diff options
6 files changed, 1136 insertions, 45 deletions
diff --git a/Wrappers/Python/demos/PDHG_TV_Denoising_Poisson.py b/Wrappers/Python/demos/PDHG_TV_Denoising_Poisson.py index 70f6b9b..0db8c29 100644 --- a/Wrappers/Python/demos/PDHG_TV_Denoising_Poisson.py +++ b/Wrappers/Python/demos/PDHG_TV_Denoising_Poisson.py @@ -1,41 +1,43 @@ -# -*- coding: utf-8 -*- -#   This work is part of the Core Imaging Library developed by -#   Visual Analytics and Imaging System Group of the Science Technology -#   Facilities Council, STFC - -#   Copyright 2018-2019 STFC,  University of Manchester - -#   Licensed under the Apache License, Version 2.0 (the "License"); -#   you may not use this file except in compliance with the License. -#   You may obtain a copy of the License at - -#       http://www.apache.org/licenses/LICENSE-2.0 - -#   Unless required by applicable law or agreed to in writing, software -#   distributed under the License is distributed on an "AS IS" BASIS, -#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -#   See the License for the specific language governing permissions and -#   limitations under the License. +#======================================================================== +# Copyright 2019 Science Technology Facilities Council +# Copyright 2019 University of Manchester +# +# This work is part of the Core Imaging Library developed by Science Technology +# Facilities Council and University of Manchester +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +#         http://www.apache.org/licenses/LICENSE-2.0.txt +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +#=========================================================================  """   Total Variation Denoising using PDHG algorithm: -             min_{x} max_{y} < K x, y > + g(x) - f^{*}(y)  - -  Problem:     min_x, x>0  \alpha * ||\nabla x||_{1} + \int x - g * log(x) -             \nabla: Gradient operator               -             g: Noisy Data with Poisson Noise               \alpha: Regularization parameter -             Method = 0:  K = [ \nabla, -                                 Identity] -                                                                     -             Method = 1:  K = \nabla     +             \nabla: Gradient operator   +              +             g: Noisy Data with Poisson Noise +             Method = 0 ( PDHG - split ) :  K = [ \nabla, +                                                 Identity] +                           +                                                                     +             Method = 1 (PDHG - explicit ):  K = \nabla      +                         """  from ccpi.framework import ImageData, ImageGeometry @@ -66,10 +68,25 @@ ag = ig  n1 = random_noise(data.as_array(), mode = 'poisson', seed = 10)  noisy_data = ImageData(n1) + +# Show Ground Truth and Noisy Data +plt.figure(figsize=(15,15)) +plt.subplot(2,1,1) +plt.imshow(data.as_array()) +plt.title('Ground Truth') +plt.colorbar() +plt.subplot(2,1,2) +plt.imshow(noisy_data.as_array()) +plt.title('Noisy Data') +plt.colorbar() +plt.show() + +#%% +  # Regularisation Parameter  alpha = 2 -method = '1' +method = '0'  if method == '0': @@ -99,26 +116,15 @@ else:  # Compute operator Norm  normK = operator.norm() -# Primal & dual stepsizes +# Primal & Dual stepsizes  sigma = 1  tau = 1/(sigma*normK**2) -opt = {'niter':2000, 'memopt': True} - -# Setup and run the PDHG algorithm -pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma, memopt=True) -pdhg.max_iteration = 2000 -pdhg.update_objective_interval = 50 - -def pdgap_objectives(niter, objective, solution): -     - -     print( "{:04}/{:04} {:<5} {:.4f} {:<5} {:.4f} {:<5} {:.4f}".\ -                      format(niter, pdhg.max_iteration,'', \ -                             objective[0],'',\ -                             objective[1],'',\ -                             objective[2])) -pdhg.run(2000, callback = pdgap_objectives) +# Setup and Run the PDHG algorithm +pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma) +pdhg.max_iteration = 3000 +pdhg.update_objective_interval = 200 +pdhg.run(3000, verbose=False)  plt.figure(figsize=(15,15)) diff --git a/Wrappers/Python/demos/PDHG_examples/PDHG_TGV_Denoising_SaltPepper.py b/Wrappers/Python/demos/PDHG_examples/PDHG_TGV_Denoising_SaltPepper.py new file mode 100644 index 0000000..57f6fcd --- /dev/null +++ b/Wrappers/Python/demos/PDHG_examples/PDHG_TGV_Denoising_SaltPepper.py @@ -0,0 +1,245 @@ +#======================================================================== +# Copyright 2019 Science Technology Facilities Council +# Copyright 2019 University of Manchester +# +# This work is part of the Core Imaging Library developed by Science Technology +# Facilities Council and University of Manchester +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +#         http://www.apache.org/licenses/LICENSE-2.0.txt +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +#========================================================================= +"""  + +Total Generalised Variation (TGV) Denoising using PDHG algorithm: + + +Problem:     min_{x} \alpha * ||\nabla x - w||_{2,1} + +                     \beta *  || E w ||_{2,1} + +                     \frac{1}{2} * || x - g ||_{2}^{2} + +             \alpha: Regularization parameter +             \alpha: Regularization parameter +              +             \nabla: Gradient operator  +              E: Symmetrized Gradient operator +              +             g: Noisy Data with Salt & Pepper Noise +                           +             Method = 0 ( PDHG - split ) :  K = [ \nabla, - Identity +                                                  ZeroOperator, E  +                                                  Identity, ZeroOperator] +                           +                                                                     +             Method = 1 (PDHG - explicit ):  K = [ \nabla, - Identity +                                                  ZeroOperator, E ]  +                                                                 +""" + +from ccpi.framework import ImageData, ImageGeometry + +import numpy as np  +import numpy                           +import matplotlib.pyplot as plt + +from ccpi.optimisation.algorithms import PDHG + +from ccpi.optimisation.operators import BlockOperator, Identity, \ +                        Gradient, SymmetrizedGradient, ZeroOperator +from ccpi.optimisation.functions import ZeroFunction, L1Norm, \ +                      MixedL21Norm, BlockFunction + +from skimage.util import random_noise + +# Create phantom for TGV SaltPepper denoising + +N = 100 + +data = np.zeros((N,N)) + +x1 = np.linspace(0, int(N/2), N) +x2 = np.linspace(int(N/2), 0., N) +xv, yv = np.meshgrid(x1, x2) + +xv[int(N/4):int(3*N/4)-1, int(N/4):int(3*N/4)-1] = yv[int(N/4):int(3*N/4)-1, int(N/4):int(3*N/4)-1].T + +data = xv +data = ImageData(data/data.max()) + +ig = ImageGeometry(voxel_num_x = N, voxel_num_y = N) +ag = ig + +# Create noisy data. Add Gaussian noise +n1 = random_noise(data.as_array(), mode = 's&p', salt_vs_pepper = 0.9, amount=0.2) +noisy_data = ImageData(n1) + +# Show Ground Truth and Noisy Data +plt.figure(figsize=(15,15)) +plt.subplot(2,1,1) +plt.imshow(data.as_array()) +plt.title('Ground Truth') +plt.colorbar() +plt.subplot(2,1,2) +plt.imshow(noisy_data.as_array()) +plt.title('Noisy Data') +plt.colorbar() +plt.show() + +# Regularisation Parameters +alpha = 0.8 +beta = numpy.sqrt(2)* alpha + +method = '1' + +if method == '0': + +    # Create operators +    op11 = Gradient(ig) +    op12 = Identity(op11.range_geometry()) +     +    op22 = SymmetrizedGradient(op11.domain_geometry())     +    op21 = ZeroOperator(ig, op22.range_geometry()) +         +    op31 = Identity(ig, ag) +    op32 = ZeroOperator(op22.domain_geometry(), ag) +     +    operator = BlockOperator(op11, -1*op12, op21, op22, op31, op32, shape=(3,2) )  +         +    f1 = alpha * MixedL21Norm() +    f2 = beta * MixedL21Norm()  +    f3 = L1Norm(b=noisy_data)     +    f = BlockFunction(f1, f2, f3)          +    g = ZeroFunction() +         +else: +     +    # Create operators +    op11 = Gradient(ig) +    op12 = Identity(op11.range_geometry()) +    op22 = SymmetrizedGradient(op11.domain_geometry())     +    op21 = ZeroOperator(ig, op22.range_geometry())     +     +    operator = BlockOperator(op11, -1*op12, op21, op22, shape=(2,2) )       +     +    f1 = alpha * MixedL21Norm() +    f2 = beta * MixedL21Norm()      +     +    f = BlockFunction(f1, f2)          +    g = BlockFunction(L1Norm(b=noisy_data), ZeroFunction()) +      +## Compute operator Norm +normK = operator.norm() +# +# Primal & dual stepsizes +sigma = 1 +tau = 1/(sigma*normK**2) + + +# Setup and run the PDHG algorithm +pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma) +pdhg.max_iteration = 2000 +pdhg.update_objective_interval = 50 +pdhg.run(2000, verbose = False) + +#%% +plt.figure(figsize=(15,15)) +plt.subplot(3,1,1) +plt.imshow(data.as_array()) +plt.title('Ground Truth') +plt.colorbar() +plt.subplot(3,1,2) +plt.imshow(noisy_data.as_array()) +plt.title('Noisy Data') +plt.colorbar() +plt.subplot(3,1,3) +plt.imshow(pdhg.get_output()[0].as_array()) +plt.title('TGV Reconstruction') +plt.colorbar() +plt.show() +##  +plt.plot(np.linspace(0,N,N), data.as_array()[int(N/2),:], label = 'GTruth') +plt.plot(np.linspace(0,N,N), pdhg.get_output()[0].as_array()[int(N/2),:], label = 'TV reconstruction') +plt.legend() +plt.title('Middle Line Profiles') +plt.show() + + +#%% Check with CVX solution + +from ccpi.optimisation.operators import SparseFiniteDiff + +try: +    from cvxpy import * +    cvx_not_installable = True +except ImportError: +    cvx_not_installable = False + +if cvx_not_installable:     +     +    u = Variable(ig.shape) +    w1 = Variable((N, N)) +    w2 = Variable((N, N)) +     +    # create TGV regulariser +    DY = SparseFiniteDiff(ig, direction=0, bnd_cond='Neumann') +    DX = SparseFiniteDiff(ig, direction=1, bnd_cond='Neumann') +     +    regulariser = alpha * sum(norm(vstack([DX.matrix() * vec(u) - vec(w1), \ +                                           DY.matrix() * vec(u) - vec(w2)]), 2, axis = 0)) + \ +                  beta * sum(norm(vstack([ DX.matrix().transpose() * vec(w1), DY.matrix().transpose() * vec(w2), \ +                                      0.5 * ( DX.matrix().transpose() * vec(w2) + DY.matrix().transpose() * vec(w1) ), \ +                                      0.5 * ( DX.matrix().transpose() * vec(w2) + DY.matrix().transpose() * vec(w1) ) ]), 2, axis = 0  ) )   +     +    constraints = [] +    fidelity = pnorm(u - noisy_data.as_array(),1)     +    solver = MOSEK + +        # choose solver +    if 'MOSEK' in installed_solvers(): +        solver = MOSEK +    else: +        solver = SCS   +         +    obj =  Minimize( regulariser +  fidelity) +    prob = Problem(obj) +    result = prob.solve(verbose = True, solver = solver) +     +    diff_cvx = numpy.abs( pdhg.get_output()[0].as_array() - u.value ) +         +    plt.figure(figsize=(15,15)) +    plt.subplot(3,1,1) +    plt.imshow(pdhg.get_output()[0].as_array()) +    plt.title('PDHG solution') +    plt.colorbar() +    plt.subplot(3,1,2) +    plt.imshow(u.value) +    plt.title('CVX solution') +    plt.colorbar() +    plt.subplot(3,1,3) +    plt.imshow(diff_cvx) +    plt.title('Difference') +    plt.colorbar() +    plt.show()     +     +    plt.plot(np.linspace(0,N,N), pdhg.get_output()[0].as_array()[int(N/2),:], label = 'PDHG') +    plt.plot(np.linspace(0,N,N), u.value[int(N/2),:], label = 'CVX') +    plt.legend() +    plt.title('Middle Line Profiles') +    plt.show() +             +    print('Primal Objective (CVX) {} '.format(obj.value)) +    print('Primal Objective (PDHG) {} '.format(pdhg.objective[-1][0])) + + + + + diff --git a/Wrappers/Python/demos/PDHG_examples/PDHG_TV_Denoising_Gaussian.py b/Wrappers/Python/demos/PDHG_examples/PDHG_TV_Denoising_Gaussian.py new file mode 100644 index 0000000..afdb6a2 --- /dev/null +++ b/Wrappers/Python/demos/PDHG_examples/PDHG_TV_Denoising_Gaussian.py @@ -0,0 +1,204 @@ +#======================================================================== +# Copyright 2019 Science Technology Facilities Council +# Copyright 2019 University of Manchester +# +# This work is part of the Core Imaging Library developed by Science Technology +# Facilities Council and University of Manchester +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +#         http://www.apache.org/licenses/LICENSE-2.0.txt +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +#========================================================================= +"""  + +Total Variation Denoising using PDHG algorithm: + + +Problem:     min_{x} \alpha * ||\nabla x||_{2,1} + \frac{1}{2} * || x - g ||_{2}^{2} + +             \alpha: Regularization parameter +              +             \nabla: Gradient operator  +              +             g: Noisy Data with Gaussian Noise +                           +             Method = 0 ( PDHG - split ) :  K = [ \nabla, +                                                 Identity] +                           +                                                                     +             Method = 1 (PDHG - explicit ):  K = \nabla   +                                                                 +""" + +from ccpi.framework import ImageData, ImageGeometry + +import numpy as np  +import numpy                           +import matplotlib.pyplot as plt + +from ccpi.optimisation.algorithms import PDHG + +from ccpi.optimisation.operators import BlockOperator, Identity, Gradient +from ccpi.optimisation.functions import ZeroFunction, L2NormSquared, \ +                      MixedL21Norm, BlockFunction +       +# Load Data                       +N = 100 + +data = np.zeros((N,N)) +data[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 0.5 +data[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 1 +data = ImageData(data) +ig = ImageGeometry(voxel_num_x = N, voxel_num_y = N) +ag = ig +                       +# Create Noisy data. Add Gaussian noise +np.random.seed(10) +noisy_data = ImageData( data.as_array() + np.random.normal(0, 0.1, size=ig.shape) ) + +# Show Ground Truth and Noisy Data +plt.figure(figsize=(15,15)) +plt.subplot(2,1,1) +plt.imshow(data.as_array()) +plt.title('Ground Truth') +plt.colorbar() +plt.subplot(2,1,2) +plt.imshow(noisy_data.as_array()) +plt.title('Noisy Data') +plt.colorbar() +plt.show() + +# Regularisation Parameter +alpha = 0.2 + +method = '0' + +if method == '0': + +    # Create operators +    op1 = Gradient(ig) +    op2 = Identity(ig, ag) + +    # Create BlockOperator +    operator = BlockOperator(op1, op2, shape=(2,1) )  + +    # Create functions       +    f1 = alpha * MixedL21Norm() +    f2 = 0.5 * L2NormSquared(b = noisy_data)     +    f = BlockFunction(f1, f2)   +                                       +    g = ZeroFunction() +     +else: +     +    # Without the "Block Framework" +    operator =  Gradient(ig) +    f =  alpha * MixedL21Norm() +    g =  0.5 * L2NormSquared(b = noisy_data) +         +# Compute Operator Norm +normK = operator.norm() + +# Primal & Dual stepsizes +sigma = 1 +tau = 1/(sigma*normK**2) + +# Setup and Run the PDHG algorithm +pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma) +pdhg.max_iteration = 3000 +pdhg.update_objective_interval = 200 +pdhg.run(3000, verbose=False) + +# Show Results +plt.figure(figsize=(15,15)) +plt.subplot(3,1,1) +plt.imshow(data.as_array()) +plt.title('Ground Truth') +plt.colorbar() +plt.subplot(3,1,2) +plt.imshow(noisy_data.as_array()) +plt.title('Noisy Data') +plt.colorbar() +plt.subplot(3,1,3) +plt.imshow(pdhg.get_output().as_array()) +plt.title('TV Reconstruction') +plt.colorbar() +plt.show() + +plt.plot(np.linspace(0,N,N), data.as_array()[int(N/2),:], label = 'GTruth') +plt.plot(np.linspace(0,N,N), pdhg.get_output().as_array()[int(N/2),:], label = 'TV reconstruction') +plt.legend() +plt.title('Middle Line Profiles') +plt.show() + + +#%% Check with CVX solution + +from ccpi.optimisation.operators import SparseFiniteDiff + +try: +    from cvxpy import * +    cvx_not_installable = True +except ImportError: +    cvx_not_installable = False + + +if cvx_not_installable: + +    ##Construct problem     +    u = Variable(ig.shape) +     +    DY = SparseFiniteDiff(ig, direction=0, bnd_cond='Neumann') +    DX = SparseFiniteDiff(ig, direction=1, bnd_cond='Neumann') +     +    # Define Total Variation as a regulariser +    regulariser = alpha * sum(norm(vstack([DX.matrix() * vec(u), DY.matrix() * vec(u)]), 2, axis = 0)) +    fidelity = 0.5 * sum_squares(u - noisy_data.as_array()) +     +    # choose solver +    if 'MOSEK' in installed_solvers(): +        solver = MOSEK +    else: +        solver = SCS   +         +    obj =  Minimize( regulariser +  fidelity) +    prob = Problem(obj) +    result = prob.solve(verbose = True, solver = MOSEK) +     +    diff_cvx = numpy.abs( pdhg.get_output().as_array() - u.value ) +         +    plt.figure(figsize=(15,15)) +    plt.subplot(3,1,1) +    plt.imshow(pdhg.get_output().as_array()) +    plt.title('PDHG solution') +    plt.colorbar() +    plt.subplot(3,1,2) +    plt.imshow(u.value) +    plt.title('CVX solution') +    plt.colorbar() +    plt.subplot(3,1,3) +    plt.imshow(diff_cvx) +    plt.title('Difference') +    plt.colorbar() +    plt.show()     +     +    plt.plot(np.linspace(0,N,N), pdhg.get_output().as_array()[int(N/2),:], label = 'PDHG') +    plt.plot(np.linspace(0,N,N), u.value[int(N/2),:], label = 'CVX') +    plt.plot(np.linspace(0,N,N), data.as_array()[int(N/2),:], label = 'Truth') +     +    plt.legend() +    plt.title('Middle Line Profiles') +    plt.show() +             +    print('Primal Objective (CVX) {} '.format(obj.value)) +    print('Primal Objective (PDHG) {} '.format(pdhg.objective[-1][0])) + diff --git