summaryrefslogtreecommitdiffstats
path: root/Wrappers
diff options
context:
space:
mode:
Diffstat (limited to 'Wrappers')
-rw-r--r--Wrappers/Python/ccpi/astra/astra_processors.py75
-rw-r--r--Wrappers/Python/ccpi/framework.py244
-rwxr-xr-xWrappers/Python/ccpi/processors.py14
-rw-r--r--Wrappers/Python/ccpi/reconstruction/astra_ops.py51
-rw-r--r--Wrappers/Python/ccpi/reconstruction/geoms.py55
-rw-r--r--Wrappers/Python/setup.py2
-rw-r--r--Wrappers/Python/wip/DemoRecIP.py (renamed from Wrappers/Python/test/DemoRecIP.py)0
-rw-r--r--Wrappers/Python/wip/regularizers.py (renamed from Wrappers/Python/test/regularizers.py)0
-rw-r--r--Wrappers/Python/wip/simple_demo.py (renamed from Wrappers/Python/test/simple_demo.py)28
-rwxr-xr-xWrappers/Python/wip/simple_mc_demo.py143
10 files changed, 501 insertions, 111 deletions
diff --git a/Wrappers/Python/ccpi/astra/astra_processors.py b/Wrappers/Python/ccpi/astra/astra_processors.py
index c3127eb..f51aec9 100644
--- a/Wrappers/Python/ccpi/astra/astra_processors.py
+++ b/Wrappers/Python/ccpi/astra/astra_processors.py
@@ -1,6 +1,7 @@
from ccpi.framework import DataSetProcessor, DataSet, VolumeData, SinogramData
from ccpi.astra.astra_utils import convert_geometry_to_astra
import astra
+import numpy
class AstraForwardProjector(DataSetProcessor):
@@ -50,7 +51,8 @@ class AstraForwardProjector(DataSetProcessor):
NotImplemented
def checkInput(self, dataset):
- if dataset.number_of_dimensions == 3 or dataset.number_of_dimensions == 2:
+ if dataset.number_of_dimensions == 3 or\
+ dataset.number_of_dimensions == 2:
return True
else:
raise ValueError("Expected input dimensions is 2 or 3, got {0}"\
@@ -67,9 +69,14 @@ class AstraForwardProjector(DataSetProcessor):
def process(self):
IM = self.getInput()
- sinogram_id, DATA = astra.create_sino(IM.as_array(), self.proj_id)
+ DATA = SinogramData(geometry=self.sinogram_geometry)
+ #sinogram_id, DATA = astra.create_sino( IM.as_array(),
+ # self.proj_id)
+ sinogram_id, DATA.array = astra.create_sino(IM.as_array(),
+ self.proj_id)
astra.data2d.delete(sinogram_id)
- return SinogramData(DATA,geometry=self.sinogram_geometry)
+ #return SinogramData(array=DATA, geometry=self.sinogram_geometry)
+ return DATA
class AstraBackProjector(DataSetProcessor):
'''AstraBackProjector
@@ -135,6 +142,64 @@ class AstraBackProjector(DataSetProcessor):
def process(self):
DATA = self.getInput()
- rec_id, IM = astra.create_backprojection(DATA.as_array(), self.proj_id)
+ IM = VolumeData(geometry=self.volume_geometry)
+ rec_id, IM.array = astra.create_backprojection(DATA.as_array(),
+ self.proj_id)
astra.data2d.delete(rec_id)
- return VolumeData(IM,geometry=self.volume_geometry) \ No newline at end of file
+ return IM
+
+class AstraForwardProjectorMC(AstraForwardProjector):
+ '''AstraForwardProjector Multi channel
+
+ Forward project VolumeDataSet to SinogramDataSet using ASTRA proj_id.
