summaryrefslogtreecommitdiffstats
path: root/Wrappers/Python
diff options
context:
space:
mode:
Diffstat (limited to 'Wrappers/Python')
-rw-r--r--Wrappers/Python/ccpi/astra/astra_ops.py87
-rw-r--r--Wrappers/Python/ccpi/reconstruction/ops.py32
-rw-r--r--Wrappers/Python/wip/DemoRecIP.py125
-rw-r--r--Wrappers/Python/wip/regularizers.py399
4 files changed, 105 insertions, 538 deletions
diff --git a/Wrappers/Python/ccpi/astra/astra_ops.py b/Wrappers/Python/ccpi/astra/astra_ops.py
index d8c2f4b..45b8238 100644
--- a/Wrappers/Python/ccpi/astra/astra_ops.py
+++ b/Wrappers/Python/ccpi/astra/astra_ops.py
@@ -71,7 +71,9 @@ class AstraProjectorSimple(Operator):
def create_image_data(self):
inputsize = self.size()[1]
- return DataContainer(numpy.random.randn(inputsize[0],inputsize[1]))
+ return DataContainer(numpy.random.randn(inputsize[0],
+ inputsize[1]))
+
class AstraProjectorMC(Operator):
"""ASTRA Multichannel projector"""
@@ -93,7 +95,7 @@ class AstraProjectorMC(Operator):
device=device)
# Initialise empty for singular value.
- self.s1 = 50
+ self.s1 = None
def direct(self, IM):
self.fp.set_input(IM)
@@ -122,80 +124,9 @@ class AstraProjectorMC(Operator):
(self.volume_geometry.voxel_num_x, \
self.volume_geometry.voxel_num_y) )
-
-class AstraProjector(Operator):
- """A simple 2D/3D parallel/fan beam projection/backprojection class based
- on ASTRA toolbox"""
- def __init__(self, DetWidth, DetectorsDim, SourceOrig, OrigDetec,
- AnglesVec, ObjSize, projtype, device):
- super(AstraProjector, self).__init__()
- self.DetectorsDim = DetectorsDim
- self.AnglesVec = AnglesVec
- self.ProjNumb = len(AnglesVec)
- self.ObjSize = ObjSize
- if projtype == 'parallel':
- self.proj_geom = astra.create_proj_geom('parallel', DetWidth,
- DetectorsDim, AnglesVec)
- elif projtype == 'fanbeam':
- self.proj_geom = astra.create_proj_geom('fanflat', DetWidth,
- DetectorsDim, AnglesVec,
- SourceOrig, OrigDetec)
- else:
- print ("Please select for projtype between 'parallel' and 'fanbeam'")
- self.vol_geom = astra.create_vol_geom(ObjSize, ObjSize)
- if device == 'cpu':
- self.proj_id = astra.create_projector('line', self.proj_geom,
- self.vol_geom) # for CPU
- self.device = 1
- elif device == 'gpu':
- self.proj_id = astra.create_projector('cuda', self.proj_geom,
- self.vol_geom) # for GPU
- self.device = 0
- else:
- print ("Select between 'cpu' or 'gpu' for device")
- self.s1 = None
- def direct(self, IM):
- """Applying forward projection to IM [2D or 3D array]"""
- if numpy.ndim(IM.as_array()) == 3:
- slices = numpy.size(IM.as_array(),numpy.ndim(IM.as_array())-1)
- DATA = numpy.zeros((self.ProjNumb,self.DetectorsDim,slices),
- 'float32')
- for i in range(0,slices):
- sinogram_id, DATA[:,:,i] = \
- astra.create_sino(IM[:,:,i].as_array(), self.proj_id)
- astra.data2d.delete(sinogram_id)
- astra.data2d.delete(self.proj_id)
- else:
- sinogram_id, DATA = astra.create_sino(IM.as_array(), self.proj_id)
- astra.data2d.delete(sinogram_id)
- astra.data2d.delete(self.proj_id)
- return AcquisitionData(DATA)
- def adjoint(self, DATA):
- """Applying backprojection to DATA [2D or 3D]"""
- if numpy.ndim(DATA) == 3:
- slices = numpy.size(DATA.as_array(),numpy.ndim(DATA.as_array())-1)
