should be 2D')
- elif len(numpy.shape(df)) == 2:
- self.flat_field = df
- elif issubclass(type(df), DataSet):
- self.flat_field = self.setDarkField(df.as_array())
-
- @staticmethod
- def normalizeProjection(projection, flat, dark, tolerance):
- a = (projection - dark)
- b = (flat-dark)
- with numpy.errstate(divide='ignore', invalid='ignore'):
- c = numpy.true_divide( a, b )
- c[ ~ numpy.isfinite( c )] = tolerance # set to not zero if 0/0
- return c
-
- def process(self):
-
- projections = self.getInput()
- dark = self.dark_field
- flat = self.flat_field
-
- if not (projections.shape[1:] == dark.shape and \
- projections.shape[1:] == flat.shape):
- raise ValueError('Flats/Dark and projections size do not match.')
-
-
- a = numpy.asarray(
- [ Normalizer.normalizeProjection(
- projection, flat, dark, self.tolerance) \
- for projection in projections.as_array() ]
- )
- y = type(projections)( a , True,
- dimension_labels=projections.dimension_labels,
- geometry=projections.geometry)
- return y
-
-
-class CenterOfRotationFinder(DataSetProcessor):
- '''Processor to find the center of rotation in a parallel beam experiment
-
- This processor read in a SinogramDataSet and finds the center of rotation
- based on Nghia Vo's method. https://doi.org/10.1364/OE.22.019078
-
- Input: SinogramDataSet
-
- Output: float. center of rotation in pixel coordinate
- '''
-
- def __init__(self):
- kwargs = {
-
- }
-
- #DataSetProcessor.__init__(self, **kwargs)
- super(CenterOfRotationFinder, self).__init__(**kwargs)
-
- def checkInput(self, dataset):
- if dataset.number_of_dimensions == 3:
- if dataset.geometry.geom_type == 'parallel':
- return True
- else:
- raise ValueError('This algorithm is suitable only for parallel beam geometry')
- else:
- raise ValueError("Expected input dimensions is 3, got {0}"\
- .format(dataset.number_of_dimensions))
-
-
- # #########################################################################
- # Copyright (c) 2015, UChicago Argonne, LLC. All rights reserved. #
- # #
- # Copyright 2015. UChicago Argonne, LLC. This software was produced #
- # under U.S. Government contract DE-AC02-06CH11357 for Argonne National #
- # Laboratory (ANL), which is operated by UChicago Argonne, LLC for the #
- # U.S. Department of Energy. The U.S. Government has rights to use, #
- # reproduce, and distribute this software. NEITHER THE GOVERNMENT NOR #
- # UChicago Argonne, LLC MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR #
- # ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. If software is #
- # modified to produce derivative works, such modified software should #
- # be clearly marked, so as not to confuse it with the version available #
- # from ANL. #
- # #
- # Additionally, redistribution and use in source and binary forms, with #
- # or without modification, are permitted provided that the following #
- # conditions are met: #
- # #
- # * Redistributions of source code must retain the above copyright #
- # notice, this list of conditions and the following disclaimer. #
- # #
- # * Redistributions in binary form must reproduce the above copyright #
- # notice, this list of conditions and the following disclaimer in #
- # the documentation and/or other materials provided with the #
- # distribution. #
- # #
- # * Neither the name of UChicago Argonne, LLC, Argonne National #
- # Laboratory, ANL, the U.S. Government, nor the names of its #
- # contributors may be used to endorse or promote products derived #
- # from this software without specific prior written permission. #
- # #
- # THIS SOFTWARE IS PROVIDED BY UChicago Argonne, LLC AND CONTRIBUTORS #
- # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT #
- # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS #
- # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL UChicago #
- # Argonne, LLC OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, #
- # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, #
- # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; #
- # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER #
- # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT #
- # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN #
- # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE #
- # POSSIBILITY OF SUCH DAMAGE. #
- # #########################################################################
-
- @staticmethod
- def as_ndarray(arr, dtype=None, copy=False):
- if not isinstance(arr, numpy.ndarray):
- arr = numpy.array(arr, dtype=dtype, copy=copy)
- return arr
-
- @staticmethod
- def as_dtype(arr, dtype, copy=False):
- if not arr.dtype == dtype:
- arr = numpy.array(arr, dtype=dtype, copy=copy)
- return arr
-
- @staticmethod
- def as_float32(arr):
- arr = CenterOfRotationFinder.as_ndarray(arr, numpy.float32)
- return CenterOfRotationFinder.as_dtype(arr, numpy.float32)
-
-
-
-
- @staticmethod
- def find_center_vo(tomo, ind=None, smin=-40, smax=40, srad=10, step=0.5,
- ratio=2., drop=20):
- """
- Find rotation axis location using Nghia Vo's method. :cite:`Vo:14`.
-
- Parameters
- ----------
- tomo : ndarray
- 3D tomographic data.
- ind : int, optional
- Index of the slice to be used for reconstruction.
- smin, smax : int, optional
- Reference to the horizontal center of the sinogram.
- srad : float, optional
- Fine search radius.
- step : float, optional
- Step of fine searching.
- ratio : float, optional
- The ratio between the FOV of the camera and the size of object.
- It's used to generate the mask.