+
+ Input: VolumeDataSet
+ Parameter: proj_id
+ Output: SinogramDataSet
+ '''
+ def checkInput(self, dataset):
+ if dataset.number_of_dimensions == 2 or \
+ dataset.number_of_dimensions == 3 or \
+ dataset.number_of_dimensions == 4:
+ return True
+ else:
+ raise ValueError("Expected input dimensions is 2 or 3, got {0}"\
+ .format(dataset.number_of_dimensions))
+ def process(self):
+ IM = self.getInput()
+ #create the output Sinogram
+ DATA = SinogramData(geometry=self.sinogram_geometry)
+
+ for k in range(DATA.geometry.channels):
+ sinogram_id, DATA.as_array()[k] = astra.create_sino(IM.as_array()[k],
+ self.proj_id)
+ astra.data2d.delete(sinogram_id)
+ return DATA
+
+class AstraBackProjectorMC(AstraBackProjector):
+ '''AstraBackProjector Multi channel
+
+ Back project SinogramDataSet to VolumeDataSet using ASTRA proj_id.
+
+ Input: SinogramDataSet
+ Parameter: proj_id
+ Output: VolumeDataSet
+ '''
+ def checkInput(self, dataset):
+ if dataset.number_of_dimensions == 2 or \
+ dataset.number_of_dimensions == 3 or \
+ dataset.number_of_dimensions == 4:
+ return True
+ else:
+ raise ValueError("Expected input dimensions is 2 or 3, got {0}"\
+ .format(dataset.number_of_dimensions))
+ def process(self):
+ DATA = self.getInput()
+
+ IM = VolumeData(geometry=self.volume_geometry)
+
+ for k in range(IM.geometry.channels):
+ rec_id, IM.as_array()[k] = astra.create_backprojection(DATA.as_array()[k],
+ self.proj_id)
+ astra.data2d.delete(rec_id)
+ return IM \ No newline at end of file
diff --git a/Wrappers/Python/ccpi/framework.py b/Wrappers/Python/ccpi/framework.py
index 5ac17ee..5a507d9 100644
--- a/Wrappers/Python/ccpi/framework.py
+++ b/Wrappers/Python/ccpi/framework.py
@@ -23,6 +23,7 @@ import numpy
import sys
from datetime import timedelta, datetime
import warnings
+from ccpi.reconstruction import geoms
if sys.version_info[0] >= 3 and sys.version_info[1] >= 4:
ABC = abc.ABC
@@ -119,7 +120,7 @@ class DataSet(object):
if deep_copy:
self.array = array[:]
else:
- self.array = array
+ self.array = array
else:
raise TypeError('Array must be NumpyArray, passed {0}'\
.format(type(array)))
@@ -141,8 +142,9 @@ class DataSet(object):
if dimensions is not None:
return self.subset(dimensions).as_array()
return self.array
-
- def subset(self, dimensions=None):
+
+
+ def subset(self, dimensions=None, **kw):
'''Creates a DataSet containing a subset of self according to the
labels in dimensions'''
if dimensions is None:
@@ -164,7 +166,7 @@ class DataSet(object):
else:
axis_order.append(find_key(self.dimension_labels, dl))
if not proceed:
- raise KeyError('Unknown key specified {0}'.format(dl))
+ raise KeyError('Subset error: Unknown key specified {0}'.format(dl))
# slice away the unwanted data from the array
unwanted_dimensions = self.dimension_labels.copy()
@@ -176,13 +178,21 @@ class DataSet(object):
#print ("left_dimensions {0}".format(left_dimensions))
#new_shape = [self.shape[ax] for ax in axis_order]
#print ("new_shape {0}".format(new_shape))
- command = "self.array"
+ command = "self.array["
for i in range(self.number_of_dimensions):
if self.dimension_labels[i] in unwanted_dimensions.values():
- command = command + "[0]"
+ value = 0
+ for k,v in kw.items():
+ if k == self.dimension_labels[i]:
+ value = v
+
+ command = command + str(value)
else:
- command = command + "[:]"