a/Wrappers/Python/demos/PDHG_examples/PDHG_TV_Denoising_Poisson.py b/Wrappers/Python/demos/PDHG_examples/PDHG_TV_Denoising_Poisson.py new file mode 100644 index 0000000..4d53635 --- /dev/null +++ b/Wrappers/Python/demos/PDHG_examples/PDHG_TV_Denoising_Poisson.py @@ -0,0 +1,213 @@ +#======================================================================== +# Copyright 2019 Science Technology Facilities Council +# Copyright 2019 University of Manchester +# +# This work is part of the Core Imaging Library developed by Science Technology +# Facilities Council and University of Manchester +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +#         http://www.apache.org/licenses/LICENSE-2.0.txt +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +#========================================================================= + +"""  + +Total Variation Denoising using PDHG algorithm: + +Problem:     min_x, x>0  \alpha * ||\nabla x||_{2,1} + \int x - g * log(x) + +             \alpha: Regularization parameter +              +             \nabla: Gradient operator   +              +             g: Noisy Data with Poisson Noise +              +              +             Method = 0 ( PDHG - split ) :  K = [ \nabla, +                                                 Identity] +                           +                                                                     +             Method = 1 (PDHG - explicit ):  K = \nabla      +                        +""" + +from ccpi.framework import ImageData, ImageGeometry + +import numpy as np  +import numpy                           +import matplotlib.pyplot as plt + +from ccpi.optimisation.algorithms import PDHG + +from ccpi.optimisation.operators import BlockOperator, Identity, Gradient +from ccpi.optimisation.functions import ZeroFunction, KullbackLeibler, \ +                      MixedL21Norm, BlockFunction + +from skimage.util import random_noise + +# Create phantom for TV Poisson denoising +N = 100 + +data = np.zeros((N,N)) +data[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 0.5 +data[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 1 +data = ImageData(data) +ig = ImageGeometry(voxel_num_x = N, voxel_num_y = N) +ag = ig + +# Create noisy data. Apply Poisson noise +n1 = random_noise(data.as_array(), mode = 'poisson', seed = 10) +noisy_data = ImageData(n1) + + +# Show Ground Truth and Noisy Data +plt.figure(figsize=(15,15)) +plt.subplot(2,1,1) +plt.imshow(data.as_array()) +plt.title('Ground Truth') +plt.colorbar() +plt.subplot(2,1,2) +plt.imshow(noisy_data.as_array()) +plt.title('Noisy Data') +plt.colorbar() +plt.show() + +#%% + +# Regularisation Parameter +alpha = 2 + +method = '0' + +if method == '0': + +    # Create operators +    op1 = Gradient(ig) +    op2 = Identity(ig, ag) + +    # Create BlockOperator +    operator = BlockOperator(op1, op2, shape=(2,1) )  + +    # Create functions +       +    f1 = alpha * MixedL21Norm() +    f2 = KullbackLeibler(noisy_data)     +    f = BlockFunction(f1, f2)   +                                       +    g = ZeroFunction() +     +else: +     +    # Without the "Block Framework" +    operator = Gradient(ig) +    f =  alpha * MixedL21Norm() +    g =  KullbackLeibler(noisy_data)    +         +     +# Compute operator Norm +normK = operator.norm() + +# Primal & Dual stepsizes +sigma = 1 +tau = 1/(sigma*normK**2) + +# Setup and Run the PDHG algorithm +pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma) +pdhg.max_iteration = 3000 +pdhg.update_objective_interval = 200 +pdhg.run(3000, verbose=False) + + +plt.figure(figsize=(15,15)) +plt.subplot(3,1,1) +plt.imshow(data.as_array()) +plt.title('Ground Truth') +plt.colorbar() +plt.subplot(3,1,2) +plt.imshow(noisy_data.as_array()) +plt.title('Noisy Data') +plt.colorbar() +plt.subplot(3,1,3) +plt.imshow(pdhg.get_output().as_array()) +plt.title('TV Reconstruction') +plt.colorbar() +plt.show() +##  +plt.plot(np.linspace(0,N,N), data.as_array()[int(N/2),:], label = 'GTruth') +plt.plot(np.linspace(0,N,N), pdhg.get_output().as_array()[int(N/2),:], label = 'TV reconstruction') +plt.legend() +plt.title('Middle Line Profiles') +plt.show() + + +#%% Check with CVX solution + +from ccpi.optimisation.operators import SparseFiniteDiff + +try: +    from cvxpy import * +    cvx_not_installable = True +except ImportError: +    cvx_not_installable = False + + +if cvx_not_installable: + +    ##Construct problem     +    u1 = Variable(ig.shape) +    q = Variable() +     +    DY = SparseFiniteDiff(ig, direction=0, bnd_cond='Neumann') +    DX = SparseFiniteDiff(ig, direction=1, bnd_cond='Neumann') +     +    # Define Total Variation as a regulariser +    regulariser = alpha * sum(norm(vstack([DX.matrix() * vec(u1), DY.matrix() * vec(u1)]), 2, axis = 0)) +     +    fidelity = sum( u1 - multiply(noisy_data.as_array(), log(u1)) ) +    constraints = [q>= fidelity, u1>=0] +         +    solver = ECOS +    obj =  Minimize( regulariser +  q) +    prob = Problem(obj, constraints) +    result = prob.solve(verbose = True, solver = solver) + +     +    diff_cvx = numpy.abs( pdhg.get_output().as_array() - u1.value ) +         +    plt.figure(figsize=(15,15)) +    plt.subplot(3,1,1) +    plt.imshow(pdhg.get_output().as_array()) +    plt.title('PDHG solution') +    plt.colorbar() +    plt.subplot(3,1,2) +    plt.imshow(u1.value) +    plt.title('CVX solution') +    plt.colorbar() +    plt.subplot(3,1,3) +    plt.imshow(diff_cvx) +    plt.title('Difference') +    plt.colorbar() +    plt.show()     +     +    plt.plot(np.linspace(0,N,N), pdhg.get_output().as_array()[int(N/2),:], label = 'PDHG') +    plt.plot(np.linspace(0,N,N), u1.value[int(N/2),:], label = 'CVX') +    plt.legend() +    plt.title('Middle Line Profiles') +    plt.show() +             +    print('Primal Objective (CVX) {} '.format(obj.value)) +    print('Primal Objective (PDHG) {} '.format(pdhg.objective[-1][0])) + + + + + diff --git a/Wrappers/Python/demos/PDHG_examples/PDHG_TV_Denoising_SaltPepper.py b/Wrappers/Python/demos/PDHG_examples/PDHG_TV_Denoising_SaltPepper.py new file mode 100644 index 0000000..c5709c3 --- /dev/null +++ b/Wrappers/Python/demos/PDHG_examples/PDHG_TV_Denoising_SaltPepper.py @@ -0,0 +1,213 @@ +#======================================================================== +# Copyright 2019 Science Technology Facilities Council +# Copyright 2019 University of Manchester +# +# This work is part of the Core Imaging Library developed by Science Technology +# Facilities Council and University of Manchester +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +#         http://www.apache.org/licenses/LICENSE-2.0.txt +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +#========================================================================= + +"""  + +Total Variation Denoising using PDHG algorithm: + + +Problem:     min_x, x>0  \alpha * ||\nabla x||_{2,1} + ||x-g||_{1} + +             \alpha: Regularization parameter +              +             \nabla: Gradient operator  +              +             g: Noisy Data with Salt & Pepper Noise +              +              +             Method = 0 ( PDHG - split ) :  K = [ \nabla, +                                                 Identity] +                           +                                                                     +             Method = 1 (PDHG - explicit ):  K = \nabla     +              +              +""" + +from ccpi.framework import ImageData, ImageGeometry + +import numpy as np  +import numpy                           +import matplotlib.pyplot as plt + +from ccpi.optimisation.algorithms import PDHG + +from ccpi.optimisation.operators import BlockOperator, Identity, Gradient +from ccpi.optimisation.functions import ZeroFunction, L1Norm, \ +                      MixedL21Norm, BlockFunction + +from skimage.util import random_noise + +# Create phantom for TV Salt & Pepper denoising +N = 100 + +data = np.zeros((N,N)) +data[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 0.5 +data[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 1 +data = ImageData(data) +ig = ImageGeometry(voxel_num_x = N, voxel_num_y = N) +ag = ig + +# Create noisy data. Apply Salt & Pepper noise +n1 = random_noise(data.as_array(), mode = 's&p', salt_vs_pepper = 0.9, amount=0.2) +noisy_data = ImageData(n1) + +# Show Ground Truth and Noisy Data +plt.figure(figsize=(15,15)) +plt.subplot(2,1,1) +plt.imshow(data.as_array()) +plt.title('Ground Truth') +plt.colorbar() +plt.subplot(2,1,2) +plt.imshow(noisy_data.as_array()) +plt.title('Noisy Data') +plt.colorbar() +plt.show() + +# Regularisation Parameter +alpha = 2 + +method = '0' + +if method == '0': + +    # Create operators +    op1 = Gradient(ig) +    op2 = Identity(ig, ag) + +    # Create BlockOperator +    operator = BlockOperator(op1, op2, shape=(2,1) )  + +    # Create functions       +    f1 = alpha * MixedL21Norm() +    f2 = L1Norm(b = noisy_data)     +    f = BlockFunction(f1, f2)   +                                       +    g = ZeroFunction() +     +else: +     +    # Without the "Block Framework" +    operator = Gradient(ig) +    f =  alpha * MixedL21Norm() +    g =  L1Norm(b = noisy_data) +         +     +# Compute operator Norm +normK = operator.norm() + +# Primal & dual stepsizes +sigma = 1 +tau = 1/(sigma*normK**2) +opt = {'niter':2000, 'memopt': True} + +# Setup and run the PDHG algorithm +pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma, memopt=True) +pdhg.max_iteration = 2000 +pdhg.update_objective_interval = 50 +pdhg.run(2000) + + +plt.figure(figsize=(15,15)) +plt.subplot(3,1,1) +plt.imshow(data.as_array()) +plt.title('Ground Truth') +plt.colorbar() +plt.subplot(3,1,2) +plt.imshow(noisy_data.as_array()) +plt.title('Noisy Data') +plt.colorbar() +plt.subplot(3,1,3) +plt.imshow(pdhg.get_output().as_array()) +plt.title('TV Reconstruction') +plt.colorbar() +plt.show() +##  +plt.plot(np.linspace(0,N,N), data.as_array()[int(N/2),:], label = 'GTruth') +plt.plot(np.linspace(0,N,N), pdhg.get_output().as_array()[int(N/2),:], label = 'TV reconstruction') +plt.legend() +plt.title('Middle Line Profiles') +plt.show() + + +##%% Check with CVX solution + +from ccpi.optimisation.operators import SparseFiniteDiff + +try: +    from cvxpy import * +    cvx_not_installable = True +except ImportError: +    cvx_not_installable = False + + +if cvx_not_installable: + +    ##Construct problem     +    u = Variable(ig.shape) +     +    DY = SparseFiniteDiff(ig, direction=0, bnd_cond='Neumann') +    DX = SparseFiniteDiff(ig, direction=1, bnd_cond='Neumann') +     +    # Define Total Variation as a regulariser +    regulariser = alpha * sum(norm(vstack([DX.matrix() * vec(u), DY.matrix() * vec(u)]), 2, axis = 0)) +    fidelity = pnorm( u - noisy_data.as_array(),1) +     +    # choose solver +    if 'MOSEK' in installed_solvers(): +        solver = MOSEK +    else: +        solver = SCS   +         +    obj =  Minimize( regulariser +  fidelity) +    prob = Problem(obj) +    result = prob.solve(verbose = True, solver = solver) +     +    diff_cvx = numpy.abs( pdhg.get_output().as_array() - u.value ) +         +    plt.figure(figsize=(15,15)) +    plt.subplot(3,1,1) +    plt.imshow(pdhg.get_output().as_array()) +    plt.title('PDHG solution') +    plt.colorbar() +    plt.subplot(3,1,2) +    plt.imshow(u.value) +    plt.title('CVX solution') +    plt.colorbar() +    plt.subplot(3,1,3) +    plt.imshow(diff_cvx) +    plt.title('Difference') +    plt.colorbar() +    plt.show()     +     +    plt.plot(np.linspace(0,N,N), pdhg.get_output().as_array()[int(N/2),:], label = 'PDHG') +    plt.plot(np.linspace(0,N,N), u.value[int(N/2),:], label = 'CVX') +    plt.legend() +    plt.title('Middle Line Profiles') +    plt.show() +             +    print('Primal Objective (CVX) {} '.format(obj.value)) +    print('Primal Objective (PDHG) {} '.format(pdhg.objective[-1][0])) + + + + + diff --git a/Wrappers/Python/demos/PDHG_examples/PDHG_Tikhonov_Denoising.py b/Wrappers/Python/demos/PDHG_examples/PDHG_Tikhonov_Denoising.py new file mode 100644 index 0000000..7b73c1a --- /dev/null +++ b/Wrappers/Python/demos/PDHG_examples/PDHG_Tikhonov_Denoising.py @@ -0,0 +1,210 @@ +#======================================================================== +# Copyright 2019 Science Technology Facilities Council +# Copyright 2019 University of Manchester +# +# This work is part of the Core Imaging Library developed by Science Technology +# Facilities Council and University of Manchester +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +#         http://www.apache.org/licenses/LICENSE-2.0.txt +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +#========================================================================= +"""  + +Tikhonov Denoising using PDHG algorithm: + + +Problem:     min_{x} \alpha * ||\nabla x||_{2}^{2} + \frac{1}{2} * || x - g ||_{2}^{2} + +             \alpha: Regularization parameter +              +             \nabla: Gradient operator  +              +             g: Noisy Data with Gaussian Noise +                           +             Method = 0 ( PDHG - split ) :  K = [ \nabla, +                                                 Identity] +                           +                                                                     +             Method = 1 (PDHG - explicit ):  K = \nabla   +                                                                 +""" + +from ccpi.framework import