- drop : int, optional
- Drop lines around vertical center of the mask.
-
- Returns
- -------
- float
- Rotation axis location.
-
- Notes
- -----
- The function may not yield a correct estimate, if:
-
- - the sample size is bigger than the field of view of the camera.
- In this case the ``ratio`` argument need to be set larger
- than the default of 2.0.
-
- - there is distortion in the imaging hardware. If there's
- no correction applied, the center of the projection image may
- yield a better estimate.
-
- - the sample contrast is weak. Paganin's filter need to be applied
- to overcome this.
-
- - the sample was changed during the scan.
- """
- tomo = CenterOfRotationFinder.as_float32(tomo)
-
- if ind is None:
- ind = tomo.shape[1] // 2
- _tomo = tomo[:, ind, :]
-
-
-
- # Reduce noise by smooth filters. Use different filters for coarse and fine search
- _tomo_cs = ndimage.filters.gaussian_filter(_tomo, (3, 1))
- _tomo_fs = ndimage.filters.median_filter(_tomo, (2, 2))
-
- # Coarse and fine searches for finding the rotation center.
- if _tomo.shape[0] * _tomo.shape[1] > 4e6: # If data is large (>2kx2k)
- #_tomo_coarse = downsample(numpy.expand_dims(_tomo_cs,1), level=2)[:, 0, :]
- #init_cen = _search_coarse(_tomo_coarse, smin, smax, ratio, drop)
- #fine_cen = _search_fine(_tomo_fs, srad, step, init_cen*4, ratio, drop)
- init_cen = CenterOfRotationFinder._search_coarse(_tomo_cs, smin,
- smax, ratio, drop)
- fine_cen = CenterOfRotationFinder._search_fine(_tomo_fs, srad,
- step, init_cen,
- ratio, drop)
- else:
- init_cen = CenterOfRotationFinder._search_coarse(_tomo_cs,
- smin, smax,
- ratio, drop)
- fine_cen = CenterOfRotationFinder._search_fine(_tomo_fs, srad,
- step, init_cen,
- ratio, drop)
-
- #logger.debug('Rotation center search finished: %i', fine_cen)
- return fine_cen
-
-
- @staticmethod
- def _search_coarse(sino, smin, smax, ratio, drop):
- """
- Coarse search for finding the rotation center.
- """
- (Nrow, Ncol) = sino.shape
- centerfliplr = (Ncol - 1.0) / 2.0
-
- # Copy the sinogram and flip left right, the purpose is to
- # make a full [0;2Pi] sinogram
- _copy_sino = numpy.fliplr(sino[1:])
-
- # This image is used for compensating the shift of sinogram 2
- temp_img = numpy.zeros((Nrow - 1, Ncol), dtype='float32')
- temp_img[:] = sino[-1]
-
- # Start coarse search in which the shift step is 1
- listshift = numpy.arange(smin, smax + 1)
- listmetric = numpy.zeros(len(listshift), dtype='float32')
- mask = CenterOfRotationFinder._create_mask(2 * Nrow - 1, Ncol,
- 0.5 * ratio * Ncol, drop)
- for i in listshift:
- _sino = numpy.roll(_copy_sino, i, axis=1)
- if i >= 0:
- _sino[:, 0:i] = temp_img[:, 0:i]
- else:
- _sino[:, i:] = temp_img[:, i:]
- listmetric[i - smin] = numpy.sum(numpy.abs(numpy.fft.fftshift(
- #pyfftw.interfaces.numpy_fft.fft2(
- # numpy.vstack((sino, _sino)))
- numpy.fft.fft2(numpy.vstack((sino, _sino)))
- )) * mask)
- minpos = numpy.argmin(listmetric)
- return centerfliplr + listshift[minpos] / 2.0
-
- @staticmethod
- def _search_fine(sino, srad, step, init_cen, ratio, drop):
- """
- Fine search for finding the rotation center.
- """
- Nrow, Ncol = sino.shape
- centerfliplr = (Ncol + 1.0) / 2.0 - 1.0
- # Use to shift the sinogram 2 to the raw CoR.