- IM = numpy.zeros((self.ObjSize,self.ObjSize,slices), 'float32')
- for i in range(0,slices):
- rec_id, IM[:,:,i] = \
- astra.create_backprojection(DATA[:,:,i].as_array(),
- self.proj_id)
- astra.data2d.delete(rec_id)
- astra.data2d.delete(self.proj_id)
- else:
- rec_id, IM = astra.create_backprojection(DATA.as_array(),
- self.proj_id)
- astra.data2d.delete(rec_id)
- astra.data2d.delete(self.proj_id)
- return ImageData(IM)
-
- def delete(self):
- astra.data2d.delete(self.proj_id)
-
- def get_max_sing_val(self):
- self.s1, sall, svec = PowerMethodNonsquare(self,10)
- return self.s1
+ def create_image_data(self):
+ inputsize = self.size()[1]
+ return DataContainer(numpy.random.randn(self.volume_geometry.channels,
+ inputsize[0],
+ inputsize[1]))
- def size(self):
- return ( (self.AnglesVec.size, self.DetectorsDim), \
- (self.ObjSize, self.ObjSize) )
-
diff --git a/Wrappers/Python/ccpi/reconstruction/ops.py b/Wrappers/Python/ccpi/reconstruction/ops.py
index fa30b0c..2d8e90d 100644
--- a/Wrappers/Python/ccpi/reconstruction/ops.py
+++ b/Wrappers/Python/ccpi/reconstruction/ops.py
@@ -134,7 +134,7 @@ class FiniteDiff2D(Operator):
return self.s1
-def PowerMethodNonsquare(op,numiters):
+def PowerMethodNonsquareOld(op,numiters):
# Initialise random
# Jakob's
#inputsize = op.size()[1]
@@ -173,6 +173,34 @@ def PowerMethodNonsquare(op,numiters):
# x0 = (1.0/x1norm)*x1
# return s, x0
+
+def PowerMethodNonsquare(op,numiters):
+ # Initialise random
+ # Jakob's
+ #inputsize = op.size()[1]
+ #x0 = ImageContainer(numpy.random.randn(*inputsize)
+ # Edo's
+ #vg = ImageGeometry(voxel_num_x=inputsize[0],
+ # voxel_num_y=inputsize[1],
+ # voxel_num_z=inputsize[2])
+ #
+ #x0 = ImageData(geometry = vg, dimension_labels=['vertical','horizontal_y','horizontal_x'])
+ #print (x0)
+ #x0.fill(numpy.random.randn(*x0.shape))
+
+ x0 = op.create_image_data()
+
+ s = numpy.zeros(numiters)
+ # Loop
+ for it in numpy.arange(numiters):
+ x1 = op.adjoint(op.direct(x0))
+ x1norm = numpy.sqrt((x1**2).sum())
+ #print ("x0 **********" ,x0)
+ #print ("x1 **********" ,x1)
+ s[it] = (x1*x0).sum() / (x0*x0).sum()
+ x0 = (1.0/x1norm)*x1
+ return numpy.sqrt(s[-1]), numpy.sqrt(s), x0
+
class CCPiProjectorSimple(Operator):
"""ASTRA projector modified to use DataSet and geometry."""
def __init__(self, geomv, geomp):
@@ -225,4 +253,4 @@ class CCPiProjectorSimple(Operator):
#.subset(['horizontal_x','horizontal_y','vertical'])
print (x0)
x0.fill(numpy.random.randn(*x0.shape))
- return x0
+ return x0 \ No newline at end of file
diff --git a/Wrappers/Python/wip/DemoRecIP.py b/Wrappers/Python/wip/DemoRecIP.py
index 483a202..442e40e 100644
--- a/Wrappers/Python/wip/DemoRecIP.py
+++ b/Wrappers/Python/wip/DemoRecIP.py
@@ -7,50 +7,19 @@ Reading multi-channel data and reconstruction using FISTA modular
import numpy as np
import matplotlib.pyplot as plt
-import sys
+#import sys
#sys.path.append('../../../data/')
from read_IPdata import read_IPdata
-from ccpi.reconstruction.astra_ops import AstraProjector
-from ccpi.reconstruction.funcs import Norm2sq , BaseFunction
+from ccpi.astra.astra_ops import AstraProjectorSimple, AstraProjectorMC
