summaryrefslogtreecommitdiffstats
path: root/Wrappers/Python
diff options
context:
space:
mode:
Diffstat (limited to 'Wrappers/Python')
-rw-r--r--Wrappers/Python/ccpi/framework.py63
-rw-r--r--Wrappers/Python/ccpi/reconstruction/astra_ops.py10
-rw-r--r--Wrappers/Python/test/simple_demo.py20
3 files changed, 55 insertions, 38 deletions
diff --git a/Wrappers/Python/ccpi/framework.py b/Wrappers/Python/ccpi/framework.py
index 2b0ba76..5ac17ee 100644
--- a/Wrappers/Python/ccpi/framework.py
+++ b/Wrappers/Python/ccpi/framework.py
@@ -105,7 +105,8 @@ class DataSet(object):
self.shape = numpy.shape(array)
self.number_of_dimensions = len (self.shape)
self.dimension_labels = {}
-
+ self.geometry = None # Only relevant for SinogramData and VolumeData
+
if dimension_labels is not None and \
len (dimension_labels) == self.number_of_dimensions:
for i in range(self.number_of_dimensions):
@@ -123,6 +124,13 @@ class DataSet(object):
raise TypeError('Array must be NumpyArray, passed {0}'\
.format(type(array)))
+ # finally copy the geometry
+ if 'geometry' in kwargs.keys():
+ self.geometry = kwargs['geometry']
+ else:
+ # assume it is parallel beam
+ pass
+
def as_array(self, dimensions=None):
'''Returns the DataSet as Numpy Array
@@ -212,7 +220,8 @@ class DataSet(object):
out = self.as_array() + other.as_array()
return type(self)(out,
deep_copy=True,
- dimension_labels=self.dimension_labels)
+ dimension_labels=self.dimension_labels,
+ geometry=self.geometry)
else:
raise ValueError('Wrong shape: {0} and {1}'.format(self.shape,
other.shape))
@@ -220,7 +229,8 @@ class DataSet(object):
return type(self)(
self.as_array() + other,
deep_copy=True,
- dimension_labels=self.dimension_labels)
+ dimension_labels=self.dimension_labels,
+ geometry=self.geometry)
else:
raise TypeError('Cannot {0} DataSet with {1}'.format("add" ,
type(other)))
@@ -232,14 +242,16 @@ class DataSet(object):
out = self.as_array() - other.as_array()
return type(self)(out,
deep_copy=True,
- dimension_labels=self.dimension_labels)
+ dimension_labels=self.dimension_labels,
+ geometry=self.geometry)
else:
raise ValueError('Wrong shape: {0} and {1}'.format(self.shape,
other.shape))
elif isinstance(other, (int, float, complex)):
return type(self)(self.as_array() - other,
deep_copy=True,
- dimension_labels=self.dimension_labels)
+ dimension_labels=self.dimension_labels,
+ geometry=self.geometry)
else:
raise TypeError('Cannot {0} DataSet with {1}'.format("subtract" ,
type(other)))
@@ -254,14 +266,16 @@ class DataSet(object):
out = self.as_array() / other.as_array()
return type(self)(out,
deep_copy=True,
- dimension_labels=self.dimension_labels)
+ dimension_labels=self.dimension_labels,
+ geometry=self.geometry)
else:
raise ValueError('Wrong shape: {0} and {1}'.format(self.shape,
other.shape))
elif isinstance(other, (int, float, complex)):
return type(self)(self.as_array() / other,
deep_copy=True,
- dimension_labels=self.dimension_labels)
+ dimension_labels=self.dimension_labels,
+ geometry=self.geometry)
else:
raise TypeError('Cannot {0} DataSet with {1}'.format("divide" ,
type(other)))
@@ -273,14 +287,16 @@ class DataSet(object):
out = self.as_array() ** other.as_array()
return type(self)(out,
deep_copy=True,
- dimension_labels=self.dimension_labels)
+ dimension_labels=self.dimension_labels,
+ geometry=self.geometry)
else:
raise ValueError('Wrong shape: {0} and {1}'.format(self.shape,
other.shape))
elif isinstance(other, (int, float, complex)):
return type(self)(self.as_array() ** other,
deep_copy=True,
- dimension_labels=self.dimension_labels)
+ dimension_labels=self.dimension_labels,
+ geometry=self.geometry)
else:
raise TypeError('Cannot {0} DataSet with {1}'.format("power" ,
type(other)))
@@ -292,14 +308,16 @@ class DataSet(object):
out = self.as_array() * other.as_array()
return type(self)(out,
deep_copy=True,
- dimension_labels=self.dimension_labels)
+ dimension_labels=self.dimension_labels,
+ geometry=self.geometry)
else:
raise ValueError('Wrong shape: {0} and {1}'.format(self.shape,
other.shape))
elif isinstance(other, (int, float, complex)):
return type(self)(self.as_array() * other,
deep_copy=True,
- dimension_labels=self.dimension_labels)
+ dimension_labels=self.dimension_labels,
+ geometry=self.geometry)
else:
raise TypeError('Cannot {0} DataSet with {1}'.format("multiply" ,
type(other)))
@@ -315,19 +333,22 @@ class DataSet(object):