- #print ("command {0}".format(command))
+ command = command + ":"
+ if i < self.number_of_dimensions -1:
+ command = command + ','
+ command = command + ']'
+
cleaned = eval(command)
# cleaned has collapsed dimensions in the same order of
# self.array, but we want it in the order stated in the
@@ -413,7 +423,7 @@ class DataSet(object):
repres += "Number of dimensions: {0}\n".format(self.number_of_dimensions)
repres += "Shape: {0}\n".format(self.shape)
repres += "Axis labels: {0}\n".format(self.dimension_labels)
- repres += "Representation: {0}\n".format(self.array)
+ repres += "Representation: \n{0}\n".format(self.array)
return repres
@@ -421,40 +431,81 @@ class DataSet(object):
class VolumeData(DataSet):
'''DataSet for holding 2D or 3D dataset'''
def __init__(self,
- array,
+ array = None,
deep_copy=True,
dimension_labels=None,
**kwargs):
- if type(array) == DataSet:
- # if the array is a DataSet get the info from there
- if not ( array.number_of_dimensions == 2 or \
- array.number_of_dimensions == 3 ):
- raise ValueError('Number of dimensions are not 2 or 3: {0}'\
- .format(array.number_of_dimensions))
-
- #DataSet.__init__(self, array.as_array(), deep_copy,
- # array.dimension_labels, **kwargs)
- super(VolumeData, self).__init__(array.as_array(), deep_copy,
- array.dimension_labels, **kwargs)
- elif type(array) == numpy.ndarray:
- if not ( array.ndim == 3 or array.ndim == 2 ):
- raise ValueError(
- 'Number of dimensions are not 3 or 2 : {0}'\
- .format(array.ndim))
+ self.geometry = None
+ if array is None:
+ if 'geometry' in kwargs.keys():
+ geometry = kwargs['geometry']
+ self.geometry = geometry
+ channels = geometry.channels
+ horiz_x = geometry.voxel_num_x
+ horiz_y = geometry.voxel_num_y
+ vert = 1 if geometry.voxel_num_z is None\
+ else geometry.voxel_num_z # this should be 1 for 2D
- if dimension_labels is None:
- if array.ndim == 3:
- dimension_labels = ['horizontal_x' ,
- 'horizontal_y' ,
- 'vertical']
+ if channels > 1:
+ if vert > 1:
+ shape = (channels, vert, horiz_y, horiz_x)
+ dim_labels = ['channel' ,'vertical' , 'horizontal_y' ,
+ 'horizontal_x']
+ else:
+ shape = (channels , horiz_y, horiz_x)
+ dim_labels = ['channel' , 'horizontal_y' ,
+ 'horizontal_x']
else:
- dimension_labels = ['horizontal' ,
- 'vertical']
-
- #DataSet.__init__(self, array, deep_copy, dimension_labels, **kwargs)
- super(VolumeData, self).__init__(array, deep_copy,
- dimension_labels, **kwargs)
+ if vert > 1:
+ shape = (vert, horiz_y, horiz_x)
+ dim_labels = ['vertical' , 'horizontal_y' ,
+ 'horizontal_x']
+ else:
+ shape = (horiz_y, horiz_x)
+ dim_labels = ['horizontal_y' ,
+ 'horizontal_x']
+
+ array = numpy.zeros( shape , dtype=numpy.float32)
+ super(VolumeData, self).__init__(array, deep_copy,
+ dim_labels, **kwargs)
+
+ else:
+ raise ValueError('Please pass either a DataSet, ' +\
+ 'a numpy array or a geometry')
+ else:
+ if type(array) == DataSet:
+ # if the array is a DataSet get the info from there
+ if not ( array.number_of_dimensions == 2 or \
+ array.number_of_dimensions == 3 or \
+ array.number_of_dimensions == 4):
+ raise ValueError('Number of dimensions are not 2 or 3 or 4: {0}'\
+ .format(array.number_of_dimensions))
+
+ #DataSet.__init__(self, array.as_array(), deep_copy,
+ # array.dimension_labels, **kwargs)