+from ccpi.reconstruction.funcs import Norm2sq, Norm1, BaseFunction
from ccpi.reconstruction.algs import FISTA
#from ccpi.reconstruction.funcs import BaseFunction
-from ccpi.framework import VolumeData, SinogramData
-
-
-from ccpi.filters.cpu_regularizers_boost import SplitBregman_TV , FGP_TV ,\
- LLT_model, PatchBased_Regul ,\
- TGV_PD
-
-
-# TV regularization class for FGP_TV method
-class TV_FGP(BaseFunction):
- def __init__(self,lambdaReg,iterationsTV):
- # set parameters
- self.lambdaReg = lambdaReg
- self.iterationsTV = iterationsTV
- super(TV_FGP, self).__init__()
- def fun(self,x):
- # function to calculate energy from utils can be used here
- return 0
- def prox(self,x,Lipshitz):
- pars = {'algorithm' : FGP_TV , \
- 'input' : x.as_array(),
- 'regularization_parameter':self.lambdaReg*Lipshitz, \
- 'number_of_iterations' :self.iterationsTV ,\
- 'tolerance_constant':1e-4,\
- 'TV_penalty': 0}
-
- out = FGP_TV (pars['input'],
- pars['regularization_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['TV_penalty'])
- return out[0]
+from ccpi.framework import ImageData, AcquisitionData, AcquisitionGeometry, ImageGeometry
# read IP paper data into a dictionary
-dataDICT = read_IPdata()
+dataDICT = read_IPdata('..\..\..\data\IP_data70channels.mat')
# Set ASTRA Projection-backprojection class (fan-beam geometry)
DetWidth = dataDICT.get('im_size')[0] * dataDICT.get('det_width')[0] / \
@@ -61,43 +30,81 @@ OrigDetec = dataDICT.get('im_size')[0] * \
(dataDICT.get('src_to_det')[0] - dataDICT.get('src_to_rotc')[0]) /\
dataDICT.get('dom_width')[0]
-# Set up ASTRA projector
-Aop = AstraProjector(DetWidth, dataDICT.get('detectors_numb')[0], SourceOrig,
- OrigDetec, (np.pi/180)*dataDICT.get('theta')[0],
- dataDICT.get('im_size')[0],'fanbeam','gpu')
-# initiate a class object
+N = dataDICT.get('im_size')[0]
-sino = dataDICT.get('data_norm')[0][:,:,34] # select mid-channel
-b = SinogramData(sino)
-# Try forward and backprojection
-#backprj = Aop.adjoint(b)
+vg = ImageGeometry(voxel_num_x=dataDICT.get('im_size')[0],
+ voxel_num_y=dataDICT.get('im_size')[0],
+ channels=1)
+
+pg = AcquisitionGeometry('cone',
+ '2D',
+ angles=(np.pi/180)*dataDICT.get('theta')[0],
+ pixel_num_h=dataDICT.get('detectors_numb')[0],
+ pixel_size_h=DetWidth,
+ dist_source_center=SourceOrig,
+ dist_center_detector=OrigDetec,
+ channels=1)
-# Create least squares object instance with projector and data.
-f = Norm2sq(Aop,b,c=0.5)
+
+sino = dataDICT.get('data_norm')[0][:,:,34] # select mid-channel
+b = AcquisitionData(sino,geometry=pg)
# Initial guess
-x_init = VolumeData(np.zeros((dataDICT.get('im_size')[0],
- dataDICT.get('im_size')[0])))
+x_init = ImageData(np.zeros((N, N)),geometry=vg)
+
+
+
+
+
+Aop = AstraProjectorSimple(vg,pg,'gpu')
+f = Norm2sq(Aop,b,c=0.5)
# Run FISTA for least squares without regularization
-opt = {'tol': 1e-4, 'iter': 50}
+opt = {'tol': 1e-4, 'iter': 10}
x_fista0, it0, timing0, criter0 = FISTA(x_init, f, None, opt)
plt.imshow(x_fista0.array)
plt.show()
-"""
# Now least squares plus 1-norm regularization
-#lam = 1
-#g0 = Norm1(lam)
-# using FGP_TV regularizer
-
-g0 = TV_FGP(lambdaReg = 0.01,iterationsTV=50)
+g1 = Norm1(10)