- shiftsino = numpy.int16(2 * (init_cen - centerfliplr))
- _copy_sino = numpy.roll(numpy.fliplr(sino[1:]), shiftsino, axis=1)
- if init_cen <= centerfliplr:
- lefttake = numpy.int16(numpy.ceil(srad + 1))
- righttake = numpy.int16(numpy.floor(2 * init_cen - srad - 1))
- else:
- lefttake = numpy.int16(numpy.ceil(
- init_cen - (Ncol - 1 - init_cen) + srad + 1))
- righttake = numpy.int16(numpy.floor(Ncol - 1 - srad - 1))
- Ncol1 = righttake - lefttake + 1
- mask = CenterOfRotationFinder._create_mask(2 * Nrow - 1, Ncol1,
- 0.5 * ratio * Ncol, drop)
- numshift = numpy.int16((2 * srad) / step) + 1
- listshift = numpy.linspace(-srad, srad, num=numshift)
- listmetric = numpy.zeros(len(listshift), dtype='float32')
- factor1 = numpy.mean(sino[-1, lefttake:righttake])
- num1 = 0
- for i in listshift:
- _sino = ndimage.interpolation.shift(
- _copy_sino, (0, i), prefilter=False)
- factor2 = numpy.mean(_sino[0,lefttake:righttake])
- _sino = _sino * factor1 / factor2
- sinojoin = numpy.vstack((sino, _sino))
- listmetric[num1] = numpy.sum(numpy.abs(numpy.fft.fftshift(
- #pyfftw.interfaces.numpy_fft.fft2(
- # sinojoin[:, lefttake:righttake + 1])
- numpy.fft.fft2(sinojoin[:, lefttake:righttake + 1])
- )) * mask)
- num1 = num1 + 1
- minpos = numpy.argmin(listmetric)
- return init_cen + listshift[minpos] / 2.0
-
- @staticmethod
- def _create_mask(nrow, ncol, radius, drop):
- du = 1.0 / ncol
- dv = (nrow - 1.0) / (nrow * 2.0 * numpy.pi)
- centerrow = numpy.ceil(nrow / 2) - 1
- centercol = numpy.ceil(ncol / 2) - 1
- # added by Edoardo Pasca
- centerrow = int(centerrow)
- centercol = int(centercol)
- mask = numpy.zeros((nrow, ncol), dtype='float32')
- for i in range(nrow):
- num1 = numpy.round(((i - centerrow) * dv / radius) / du)
- (p1, p2) = numpy.int16(numpy.clip(numpy.sort(
- (-num1 + centercol, num1 + centercol)), 0, ncol - 1))
- mask[i, p1:p2 + 1] = numpy.ones(p2 - p1 + 1, dtype='float32')
- if drop < centerrow:
- mask[centerrow - drop:centerrow + drop + 1,
- :] = numpy.zeros((2 * drop + 1, ncol), dtype='float32')
- mask[:,centercol-1:centercol+2] = numpy.zeros((nrow, 3), dtype='float32')
- return mask
-
- def process(self):
-
- projections = self.getInput()
-
- cor = CenterOfRotationFinder.find_center_vo(projections.as_array())
-
- return cor
-
-def loadNexus(filename):
- '''Load a dataset stored in a NeXuS file (HDF5)'''
- ###########################################################################
- ## Load a dataset
- nx = h5py.File(filename, "r")
-
- data = nx.get('entry1/tomo_entry/data/rotation_angle')
- angles = numpy.zeros(data.shape)
- data.read_direct(angles)
-
- data = nx.get('entry1/tomo_entry/data/data')
- stack = numpy.zeros(data.shape)
- data.read_direct(stack)
- data = nx.get('entry1/tomo_entry/instrument/detector/image_key')
-
- itype = numpy.zeros(data.shape)
- data.read_direct(itype)
- # 2 is dark field
- darks = [stack[i] for i in range(len(itype)) if itype[i] == 2 ]
- dark = darks[0]
- for i in range(1, len(darks)):
- dark += darks[i]
- dark = dark / len(darks)
- #dark[0][0] = dark[0][1]
-
- # 1 is flat field
- flats = [stack[i] for i in range(len(itype)) if itype[i] == 1 ]
- flat = flats[0]
- for i in range(1, len(flats)):
- flat += flats[i]
- flat = flat / len(flats)
- #flat[0][0] = dark[0][1]
-
-
- # 0 is projection data
- proj = [stack[i] for i in range(len(itype)) if itype[i] == 0 ]
- angle_proj = [angles[i] for i in range(len(itype)) if itype[i] == 0 ]
- angle_proj = numpy.asarray (angle_proj)
- angle_proj = angle_proj.astype(numpy.float32)
-
- return angle_proj , numpy.asarray(proj) , dark, flat
-
-
-
-if __name__ == '__main__':
- angles, proj, dark, flat = loadNexus('../../../data/24737_fd.nxs')
-
- parallelbeam = AcquisitionGeometry('parallel', '3D' ,
- angles=angles,
- pixel_num_h=numpy.shape(proj)[2],
- pixel_num_v=numpy.shape(proj)[1],
- )
- sino = SinogramData( proj , geometry=parallelbeam)
-
- normalizer = Normalizer()
- normalizer.setInput(sino)
- normalizer.setFlatField(flat)
- normalizer.setDarkField(dark)
- norm = normalizer.getOutput()
- print ("Processor min {0} max {1}".format(norm.as_array().min(), norm.as_array().max()))
-
- norm1 = numpy.asarray(
- [Normalizer.normalizeProjection( p, flat, dark, 1e-5 )
- for p in proj]
- )
-
- print ("Numpy min {0} max {1}".format(norm1.min(), norm1.max()))
-
- cor_finder = CenterOfRotationFinder()
- cor_finder.setInput(sino)
- cor = cor_finder.getOutput()
- print ("center of rotation {0} == 86.25?".format(cor))
-
- conebeam = AcquisitionGeometry('cone', '3D' ,
- angles=angles,
- pixel_num_h=numpy.shape(proj)[2],
- pixel_num_v=numpy.shape(proj)[1],
- )
- sino = SinogramData( proj , geometry=conebeam)
- try:
- cor_finder.setInput(sino)
- cor = cor_finder.getOutput()
- except ValueError as err:
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018 Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License
+
+from ccpi.framework import DataSetProcessor, DataSet, VolumeData, SinogramData, ImageGeometry, AcquisitionGeometry
+import numpy
+import h5py
+from scipy import ndimage
+
+class Normalizer(DataSetProcessor):
+ '''Normalization based on flat and dark
+
+ This processor read in a SinogramDataSet and normalises it based on
+ the instrument reading with and without incident photons or neutrons.