+ super(VolumeData, self).__init__(array.as_array(), deep_copy,
+ array.dimension_labels, **kwargs)
+ elif type(array) == numpy.ndarray:
+ if not ( array.ndim == 2 or array.ndim == 3 or array.ndim == 4 ):
+ raise ValueError(
+ 'Number of dimensions are not 2 or 3 or 4 : {0}'\
+ .format(array.ndim))
+
+ if dimension_labels is None:
+ if array.ndim == 4:
+ dimension_labels = ['channel' ,'vertical' , 'horizontal_y' ,
+ 'horizontal_x']
+ elif array.ndim == 3:
+ dimension_labels = ['vertical' , 'horizontal_y' ,
+ 'horizontal_x']
+ else:
+ dimension_labels = ['horizontal_y' ,
+ 'horizontal_x']
+
+ #DataSet.__init__(self, array, deep_copy, dimension_labels, **kwargs)
+ super(VolumeData, self).__init__(array, deep_copy,
+ dimension_labels, **kwargs)
# load metadata from kwargs if present
for key, value in kwargs.items():
@@ -469,34 +520,79 @@ class VolumeData(DataSet):
class SinogramData(DataSet):
'''DataSet for holding 2D or 3D sinogram'''
def __init__(self,
- array,
+ array = None,
deep_copy=True,
dimension_labels=None,
**kwargs):
-
- if type(array) == DataSet:
- # if the array is a DataSet get the info from there
- if not ( array.number_of_dimensions == 2 or \
- array.number_of_dimensions == 3 ):
- raise ValueError('Number of dimensions are not 2 or 3: {0}'\
- .format(array.number_of_dimensions))
-
- DataSet.__init__(self, array.as_array(), deep_copy,
- array.dimension_labels, **kwargs)
- elif type(array) == numpy.ndarray:
- if not ( array.ndim == 3 or array.ndim == 2 ):
- raise ValueError('Number of dimensions are != 3: {0}'\
- .format(array.ndim))
- if dimension_labels is None:
- if array.ndim == 3:
- dimension_labels = ['angle' ,
- 'horizontal' ,
- 'vertical']
+ self.geometry = None
+ if array is None:
+ if 'geometry' in kwargs.keys():
+ geometry = kwargs['geometry']
+ self.geometry = geometry
+ channels = geometry.channels
+ horiz = geometry.pixel_num_h
+ vert = geometry.pixel_num_v
+ angles = geometry.angles
+ num_of_angles = numpy.shape(angles)[0]
+
+
+ if channels > 1:
+ if vert > 1:
+ shape = (channels, num_of_angles , vert, horiz)
+ dim_labels = ['channel' , ' angle' ,
+ 'vertical' , 'horizontal']
+ else:
+ shape = (channels , num_of_angles, horiz)
+ dim_labels = ['channel' , 'angle' ,
+ 'horizontal']
else:
- dimension_labels = ['angle' ,
- 'horizontal']
- DataSet.__init__(self, array, deep_copy, dimension_labels, **kwargs)
+ if vert > 1:
+ shape = (num_of_angles, vert, horiz)
+ dim_labels = ['angles' , 'vertical' ,
+ 'horizontal']
+ else:
+ shape = (num_of_angles, horiz)
+ dim_labels = ['angles' ,
+ 'horizontal']
+
+ array = numpy.zeros( shape , dtype=numpy.float32)
+ super(SinogramData, self).__init__(array, deep_copy,
+ dim_labels, **kwargs)
+ else:
+ if type(array) == DataSet:
+ # if the array is a DataSet get the info from there
+ if not ( array.number_of_dimensions == 2 or \
+ array.number_of_dimensions == 3 or \
+ array.number_of_dimensions == 4):
+ raise ValueError('Number of dimensions are not 2 or 3 or 4: {0}'\
+ .format(array.number_of_dimensions))
+
+ #DataSet.__init__(self, array.as_array(), deep_copy,
+ # array.dimension_labels, **kwargs)
+ super(SinogramData, self).__init__(array.as_array(), deep_copy,
+ array.dimension_labels, **kwargs)
+ elif type(array) == numpy.ndarray:
+ if not ( array.ndim == 2 or array.ndim == 3 or array.ndim == 4 ):
+ raise ValueError(