# Run FISTA for least squares plus 1-norm function.
-opt = {'tol': 1e-4, 'iter': 50}
-x_fista1, it1, timing1, criter1 = FISTA(x_init, f, g0, opt)
+x_fista1, it1, timing1, criter1 = FISTA(x_init, f, g1, opt)
plt.imshow(x_fista1.array)
plt.show()
-""" \ No newline at end of file
+
+# Multiple channels
+sino_mc = dataDICT.get('data_norm')[0][:,:,32:37] # select mid-channel
+
+vg_mc = ImageGeometry(voxel_num_x=dataDICT.get('im_size')[0],
+ voxel_num_y=dataDICT.get('im_size')[0],
+ channels=5)
+
+pg_mc = AcquisitionGeometry('cone',
+ '2D',
+ angles=(np.pi/180)*dataDICT.get('theta')[0],
+ pixel_num_h=dataDICT.get('detectors_numb')[0],
+ pixel_size_h=DetWidth,
+ dist_source_center=SourceOrig,
+ dist_center_detector=OrigDetec,
+ channels=5)
+
+b_mc = AcquisitionData(np.transpose(sino_mc,(2,0,1)),
+ geometry=pg_mc,
+ dimension_labels=("channel","angle","horizontal"))
+
+# ASTRA operator using volume and sinogram geometries
+Aop_mc = AstraProjectorMC(vg_mc, pg_mc, 'gpu')
+
+f_mc = Norm2sq(Aop_mc,b_mc,c=0.5)
+
+# Initial guess
+x_init_mc = ImageData(np.zeros((5, N, N)),geometry=vg_mc)
+
+
+x_fista0_mc, it0_mc, timing0_mc, criter0_mc = FISTA(x_init_mc, f_mc, None, opt)
+
+plt.imshow(x_fista0_mc.as_array()[4,:,:])
+plt.show() \ No newline at end of file
diff --git a/Wrappers/Python/wip/regularizers.py b/Wrappers/Python/wip/regularizers.py
deleted file mode 100644
index 04ac3aa..0000000
--- a/Wrappers/Python/wip/regularizers.py
+++ /dev/null
@@ -1,399 +0,0 @@
-# -*- coding: utf-8 -*-
-# This work is part of the Core Imaging Library developed by
-# Visual Analytics and Imaging System Group of the Science Technology
-# Facilities Council, STFC
-
-# Copyright 2018 Edoardo Pasca
-
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-
-# http://www.apache.org/licenses/LICENSE-2.0
-
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-from __future__ import print_function
-import matplotlib.pyplot as plt
-import numpy as np
-import os
-from ccpi.framework import DataSetProcessor, DataSetProcessor23D , DataSet
-from ccpi.filters.cpu_regularizers_boost import SplitBregman_TV , FGP_TV ,\
- LLT_model, PatchBased_Regul ,\
- TGV_PD
-#from ccpi.filters.cpu_regularizers_cython import some
-
-try:
- from ccpi.filters import gpu_regularizers as gpu
- class PatchBasedRegGPU(DataSetProcessor23D):
- '''Regularizers DataSetProcessor for PatchBasedReg
-
-
- '''
-
- def __init__(self):
- attributes = {'regularization_parameter':None,
- 'searching_window_ratio': None,
- 'similarity_window_ratio': None,
- 'PB_filtering_parameter': None
- }
- super(PatchBasedRegGPU, self).__init__(**attributes)
-
-
- def process(self):
- '''Executes the processor
-
- '''
- dsi = self.getInput()
- out = gpu.NML (dsi.as_array(),
- self.searching_window_ratio,
- self.similarity_window_ratio,
- self.regularization_parameter,
- self.PB_filtering_parameter)
- y = DataSet( out , False )
- return y
- class Diff4thHajiaboli(DataSetProcessor23D):
- '''Regularizers DataSetProcessor for PatchBasedReg
-
-
- '''
-
- def __init__(self):
- attributes = {'regularization_parameter':None,
- 'searching_window_ratio': None,
- 'similarity_window_ratio': None,
- 'PB_filtering_parameter': None
- }
- super(Diff4thHajiaboli, self).__init__(self, **attributes)
-
-
- def process(self):
- '''Executes the processor
-
- '''
- dsi = self.getInput()
- out = gpu.Diff4thHajiaboli (dsi.as_array(),
- self.regularization_parameter,
- self.number_of_iterations,
- self.edge_preserving_parameter)
- y = DataSet( out , False )
- return y
-
-except ImportError as ie:
- print (ie)
-
-
-
-class SBTV(DataSetProcessor23D):
- '''Regularizers DataSetProcessor
- '''
-
- def __init__(self):
- attributes = {'regularization_parameter':None,
- 'number_of_iterations': 35,
- 'tolerance_constant': 0.0001,
- 'TV_penalty':0
- }
- super(SBTV , self).__init__(**attributes)
-
-
- def process(self):