+
+ Input: SinogramDataSet
+ Parameter: 2D projection with flat field (or stack)
+ 2D projection with dark field (or stack)
+ Output: SinogramDataSetn
+ '''
+
+ def __init__(self, flat_field = None, dark_field = None, tolerance = 1e-5):
+ kwargs = {
+ 'flat_field' : None,
+ 'dark_field' : None,
+ # very small number. Used when there is a division by zero
+ 'tolerance' : tolerance
+ }
+
+ #DataSetProcessor.__init__(self, **kwargs)
+ super(Normalizer, self).__init__(**kwargs)
+ if not flat_field is None:
+ self.setFlatField(flat_field)
+ if not dark_field is None:
+ self.setDarkField(dark_field)
+
+ def checkInput(self, dataset):
+ if dataset.number_of_dimensions == 3:
+ return True
+ else:
+ raise ValueError("Expected input dimensions is 2 or 3, got {0}"\
+ .format(dataset.number_of_dimensions))
+
+ def setDarkField(self, df):
+ if type(df) is numpy.ndarray:
+ if len(numpy.shape(df)) == 3:
+ raise ValueError('Dark Field should be 2D')
+ elif len(numpy.shape(df)) == 2:
+ self.dark_field = df
+ elif issubclass(type(df), DataSet):
+ self.dark_field = self.setDarkField(df.as_array())
+
+ def setFlatField(self, df):
+ if type(df) is numpy.ndarray:
+ if len(numpy.shape(df)) == 3:
+ raise ValueError('Flat Field should be 2D')
+ elif len(numpy.shape(df)) == 2:
+ self.flat_field = df
+ elif issubclass(type(df), DataSet):
+ self.flat_field = self.setDarkField(df.as_array())
+
+ @staticmethod
+ def normalizeProjection(projection, flat, dark, tolerance):
+ a = (projection - dark)
+ b = (flat-dark)
+ with numpy.errstate(divide='ignore', invalid='ignore'):
+ c = numpy.true_divide( a, b )
+ c[ ~ numpy.isfinite( c )] = tolerance # set to not zero if 0/0
+ return c
+
+ def process(self):
+
+ projections = self.getInput()
+ dark = self.dark_field
+ flat = self.flat_field
+
+ if not (projections.shape[1:] == dark.shape and \
+ projections.shape[1:] == flat.shape):
+ raise ValueError('Flats/Dark and projections size do not match.')
+
+
+ a = numpy.asarray(
+ [ Normalizer.normalizeProjection(
+ projection, flat, dark, self.tolerance) \
+ for projection in projections.as_array() ]
+ )
+ y = type(projections)( a , True,
+ dimension_labels=projections.dimension_labels,
+ geometry=projections.geometry)
+ return y
+
+
+class CenterOfRotationFinder(DataSetProcessor):
+ '''Processor to find the center of rotation in a parallel beam experiment
+
+ This processor read in a SinogramDataSet and finds the center of rotation
+ based on Nghia Vo's method. https://doi.org/10.1364/OE.22.019078
+
+ Input: SinogramDataSet
+
+ Output: float. center of rotation in pixel coordinate
+ '''
+
+ def __init__(self):
+ kwargs = {
+
+ }
+
+ #DataSetProcessor.__init__(self, **kwargs)
+ super(CenterOfRotationFinder, self).__init__(**kwargs)
+
+ def checkInput(self, dataset):
+ if dataset.number_of_dimensions == 3:
+ if dataset.geometry.geom_type == 'parallel':
+ return True
+ else:
+ raise ValueError('This algorithm is suitable only for parallel beam geometry')
+ else:
+ raise ValueError("Expected input dimensions is 3, got {0}"\
+ .format(dataset.number_of_dimensions))
+
+
+ # #########################################################################
+ # Copyright (c) 2015, UChicago Argonne, LLC. All rights reserved. #
+ # #
+ # Copyright 2015. UChicago Argonne, LLC. This software was produced #
+ # under U.S. Government contract DE-AC02-06CH11357 for Argonne National #
+ # Laboratory (ANL), which is operated by UChicago Argonne, LLC for the #
+ # U.S. Department of Energy. The U.S. Government has rights to use, #
+ # reproduce, and distribute this software. NEITHER THE GOVERNMENT NOR #
+ # UChicago Argonne, LLC MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR #
+ # ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. If software is #
+ # modified to produce derivative works, such modified software should #
+ # be clearly marked, so as not to confuse it with the version available #
+ # from ANL. #
+ # #
+ # Additionally, redistribution and use in source and binary forms, with #
+ # or without modification, are permitted provided that the following #
+ # conditions are met: #
+ # #
+ # * Redistributions of source code must retain the above copyright #
+ # notice, this list of conditions and the following disclaimer. #
+ # #
+ # * Redistributions in binary form must reproduce the above copyright #