+ 'Number of dimensions are not 2 or 3 or 4 : {0}'\
+ .format(array.ndim))
+
+ if dimension_labels is None:
+ if array.ndim == 4:
+ dimension_labels = ['channel' ,'angle' , 'vertical' ,
+ 'horizontal']
+ elif array.ndim == 3:
+ dimension_labels = ['angle' , 'vertical' ,
+ 'horizontal']
+ else:
+ dimension_labels = ['angle' ,
+ 'horizontal']
+
+ #DataSet.__init__(self, array, deep_copy, dimension_labels, **kwargs)
+ super(SinogramData, self).__init__(array, deep_copy,
+ dimension_labels, **kwargs)
+
class DataSetProcessor(object):
'''Defines a generic DataSet processor
@@ -772,5 +868,31 @@ if __name__ == '__main__':
s = numpy.reshape(numpy.asarray(s), (3,4,4))
sino = SinogramData( s )
-
+ shape = (4,3,2)
+ a = [i for i in range(2*3*4)]
+ a = numpy.asarray(a)
+ a = numpy.reshape(a, shape)
+ print (numpy.shape(a))
+ ds = DataSet(a, True, ['X', 'Y','Z'])
+ # this means that I expect the X to be of length 2 ,
+ # y of length 3 and z of length 4
+ subset = ['Y' ,'Z']
+ b0 = ds.subset( subset )
+ print ("shape b 3,2? {0}".format(numpy.shape(b0.as_array())))
+ # expectation on b is that it is
+ # 3x2 cut at z = 0
+
+ subset = ['X' ,'Y']
+ b1 = ds.subset( subset , Z=1)
+ print ("shape b 2,3? {0}".format(numpy.shape(b1.as_array())))
+
+
+ # create VolumeData from geometry
+ vgeometry = geoms.VolumeGeometry(voxel_num_x=2, voxel_num_y=3, channels=2)
+ vol = VolumeData(geometry=vgeometry)
+
+ sgeometry = geoms.SinogramGeometry(dimension=2, angles=numpy.linspace(0, 180, num=20),
+ geom_type='parallel', pixel_num_v=3,
+ pixel_num_h=5 , channels=2)
+ sino = SinogramData(geometry=sgeometry)
\ No newline at end of file
diff --git a/Wrappers/Python/ccpi/processors.py b/Wrappers/Python/ccpi/processors.py
index 09e7229..c509a4e 100755
--- a/Wrappers/Python/ccpi/processors.py
+++ b/Wrappers/Python/ccpi/processors.py
@@ -32,19 +32,23 @@ class Normalizer(DataSetProcessor):
Input: SinogramDataSet
Parameter: 2D projection with flat field (or stack)
2D projection with dark field (or stack)
- Output: SinogramDataSet
+ Output: SinogramDataSetn
'''
- def __init__(self):
+ def __init__(self, flat_field = None, dark_field = None, tolerance = 1e-5):
kwargs = {
- 'flat_field' :None,
- 'dark_field' :None,
+ 'flat_field' : None,
+ 'dark_field' : None,
# very small number. Used when there is a division by zero
- 'tolerance' : 1e-5
+ 'tolerance' : tolerance
}
#DataSetProcessor.__init__(self, **kwargs)
super(Normalizer, self).__init__(**kwargs)
+ if not flat_field is None:
+ self.setFlatField(flat_field)
+ if not dark_field is None:
+ self.setDarkField(dark_field)
def checkInput(self, dataset):
if dataset.number_of_dimensions == 3:
diff --git a/Wrappers/Python/ccpi/reconstruction/astra_ops.py b/Wrappers/Python/ccpi/reconstruction/astra_ops.py
index 6af7af7..1346f22 100644
--- a/Wrappers/Python/ccpi/reconstruction/astra_ops.py
+++ b/Wrappers/Python/ccpi/reconstruction/astra_ops.py
@@ -19,7 +19,7 @@ from ccpi.reconstruction.ops import Operator
import numpy
from ccpi.framework import SinogramData, VolumeData
from ccpi.reconstruction.ops import PowerMethodNonsquare
-from ccpi.astra.astra_processors import AstraForwardProjector, AstraBackProjector
+from ccpi.astra.astra_processors import *
class AstraProjectorSimple(Operator):
"""ASTRA projector modified to use DataSet and geometry."""