- '''Executes the processor
-
- '''
-
- dsi = self.getInput()
- out = SplitBregman_TV (dsi.as_array(),
- self.regularization_parameter,
- self.number_of_iterations,
- self.tolerance_constant,
- self.TV_penalty)
- y = DataSet( out[0] , False )
- return y
-
-class FGPTV(DataSetProcessor23D):
- '''Regularizers DataSetProcessor
- '''
-
- def __init__(self):
- attributes = {'regularization_parameter':None,
- 'number_of_iterations': 35,
- 'tolerance_constant': 0.0001,
- 'TV_penalty':0
- }
- super(FGPTV, self).__init__(**attributes)
-
-
- def process(self):
- '''Executes the processor
-
- '''
- dsi = self.getInput()
- out = FGP_TV (dsi.as_array(),
- self.regularization_parameter,
- self.number_of_iterations,
- self.tolerance_constant,
- self.TV_penalty)
- y = DataSet( out[0] , False )
- return y
-
-class LLT(DataSetProcessor23D):
- '''Regularizers DataSetProcessor for LLT_model
-
-
- '''
-
- def __init__(self):
- attributes = {'regularization_parameter':None,
- 'time_step': 0.0001,
- 'number_of_iterations': 35,
- 'tolerance_constant': 0,
- 'restrictive_Z_smoothing': None
- }
- super(LLT, self).__init__(**attributes)
-
-
- def process(self):
- '''Executes the processor
-
- '''
- dsi = self.getInput()
- out = LLT_model (dsi.as_array(),
- self.regularization_parameter,
- self.time_step,
- self.number_of_iterations,
- self.tolerance_constant,
- self.restrictive_Z_smoothing)
- y = DataSet( out[0] , False )
- return y
-
-class PatchBasedReg(DataSetProcessor23D):
- '''Regularizers DataSetProcessor for PatchBasedReg
-
-
- '''
-
- def __init__(self):
- attributes = {'regularization_parameter':None,
- 'searching_window_ratio': None,
- 'similarity_window_ratio': None,
- 'PB_filtering_parameter': None
- }
- super(PatchBasedReg, self).__init__(**attributes)
-
-
- def process(self):
- '''Executes the processor
-
- '''
- dsi = self.getInput()
- out = PatchBased_Regul (dsi.as_array(),
- self.regularization_parameter,
- self.searching_window_ratio,
- self.similarity_window_ratio,
- self.PB_filtering_parameter)
- y = DataSet( out[0] , False )
- return y
-
-class TGVPD(DataSetProcessor23D):
- '''Regularizers DataSetProcessor for PatchBasedReg
-
-
- '''
-
- def __init__(self,**kwargs):
- attributes = {'regularization_parameter':None,
- 'first_order_term': None,
- 'second_order_term': None,
- 'number_of_iterations': None
- }
- for key, value in kwargs.items():
- if key in attributes.keys():
- attributes[key] = value
-
- super(TGVPD, self).__init__(**attributes)
-
-
- def process(self):
- '''Executes the processor
-
- '''
- dsi = self.getInput()
- if dsi.number_of_dimensions == 2:
- out = TGV_PD(dsi.as_array(),
- self.regularization_parameter,
- self.first_order_term,
- self.second_order_term ,
- self.number_of_iterations)
- y = DataSet( out[0] , False )
- elif len(np.shape(input)) == 3:
- #assuming it's 3D
- # run independent calls on each slice
- out3d = dsi.as_array().copy()
- for i in range(np.shape(dsi.as_array())[0]):
- out = TGV_PD(dsi.as_array()[i],
- self.regularization_parameter,
- self.first_order_term,
- self.second_order_term ,
- self.number_of_iterations)
- # copy the result in the 3D image
- out3d[i] = out[0].copy()
- y = DataSet (out3d , False)
- return y
-
-## self contained test
-if __name__ == '__main__':
- filename = os.path.join(".." , ".." , ".." , ".." ,
- "CCPi-FISTA_Reconstruction", "data" ,
- "lena_gray_512.tif")
- Im = plt.imread(filename)
- Im = np.asarray(Im, dtype='float32')
-
- Im = Im/255
-
- perc = 0.075
- u0 = Im + np.random.normal(loc = Im ,
- scale = perc * Im ,
- size = np.shape(Im))
- # map the u0 u0->u0>0
- f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
- u0 = f(u0).astype('float32')
-
- lena = DataSet(u0, False, ['X','Y'])
-
- ## plot
- fig = plt.figure()
-
- a=fig.add_subplot(2,3,1)
- a.set_title('noise')
- imgplot = plt.imshow(u0#,cmap="gray"
- )
-
- reg_output = []