+ # notice, this list of conditions and the following disclaimer in #
+ # the documentation and/or other materials provided with the #
+ # distribution. #
+ # #
+ # * Neither the name of UChicago Argonne, LLC, Argonne National #
+ # Laboratory, ANL, the U.S. Government, nor the names of its #
+ # contributors may be used to endorse or promote products derived #
+ # from this software without specific prior written permission. #
+ # #
+ # THIS SOFTWARE IS PROVIDED BY UChicago Argonne, LLC AND CONTRIBUTORS #
+ # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT #
+ # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS #
+ # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL UChicago #
+ # Argonne, LLC OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, #
+ # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, #
+ # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; #
+ # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER #
+ # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT #
+ # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN #
+ # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE #
+ # POSSIBILITY OF SUCH DAMAGE. #
+ # #########################################################################
+
+ @staticmethod
+ def as_ndarray(arr, dtype=None, copy=False):
+ if not isinstance(arr, numpy.ndarray):
+ arr = numpy.array(arr, dtype=dtype, copy=copy)
+ return arr
+
+ @staticmethod
+ def as_dtype(arr, dtype, copy=False):
+ if not arr.dtype == dtype:
+ arr = numpy.array(arr, dtype=dtype, copy=copy)
+ return arr
+
+ @staticmethod
+ def as_float32(arr):
+ arr = CenterOfRotationFinder.as_ndarray(arr, numpy.float32)
+ return CenterOfRotationFinder.as_dtype(arr, numpy.float32)
+
+
+
+
+ @staticmethod
+ def find_center_vo(tomo, ind=None, smin=-40, smax=40, srad=10, step=0.5,
+ ratio=2., drop=20):
+ """
+ Find rotation axis location using Nghia Vo's method. :cite:`Vo:14`.
+
+ Parameters
+ ----------
+ tomo : ndarray
+ 3D tomographic data.
+ ind : int, optional
+ Index of the slice to be used for reconstruction.
+ smin, smax : int, optional
+ Reference to the horizontal center of the sinogram.
+ srad : float, optional
+ Fine search radius.
+ step : float, optional
+ Step of fine searching.
+ ratio : float, optional
+ The ratio between the FOV of the camera and the size of object.
+ It's used to generate the mask.
+ drop : int, optional
+ Drop lines around vertical center of the mask.
+
+ Returns
+ -------
+ float
+ Rotation axis location.
+
+ Notes
+ -----
+ The function may not yield a correct estimate, if:
+
+ - the sample size is bigger than the field of view of the camera.
+ In this case the ``ratio`` argument need to be set larger
+ than the default of 2.0.
+
+ - there is distortion in the imaging hardware. If there's
+ no correction applied, the center of the projection image may
+ yield a better estimate.
+
+ - the sample contrast is weak. Paganin's filter need to be applied
+ to overcome this.
+
+ - the sample was changed during the scan.
+ """
+ tomo = CenterOfRotationFinder.as_float32(tomo)
+
+ if ind is None:
+ ind = tomo.shape[1] // 2
+ _tomo = tomo[:, ind, :]
+
+
+
+ # Reduce noise by smooth filters. Use different filters for coarse and fine search
+ _tomo_cs = ndimage.filters.gaussian_filter(_tomo, (3, 1))
+ _tomo_fs = ndimage.filters.median_filter(_tomo, (2, 2))
+
+ # Coarse and fine searches for finding the rotation center.
+ if _tomo.shape[0] * _tomo.shape[1] > 4e6: # If data is large (>2kx2k)
+ #_tomo_coarse = downsample(numpy.expand_dims(_tomo_cs,1), level=2)[:, 0, :]
+ #init_cen = _search_coarse(_tomo_coarse, smin, smax, ratio, drop)
+ #fine_cen = _search_fine(_tomo_fs, srad, step, init_cen*4, ratio, drop)
+ init_cen = CenterOfRotationFinder._search_coarse(_tomo_cs, smin,
+ smax, ratio, drop)
+ fine_cen = CenterOfRotationFinder._search_fine(_tomo_fs, srad,
+ step, init_cen,
+ ratio, drop)
+ else:
+ init_cen = CenterOfRotationFinder._search_coarse(_tomo_cs,
+ smin, smax,
+ ratio, drop)
+ fine_cen = CenterOfRotationFinder._search_fine(_tomo_fs, srad,
+ step, init_cen,
+ ratio, drop)
+
+ #logger.debug('Rotation center search finished: %i', fine_cen)
+ return fine_cen
+
+
+ @staticmethod
+ def _search_coarse(sino, smin, smax, ratio, drop):
+ """
+ Coarse search for finding the rotation center.