ImageData, ImageGeometry + +import numpy as np  +import numpy                           +import matplotlib.pyplot as plt + +from ccpi.optimisation.algorithms import PDHG + +from ccpi.optimisation.operators import BlockOperator, Identity, Gradient +from ccpi.optimisation.functions import ZeroFunction, L2NormSquared,  BlockFunction + +from skimage.util import random_noise + +# Create phantom for TV Salt & Pepper denoising +N = 100 + +data = np.zeros((N,N)) +data[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 0.5 +data[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 1 +data = ImageData(data) +ig = ImageGeometry(voxel_num_x = N, voxel_num_y = N) +ag = ig + +# Create noisy data. Apply Salt & Pepper noise +n1 = random_noise(data.as_array(), mode = 's&p', salt_vs_pepper = 0.9, amount=0.2) +noisy_data = ImageData(n1) + +# Show Ground Truth and Noisy Data +plt.figure(figsize=(15,15)) +plt.subplot(2,1,1) +plt.imshow(data.as_array()) +plt.title('Ground Truth') +plt.colorbar() +plt.subplot(2,1,2) +plt.imshow(noisy_data.as_array()) +plt.title('Noisy Data') +plt.colorbar() +plt.show() + +# Regularisation Parameter +alpha = 4 + +method = '1' + +if method == '0': + +    # Create operators +    op1 = Gradient(ig) +    op2 = Identity(ig, ag) + +    # Create BlockOperator +    operator = BlockOperator(op1, op2, shape=(2,1) )  + +    # Create functions +       +    f1 = alpha * L2NormSquared() +    f2 = 0.5 * L2NormSquared(b = noisy_data)     +    f = BlockFunction(f1, f2)                                        +    g = ZeroFunction() +     +else: +     +    # Without the "Block Framework" +    operator = Gradient(ig) +    f =  alpha * L2NormSquared() +    g =  0.5 * L2NormSquared(b = noisy_data) +         +     +# Compute operator Norm +normK = operator.norm() + +# Primal & dual stepsizes +sigma = 1 +tau = 1/(sigma*normK**2) +opt = {'niter':2000, 'memopt': True} + +# Setup and run the PDHG algorithm +pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma, memopt=True) +pdhg.max_iteration = 2000 +pdhg.update_objective_interval = 50 +pdhg.run(2000) + + +plt.figure(figsize=(15,15)) +plt.subplot(3,1,1) +plt.imshow(data.as_array()) +plt.title('Ground Truth') +plt.colorbar() +plt.subplot(3,1,2) +plt.imshow(noisy_data.as_array()) +plt.title('Noisy Data') +plt.colorbar() +plt.subplot(3,1,3) +plt.imshow(pdhg.get_output().as_array()) +plt.title('Tikhonov Reconstruction') +plt.colorbar() +plt.show() +##  +plt.plot(np.linspace(0,N,N), data.as_array()[int(N/2),:], label = 'GTruth') +plt.plot(np.linspace(0,N,N), pdhg.get_output().as_array()[int(N/2),:], label = 'Tikhonov reconstruction') +plt.legend() +plt.title('Middle Line Profiles') +plt.show() + + +##%% Check with CVX solution + +from ccpi.optimisation.operators import SparseFiniteDiff + +try: +    from cvxpy import * +    cvx_not_installable = True +except ImportError: +    cvx_not_installable = False + + +if cvx_not_installable: + +    ##Construct problem     +    u = Variable(ig.shape) +     +    DY = SparseFiniteDiff(ig, direction=0, bnd_cond='Neumann') +    DX = SparseFiniteDiff(ig, direction=1, bnd_cond='Neumann') +     +    # Define Total Variation as a regulariser +     +    regulariser = alpha * sum_squares(norm(vstack([DX.matrix() * vec(u), DY.matrix() * vec(u)]), 2, axis = 0)) +    fidelity = 0.5 * sum_squares(u - noisy_data.as_array())     +     +    # choose solver +    if 'MOSEK' in installed_solvers(): +        solver = MOSEK +    else: +        solver = SCS   +         +    obj =  Minimize( regulariser +  fidelity) +    prob = Problem(obj) +    result = prob.solve(verbose = True, solver = solver) +     +    diff_cvx = numpy.abs( pdhg.get_output().as_array() - u.value ) +         +    plt.figure(figsize=(15,15)) +    plt.subplot(3,1,1) +    plt.imshow(pdhg.get_output().as_array()) +    plt.title('PDHG solution') +    plt.colorbar() +    plt.subplot(3,1,2) +    plt.imshow(u.value) +    plt.title('CVX solution') +    plt.colorbar() +    plt.subplot(3,1,3) +    plt.imshow(diff_cvx) +    plt.title('Difference') +    plt.colorbar() +    plt.show()     +     +    plt.plot(np.linspace(0,N,N), pdhg.get_output().as_array()[int(N/2),:], label = 'PDHG') +    plt.plot(np.linspace(0,N,N), u.value[int(N/2),:], label = 'CVX') +    plt.legend() +    plt.title('Middle Line Profiles') +    plt.show() +             +    print('Primal Objective (CVX) {} '.format(obj.value)) +    print('Primal Objective (PDHG) {} '.format(pdhg.objective[-1][0])) + + + + +  | 