- ##############################################################################
- # Call regularizer
-
-
- reg3 = SBTV()
- reg3.number_of_iterations = 40
- reg3.tolerance_constant = 0.0001
- reg3.regularization_parameter = 15
- reg3.TV_penalty = 0
- reg3.setInput(lena)
- dataprocessoroutput = reg3.getOutput()
-
-
- # plot
- a=fig.add_subplot(2,3,2)
- # these are matplotlib.patch.Patch properties
- props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
- # place a text box in upper left in axes coords
- a.text(0.05, 0.95, 'SBTV', transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
- imgplot = plt.imshow(dataprocessoroutput.as_array(),\
- #cmap="gray"
- )
- ##########################################################################
-
- reg4 = FGPTV()
- reg4.number_of_iterations = 200
- reg4.tolerance_constant = 1e-4
- reg4.regularization_parameter = 0.05
- reg4.TV_penalty = 0
- reg4.setInput(lena)
- dataprocessoroutput2 = reg4.getOutput()
-
- # plot
- a=fig.add_subplot(2,3,3)
- # these are matplotlib.patch.Patch properties
- props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
- # place a text box in upper left in axes coords
- a.text(0.05, 0.95, 'FGPTV', transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
- imgplot = plt.imshow(dataprocessoroutput2.as_array(),\
- #cmap="gray"
- )
-
- ###########################################################################
- reg6 = LLT()
- reg6.regularization_parameter = 5
- reg6.time_step = 0.00035
- reg6.number_of_iterations = 350
- reg6.tolerance_constant = 0.0001
- reg6.restrictive_Z_smoothing = 0
- reg6.setInput(lena)
- llt = reg6.getOutput()
- # plot
- a=fig.add_subplot(2,3,4)
- # these are matplotlib.patch.Patch properties
- props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
- # place a text box in upper left in axes coords
- a.text(0.05, 0.95, 'LLT', transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
- imgplot = plt.imshow(llt.as_array(),\
- #cmap="gray"
- )
- ###########################################################################
-
- reg7 = PatchBasedReg()
- reg7.regularization_parameter = 0.05
- reg7.searching_window_ratio = 3
- reg7.similarity_window_ratio = 1
- reg7.PB_filtering_parameter = 0.06
- reg7.setInput(lena)
- pbr = reg7.getOutput()
- # plot
- a=fig.add_subplot(2,3,5)
- # these are matplotlib.patch.Patch properties
- props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
- # place a text box in upper left in axes coords
- a.text(0.05, 0.95, 'PatchBasedReg', transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
- imgplot = plt.imshow(pbr.as_array(),\
- #cmap="gray"
- )
- ###########################################################################
-
- reg5 = TGVPD()
- reg5.regularization_parameter = 0.07
- reg5.first_order_term = 1.3
- reg5.second_order_term = 1
- reg5.number_of_iterations = 550
- reg5.setInput(lena)
- tgvpd = reg5.getOutput()
- # plot
- a=fig.add_subplot(2,3,6)
- # these are matplotlib.patch.Patch properties
- props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
- # place a text box in upper left in axes coords
- a.text(0.05, 0.95, 'TGVPD', transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
- imgplot = plt.imshow(tgvpd.as_array(),\
- #cmap="gray"
- )
- if False:
- #reg4.input = None
- reg5 = FGPTV()
- reg5.number_of_iterations = 350
- reg5.tolerance_constant = 0.01
- reg5.regularization_parameter = 40
- reg5.TV_penalty = 0
- reg5.setInputProcessor(reg3)
- chain = reg5.process()
-
- a=fig.add_subplot(2,3,6)
-
-
- # these are matplotlib.patch.Patch properties
- props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
- # place a text box in upper left in axes coords
- a.text(0.05, 0.95, 'SBTV + FGPTV', transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
- imgplot = plt.imshow(chain.as_array(),\
- #cmap="gray"
- )
- plt.show() \ No newline at end of file