+ """
+ (Nrow, Ncol) = sino.shape
+ centerfliplr = (Ncol - 1.0) / 2.0
+
+ # Copy the sinogram and flip left right, the purpose is to
+ # make a full [0;2Pi] sinogram
+ _copy_sino = numpy.fliplr(sino[1:])
+
+ # This image is used for compensating the shift of sinogram 2
+ temp_img = numpy.zeros((Nrow - 1, Ncol), dtype='float32')
+ temp_img[:] = sino[-1]
+
+ # Start coarse search in which the shift step is 1
+ listshift = numpy.arange(smin, smax + 1)
+ listmetric = numpy.zeros(len(listshift), dtype='float32')
+ mask = CenterOfRotationFinder._create_mask(2 * Nrow - 1, Ncol,
+ 0.5 * ratio * Ncol, drop)
+ for i in listshift:
+ _sino = numpy.roll(_copy_sino, i, axis=1)
+ if i >= 0:
+ _sino[:, 0:i] = temp_img[:, 0:i]
+ else:
+ _sino[:, i:] = temp_img[:, i:]
+ listmetric[i - smin] = numpy.sum(numpy.abs(numpy.fft.fftshift(
+ #pyfftw.interfaces.numpy_fft.fft2(
+ # numpy.vstack((sino, _sino)))
+ numpy.fft.fft2(numpy.vstack((sino, _sino)))
+ )) * mask)
+ minpos = numpy.argmin(listmetric)
+ return centerfliplr + listshift[minpos] / 2.0
+
+ @staticmethod
+ def _search_fine(sino, srad, step, init_cen, ratio, drop):
+ """
+ Fine search for finding the rotation center.
+ """
+ Nrow, Ncol = sino.shape
+ centerfliplr = (Ncol + 1.0) / 2.0 - 1.0
+ # Use to shift the sinogram 2 to the raw CoR.
+ shiftsino = numpy.int16(2 * (init_cen - centerfliplr))
+ _copy_sino = numpy.roll(numpy.fliplr(sino[1:]), shiftsino, axis=1)
+ if init_cen <= centerfliplr:
+ lefttake = numpy.int16(numpy.ceil(srad + 1))
+ righttake = numpy.int16(numpy.floor(2 * init_cen - srad - 1))
+ else:
+ lefttake = numpy.int16(numpy.ceil(
+ init_cen - (Ncol - 1 - init_cen) + srad + 1))
+ righttake = numpy.int16(numpy.floor(Ncol - 1 - srad - 1))
+ Ncol1 = righttake - lefttake + 1
+ mask = CenterOfRotationFinder._create_mask(2 * Nrow - 1, Ncol1,
+ 0.5 * ratio * Ncol, drop)
+ numshift = numpy.int16((2 * srad) / step) + 1
+ listshift = numpy.linspace(-srad, srad, num=numshift)
+ listmetric = numpy.zeros(len(listshift), dtype='float32')
+ factor1 = numpy.mean(sino[-1, lefttake:righttake])
+ num1 = 0
+ for i in listshift:
+ _sino = ndimage.interpolation.shift(
+ _copy_sino, (0, i), prefilter=False)
+ factor2 = numpy.mean(_sino[0,lefttake:righttake])
+ _sino = _sino * factor1 / factor2
+ sinojoin = numpy.vstack((sino, _sino))
+ listmetric[num1] = numpy.sum(numpy.abs(numpy.fft.fftshift(
+ #pyfftw.interfaces.numpy_fft.fft2(
+ # sinojoin[:, lefttake:righttake + 1])
+ numpy.fft.fft2(sinojoin[:, lefttake:righttake + 1])
+ )) * mask)
+ num1 = num1 + 1
+ minpos = numpy.argmin(listmetric)
+ return init_cen + listshift[minpos] / 2.0
+
+ @staticmethod
+ def _create_mask(nrow, ncol, radius, drop):
+ du = 1.0 / ncol
+ dv = (nrow - 1.0) / (nrow * 2.0 * numpy.pi)
+ centerrow = numpy.ceil(nrow / 2) - 1
+ centercol = numpy.ceil(ncol / 2) - 1
+ # added by Edoardo Pasca
+ centerrow = int(centerrow)
+ centercol = int(centercol)
+ mask = numpy.zeros((nrow, ncol), dtype='float32')
+ for i in range(nrow):
+ num1 = numpy.round(((i - centerrow) * dv / radius) / du)
+ (p1, p2) = numpy.int16(numpy.clip(numpy.sort(
+ (-num1 + centercol, num1 + centercol)), 0, ncol - 1))
+ mask[i, p1:p2 + 1] = numpy.ones(p2 - p1 + 1, dtype='float32')
+ if drop < centerrow:
+ mask[centerrow - drop:centerrow + drop + 1,
+ :] = numpy.zeros((2 * drop + 1, ncol), dtype='float32')
+ mask[:,centercol-1:centercol+2] = numpy.zeros((nrow, 3), dtype='float32')
+ return mask
+
+ def process(self):
+
+ projections = self.getInput()
+
+ cor = CenterOfRotationFinder.find_center_vo(projections.as_array())
+
+ return cor
+
+def loadNexus(filename):
+ '''Load a dataset stored in a NeXuS file (HDF5)'''
+ ###########################################################################
+ ## Load a dataset
+ nx = h5py.File(filename, "r")
+
+ data = nx.get('entry1/tomo_entry/data/rotation_angle')
+ angles = numpy.zeros(data.shape)
+ data.read_direct(angles)
