summaryrefslogtreecommitdiffstats
path: root/Wrappers/Python
diff options
context:
space:
mode:
Diffstat (limited to 'Wrappers/Python')
-rw-r--r--Wrappers/Python/ccpi/reconstruction/ops.py102
1 files changed, 30 insertions, 72 deletions
diff --git a/Wrappers/Python/ccpi/reconstruction/ops.py b/Wrappers/Python/ccpi/reconstruction/ops.py
index 00a4a3c..af8ead6 100644
--- a/Wrappers/Python/ccpi/reconstruction/ops.py
+++ b/Wrappers/Python/ccpi/reconstruction/ops.py
@@ -1,6 +1,23 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
-import numpy as np
-import astra
+# Copyright 2018 Jakob Jorgensen, Daniil Kazantsev and Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import numpy
from scipy.sparse.linalg import svds
from framework import DataSet, VolumeData, SinogramData, DataSetProcessor
@@ -8,7 +25,7 @@ from framework import DataSet, VolumeData, SinogramData, DataSetProcessor
# to not just use generic DataSet
-class Operator:
+class Operator(object):
def direct(self,x):
return x
def adjoint(self,x):
@@ -33,18 +50,20 @@ class ForwardBackProjector(Operator):
def __init__(self):
# do nothing
i = 1
+ super(ForwardBackProjector, self).__init__()
class LinearOperatorMatrix(Operator):
def __init__(self,A):
self.A = A
self.s1 = None # Largest singular value, initially unknown
+ super(LinearOperatorMatrix, self).__init__()
def direct(self,x):
- return DataSet(np.dot(self.A,x.as_array()))
+ return DataSet(numpy.dot(self.A,x.as_array()))
def adjoint(self,x):
- return DataSet(np.dot(self.A.transpose(),x.as_array()))
+ return DataSet(numpy.dot(self.A.transpose(),x.as_array()))
def size(self):
return self.A.shape
@@ -60,6 +79,7 @@ class LinearOperatorMatrix(Operator):
class Identity(Operator):
def __init__(self):
self.s1 = 1.0
+ super(Identity, self).__init__()
def direct(self,x):
return x
@@ -73,81 +93,19 @@ class Identity(Operator):
def get_max_sing_val(self):
return self.s1
-class AstraProjector:
- """A simple 2D/3D parallel/fan beam projection/backprojection class based on ASTRA toolbox"""
- def __init__(self, DetWidth, DetectorsDim, SourceOrig, OrigDetec, AnglesVec, ObjSize, projtype, device):
- self.DetectorsDim = DetectorsDim
- self.AnglesVec = AnglesVec
- self.ProjNumb = len(AnglesVec)
- self.ObjSize = ObjSize
- if projtype == 'parallel':
- self.proj_geom = astra.create_proj_geom('parallel', DetWidth, DetectorsDim, AnglesVec)
- elif projtype == 'fanbeam':
- self.proj_geom = astra.create_proj_geom('fanflat', DetWidth, DetectorsDim, AnglesVec, SourceOrig, OrigDetec)
- else:
- print ("Please select for projtype between 'parallel' and 'fanbeam'")
- self.vol_geom = astra.create_vol_geom(ObjSize, ObjSize)
- if device == 'cpu':
- self.proj_id = astra.create_projector('line', self.proj_geom, self.vol_geom) # for CPU
- self.device = 1
- elif device == 'gpu':
- self.proj_id = astra.create_projector('cuda', self.proj_geom, self.vol_geom) # for GPU
- self.device = 0
- else:
- print ("Select between 'cpu' or 'gpu' for device")
- self.s1 = None
- def direct(self, IM):
- """Applying forward projection to IM [2D or 3D array]"""
- if np.ndim(IM.as_array()) == 3:
- slices = np.size(IM.as_array(),np.ndim(IM.as_array())-1)
- DATA = np.zeros((self.ProjNumb,self.DetectorsDim,slices), 'float32')
- for i in range(0,slices):
- sinogram_id, DATA[:,:,i] = astra.create_sino(IM[:,:,i].as_array(), self.proj_id)
- astra.data2d.delete(sinogram_id)
- astra.data2d.delete(self.proj_id)
- else:
- sinogram_id, DATA = astra.create_sino(IM.as_array(), self.proj_id)
- astra.data2d.delete(sinogram_id)
- astra.data2d.delete(self.proj_id)
- return SinogramData(DATA)
- def adjoint(self, DATA):
- """Applying backprojection to DATA [2D or 3D]"""
- if np.ndim(DATA) == 3:
- slices = np.size(DATA.as_array(),np.ndim(DATA.as_array())-1)
- IM = np.zeros((self.ObjSize,self.ObjSize,slices), 'float32')
- for i in range(0,slices):
- rec_id, IM[:,:,i] = astra.create_backprojection(DATA[:,:,i].as_array(), self.proj_id)
- astra.data2d.delete(rec_id)
- astra.data2d.delete(self.proj_id)
- else:
- rec_id, IM = astra.create_backprojection(DATA.as_array(), self.proj_id)
- astra.data2d.delete(rec_id)
- astra.data2d.delete(self.proj_id)
- return VolumeData(IM)
-
- def delete(self):
- astra.data2d.delete(self.proj_id)
-
- def get_max_sing_val(self):
- self.s1, sall, svec = PowerMethodNonsquare(self,10)
- return self.s1
-
- def size(self):
- return ( (self.AnglesVec.size, self.DetectorsDim), \
- (self.ObjSize, self.ObjSize) )
def PowerMethodNonsquare(op,numiters):
# Initialise random
inputsize = op.size()[1]
- x0 = DataSet(np.random.randn(inputsize[0],inputsize[1]))
- s = np.zeros(numiters)
+ x0 = DataSet(numpy.random.randn(inputsize[0],inputsize[1]))
+ s = numpy.zeros(numiters)
# Loop
- for it in np.arange(numiters):
+ for it in numpy.arange(numiters):
x1 = op.adjoint(op.direct(x0))
- x1norm = np.sqrt((x1**2).sum())
+ x1norm = numpy.sqrt((x1**2).sum())
s[it] = (x1*x0).sum() / (x0*x0).sum()
x0 = (1.0/x1norm)*x1
- return np.sqrt(s[-1]), np.sqrt(s), x0
+ return numpy.sqrt(s[-1]), numpy.sqrt(s), x0
#def PowerMethod(op,numiters):
# # Initialise random