out = numpy.abs(self.as_array() )
return type(self)(out,
deep_copy=True,
- dimension_labels=self.dimension_labels)
+ dimension_labels=self.dimension_labels,
+ geometry=self.geometry)
def maximum(self,otherscalar):
out = numpy.maximum(self.as_array(),otherscalar)
return type(self)(out,
deep_copy=True,
- dimension_labels=self.dimension_labels)
+ dimension_labels=self.dimension_labels,
+ geometry=self.geometry)
def sign(self):
out = numpy.sign(self.as_array() )
return type(self)(out,
deep_copy=True,
- dimension_labels=self.dimension_labels)
+ dimension_labels=self.dimension_labels,
+ geometry=self.geometry)
# reverse operand
def __radd__(self, other):
@@ -353,11 +374,13 @@ class DataSet(object):
if isinstance(other, (int, float)) :
fother = numpy.ones(numpy.shape(self.array)) * other
return type(self)(fother ** self.array ,
- dimension_labels=self.dimension_labels)
+ dimension_labels=self.dimension_labels,
+ geometry=self.geometry)
elif issubclass(other, DataSet):
if self.checkDimensions(other):
return type(self)(other.as_array() ** self.array ,
- dimension_labels=self.dimension_labels)
+ dimension_labels=self.dimension_labels,
+ geometry=self.geometry)
else:
raise ValueError('Dimensions do not match')
# __rpow__
@@ -473,13 +496,7 @@ class SinogramData(DataSet):
dimension_labels = ['angle' ,
'horizontal']
DataSet.__init__(self, array, deep_copy, dimension_labels, **kwargs)
-
- # finally copy the instrument geometry
- if 'instrument_geometry' in kwargs.keys():
- self.instrument_geometry = kwargs['instrument_geometry']
- else:
- # assume it is parallel beam
- pass
+
class DataSetProcessor(object):
'''Defines a generic DataSet processor
diff --git a/Wrappers/Python/ccpi/reconstruction/astra_ops.py b/Wrappers/Python/ccpi/reconstruction/astra_ops.py
index bc6f5e1..6d527ba 100644
--- a/Wrappers/Python/ccpi/reconstruction/astra_ops.py
+++ b/Wrappers/Python/ccpi/reconstruction/astra_ops.py
@@ -26,6 +26,12 @@ class AstraProjectorSimple(Operator):
def __init__(self, geomv, geomp, device):
super(AstraProjectorSimple, self).__init__()
+ # Store our volume and sinogram geometries. Redundant with also
+ # storing in ASTRA format below but needed to assign to
+ # SinogramData in "direct" method and VolumeData in "adjoint" method
+ self.sinogram_geometry = geomp
+ self.volume_geometry = geomv
+
# ASTRA Volume geometry
self.vol_geom = astra.create_vol_geom(geomv.voxel_num_x, \
geomv.voxel_num_y, \
@@ -63,12 +69,12 @@ class AstraProjectorSimple(Operator):
sinogram_id, DATA = astra.create_sino(IM.as_array(), self.proj_id)
astra.data2d.delete(sinogram_id)
- return SinogramData(DATA)
+ return SinogramData(DATA,geometry=self.sinogram_geometry)
def adjoint(self, DATA):
rec_id, IM = astra.create_backprojection(DATA.as_array(), self.proj_id)
astra.data2d.delete(rec_id)
- return VolumeData(IM)
+ return VolumeData(IM,geometry=self.volume_geometry)
def delete(self):
astra.data2d.delete(self.proj_id)
diff --git a/Wrappers/Python/test/simple_demo.py b/Wrappers/Python/test/simple_demo.py
index 7a6b049..7a28ae9 100644
--- a/Wrappers/Python/test/simple_demo.py
+++ b/Wrappers/Python/test/simple_demo.py
@@ -25,32 +25,26 @@ plt.show()
vg = VolumeGeometry(N,N,None, 1,1,None)
-Phantom = VolumeData(x)
-#Phantom = VolumeData(x)
+Phantom = VolumeData(x,geometry=vg)
# Set up measurement geometry
angles_num = 20; # angles number
angles = np.linspace(0,np.pi,angles_num,endpoint=False)
-
det_w = 1.0
det_num = N
-
SourceOrig = 500
OrigDetec = 0
# Parallelbeam geometry test
pg = SinogramGeometry('parallel','2D',angles,det_num,det_w)
-# Set up ASTRA projector
-#Aop = AstraProjector(vg, angles, N,'gpu')
-#Aop = AstraProjector(det_w, det_num, angles, projtype='parallel',device='gpu')
-
-Aop_old = AstraProjector(det_w, det_num, SourceOrig,
- OrigDetec, angles,
- N,'fanbeam','gpu')
-
+# ASTRA operator using volume and sinogram geometries
Aop = AstraProjectorSimple(vg, pg, 'gpu')
+# Unused old astra projector without geometry
+# Aop_old = AstraProjector(det_w, det_num, SourceOrig,
+# OrigDetec, angles,
+# N,'fanbeam','gpu')
# Try forward and backprojection
b = Aop.direct(Phantom)
@@ -66,7 +60,7 @@ plt.show()
f = Norm2sq(Aop,b,c=0.5)
# Initial guess
-x_init = VolumeData(np.zeros(x.shape))
+x_init = VolumeData(np.zeros(x.shape),geometry=vg)
# Run FISTA for least squares without regularization
x_fista0, it0, timing0, criter0 = FISTA(x_init, f, None)