+
+ data = nx.get('entry1/tomo_entry/data/data')
+ stack = numpy.zeros(data.shape)
+ data.read_direct(stack)
+ data = nx.get('entry1/tomo_entry/instrument/detector/image_key')
+
+ itype = numpy.zeros(data.shape)
+ data.read_direct(itype)
+ # 2 is dark field
+ darks = [stack[i] for i in range(len(itype)) if itype[i] == 2 ]
+ dark = darks[0]
+ for i in range(1, len(darks)):
+ dark += darks[i]
+ dark = dark / len(darks)
+ #dark[0][0] = dark[0][1]
+
+ # 1 is flat field
+ flats = [stack[i] for i in range(len(itype)) if itype[i] == 1 ]
+ flat = flats[0]
+ for i in range(1, len(flats)):
+ flat += flats[i]
+ flat = flat / len(flats)
+ #flat[0][0] = dark[0][1]
+
+
+ # 0 is projection data
+ proj = [stack[i] for i in range(len(itype)) if itype[i] == 0 ]
+ angle_proj = [angles[i] for i in range(len(itype)) if itype[i] == 0 ]
+ angle_proj = numpy.asarray (angle_proj)
+ angle_proj = angle_proj.astype(numpy.float32)
+
+ return angle_proj , numpy.asarray(proj) , dark, flat
+
+
+
+if __name__ == '__main__':
+ angles, proj, dark, flat = loadNexus('../../../data/24737_fd.nxs')
+
+ parallelbeam = AcquisitionGeometry('parallel', '3D' ,
+ angles=angles,
+ pixel_num_h=numpy.shape(proj)[2],
+ pixel_num_v=numpy.shape(proj)[1],
+ )
+ sino = SinogramData( proj , geometry=parallelbeam)
+
+ normalizer = Normalizer()
+ normalizer.setInput(sino)
+ normalizer.setFlatField(flat)
+ normalizer.setDarkField(dark)
+ norm = normalizer.getOutput()
+ print ("Processor min {0} max {1}".format(norm.as_array().min(), norm.as_array().max()))
+
+ norm1 = numpy.asarray(
+ [Normalizer.normalizeProjection( p, flat, dark, 1e-5 )
+ for p in proj]
+ )
+
+ print ("Numpy min {0} max {1}".format(norm1.min(), norm1.max()))
+
+ cor_finder = CenterOfRotationFinder()
+ cor_finder.setInput(sino)
+ cor = cor_finder.getOutput()
+ print ("center of rotation {0} == 86.25?".format(cor))
+
+ conebeam = AcquisitionGeometry('cone', '3D' ,
+ angles=angles,
+ pixel_num_h=numpy.shape(proj)[2],
+ pixel_num_v=numpy.shape(proj)[1],
+ )
+ sino = SinogramData( proj , geometry=conebeam)
+ try:
+ cor_finder.setInput(sino)
+ cor = cor_finder.getOutput()
+ except ValueError as err:
print (err) \ No newline at end of file
diff --git a/Wrappers/Python/wip/simple_demo.py b/Wrappers/Python/wip/simple_demo.py
index 1bf2cba..1ca99f5 100644
--- a/Wrappers/Python/wip/simple_demo.py
+++ b/Wrappers/Python/wip/simple_demo.py
@@ -3,7 +3,7 @@
from ccpi.framework import VolumeData, ImageGeometry, AcquisitionGeometry
from ccpi.reconstruction.algs import *
-from ccpi.reconstruction.funcs import Norm2sq, Norm1
+from ccpi.reconstruction.funcs import Norm2sq, Norm1, TV2D
from ccpi.reconstruction.astra_ops import AstraProjectorSimple
import numpy as np
@@ -93,7 +93,7 @@ g0 = Norm1(lam)
x_fista1, it1, timing1, criter1 = FISTA(x_init, f, g0)
plt.imshow(x_fista1.array)
-plt.title('FISTA')
+plt.title('FISTA1')
plt.show()
plt.semilogy(criter1)
@@ -104,12 +104,25 @@ opt = {'tol': 1e-4, 'iter': 10000}
x_fbpd1, it_fbpd1, timing_fbpd1, criter_fbpd1 = FBPD(x_init,None,f,g0,opt=opt)
plt.imshow(x_fbpd1.array)
-plt.title('FBPD')
+plt.title('FBPD1')
plt.show()
plt.semilogy(criter_fbpd1)
plt.show()
+# Now FBPD for least squares plus TV
+lamtv = 1
+gtv = TV2D(lamtv)
+
+x_fbpdtv, it_fbpdtv, timing_fbpdtv, criter_fbpdtv = FBPD(x_init,None,f,gtv,opt=opt)
+
+plt.imshow(x_fbpdtv.array)
+plt.show()
+
+plt.semilogy(criter_fbpdtv)
+plt.show()
+
+
# Run CGLS, which should agree with the FISTA0
x_CGLS, it_CGLS, timing_CGLS, criter_CGLS = CGLS(Aop, b, 1000, x_init)
@@ -124,42 +137,51 @@ plt.show()
#%%
+
+clims = (-0.5,2.5)
cols = 3
rows = 2
current = 1
fig = plt.figure()
# projections row
a=fig.add_subplot(rows,cols,current)
-a.set_title('phantom {0}'.format(numpy.shape(Phantom.as_array())))
-imgplot = plt.imshow(Phantom.as_array())
+a.set_title('phantom {0}'.format(np.shape(Phantom.as_array())))
+imgplot = plt.imshow(Phantom.as_array(),vmin=clims[0],vmax=clims[1])
current = current + 1
a=fig.add_subplot(rows,cols,current)
a.set_title('FISTA0')
-imgplot = plt.imshow(x_fista0.as_array())
+imgplot = plt.imshow(x_fista0.as_array(),vmin=clims[0],vmax=clims[1])
current = current + 1
a=fig.add_subplot(rows,cols,current)
a.set_title('FISTA1')
-imgplot = plt.imshow(x_fista1.as_array())
+imgplot = plt.imshow(x_fista1.as_array(),vmin=clims[0],vmax=clims[1])
current = current + 1
a=fig.add_subplot(rows,cols,current)
-a.set_title('FBPD')
-imgplot = plt.imshow(x_fbpd1.as_array())
+a.set_title('FBPD1')
+imgplot = plt.imshow(x_fbpd1.as_array(),vmin=clims[0],vmax=clims[1])
current = current + 1
a=fig.add_subplot(rows,cols,current)
a.set_title('CGLS')
-imgplot = plt.imshow(x_CGLS.as_array())
+imgplot = plt.imshow(x_CGLS.as_array(),vmin=clims[0],vmax=clims[1])
current = current + 1
a=fig.add_subplot(rows,cols,current)
-a.set_title('criteria')
+a.set_title('FBPD TV')
+imgplot = plt.imshow(x_fbpdtv.as_array(),vmin=clims[0],vmax=clims[1])
+
+fig = plt.figure()
+# projections row
+b=fig.add_subplot(1,1,1)
+b.set_title('criteria')
imgplot = plt.loglog(criter0 , label='FISTA0')
imgplot = plt.loglog(criter1 , label='FISTA1')
-imgplot = plt.loglog(criter_fbpd1, label='FBPD')
+imgplot = plt.loglog(criter_fbpd1, label='FBPD1')
imgplot = plt.loglog(criter_CGLS, label='CGLS')
-a.legend(loc='right')
+imgplot = plt.loglog(criter_fbpdtv, label='FBPD TV')
+b.legend(loc='right')
plt.show()
#%% \ No newline at end of file
diff --git a/Wrappers/Python/wip/simple_demo_tv.py b/Wrappers/Python/wip/simple_demo_tv.py
deleted file mode 100644
index 29e2349..0000000
--- a/Wrappers/Python/wip/simple_demo_tv.py
+++ /dev/null
@@ -1,99 +0,0 @@
-
-
-import sys
-
-sys.path.append("..")
-
-from ccpi.framework import *
-from ccpi.reconstruction.algs import *
-from ccpi.reconstruction.funcs import *
-from ccpi.reconstruction.ops import *
-from ccpi.reconstruction.astra_ops import *
-
-import numpy as np
-import matplotlib.pyplot as plt
-
-test_case = 2 # 1=parallel2D, 2=cone2D
-
-# Set up phantom
-N = 128
-
-x = np.zeros((N,N))
-x[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 1.0
-x[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 2.0
-
-plt.imshow(x)
-plt.show()
-
-vg = ImageGeometry(N,N,None, 1,1,None)
-
-Phantom = VolumeData(x,geometry=vg)
-
-# Set up measurement geometry
-angles_num = 20; # angles number
-
-if test_case==1:
- angles = np.linspace(0,np.pi,angles_num,endpoint=False)
-elif test_case==2:
- angles = np.linspace(0,2*np.pi,angles_num,endpoint=False)
-else:
- NotImplemented
-
-det_w = 1.0
-det_num = N
-SourceOrig = 200
-OrigDetec = 0
-
-# Parallelbeam geometry test
-if test_case==1:
- pg = AcquisitionGeometry('parallel',
- '2D',
- angles,
- det_num,det_w)
-elif test_case==2:
- pg = AcquisitionGeometry('cone',
- '2D',
- angles,
- det_num,
- det_w,
- dist_source_center=SourceOrig,
- dist_center_detector=OrigDetec)
-
-# ASTRA operator using volume and sinogram geometries
-Aop = AstraProjectorSimple(vg, pg, 'gpu')
-
-# Unused old astra projector without geometry
-# Aop_old = AstraProjector(det_w, det_num, SourceOrig,
-# OrigDetec, angles,
-# N,'fanbeam','gpu')
-
-# Try forward and backprojection
-b = Aop.direct(Phantom)
-out2 = Aop.adjoint(b)
-
-plt.imshow(b.array)
-plt.show()
-
-plt.imshow(out2.array)
-plt.show()
-
-# Create least squares object instance with projector and data.
-f = Norm2sq(Aop,b,c=0.5)
-
-# Initial guess
-x_init = VolumeData(np.zeros(x.shape),geometry=vg)
-
-# Now least squares plus 1-norm regularization
-lam = 1
-g0 = TV2D(lam)
-
-
-# Run FBPD=Forward Backward Primal Dual method on least squares plus 1-norm
-opt = {'tol': 1e-4, 'iter': 10000}
-x_fbpd1, it_fbpd1, timing_fbpd1, criter_fbpd1 = FBPD(x_init,None,f,g0,opt=opt)
-
-plt.imshow(x_fbpd1.array)
-plt.show()
-
-plt.semilogy(criter_fbpd1)
-plt.show() \ No newline at end of file