@@ -66,6 +66,55 @@ class AstraProjectorSimple(Operator):
self.sinogram_geometry.pixel_num_h), \
(self.volume_geometry.voxel_num_x, \
self.volume_geometry.voxel_num_y) )
+
+class AstraProjectorMC(Operator):
+ """ASTRA Multichannel projector"""
+ def __init__(self, geomv, geomp, device):
+ super(AstraProjectorMC, self).__init__()
+
+ # Store volume and sinogram geometries.
+ self.sinogram_geometry = geomp
+ self.volume_geometry = geomv
+
+ self.fp = AstraForwardProjectorMC(volume_geometry=geomv,
+ sinogram_geometry=geomp,
+ proj_id=None,
+ device=device)
+
+ self.bp = AstraBackProjectorMC(volume_geometry=geomv,
+ sinogram_geometry=geomp,
+ proj_id=None,
+ device=device)
+
+ # Initialise empty for singular value.
+ self.s1 = 50
+
+ def direct(self, IM):
+ self.fp.setInput(IM)
+ out = self.fp.getOutput()
+ return out
+
+ def adjoint(self, DATA):
+ self.bp.setInput(DATA)
+ out = self.bp.getOutput()
+ return out
+
+ #def delete(self):
+ # astra.data2d.delete(self.proj_id)
+
+ def get_max_sing_val(self):
+ if self.s1 is None:
+ self.s1, sall, svec = PowerMethodNonsquare(self,10)
+ return self.s1
+ else:
+ return self.s1
+
+ def size(self):
+ # Only implemented for 2D
+ return ( (self.sinogram_geometry.angles.size, \
+ self.sinogram_geometry.pixel_num_h), \
+ (self.volume_geometry.voxel_num_x, \
+ self.volume_geometry.voxel_num_y) )
class AstraProjector(Operator):
diff --git a/Wrappers/Python/ccpi/reconstruction/geoms.py b/Wrappers/Python/ccpi/reconstruction/geoms.py
index edce3b3..a887c0c 100644
--- a/Wrappers/Python/ccpi/reconstruction/geoms.py
+++ b/Wrappers/Python/ccpi/reconstruction/geoms.py
@@ -1,16 +1,17 @@
class VolumeGeometry:
- def __init__(self, \
- voxel_num_x=None, \
- voxel_num_y=None, \
- voxel_num_z=None, \
- voxel_size_x=None, \
- voxel_size_y=None, \
- voxel_size_z=None, \
- center_x=0, \
- center_y=0, \
- center_z=0):
+ def __init__(self,
+ voxel_num_x=0,
+ voxel_num_y=0,
+ voxel_num_z=0,
+ voxel_size_x=1,
+ voxel_size_y=1,
+ voxel_size_z=1,
+ center_x=0,
+ center_y=0,
+ center_z=0,
+ channels=1):
self.voxel_num_x = voxel_num_x
self.voxel_num_y = voxel_num_y
@@ -21,6 +22,7 @@ class VolumeGeometry:
self.center_x = center_x
self.center_y = center_y
self.center_z = center_z
+ self.channels = channels
def getMinX(self):
return self.center_x - 0.5*self.voxel_num_x*self.voxel_size_x
@@ -35,24 +37,31 @@ class VolumeGeometry:
return self.center_y + 0.5*self.voxel_num_y*self.voxel_size_y
def getMinZ(self):
- return self.center_z - 0.5*self.voxel_num_z*self.voxel_size_z
+ if not voxel_num_z == 0:
+ return self.center_z - 0.5*self.voxel_num_z*self.voxel_size_z
+ else:
+ return 0
def getMaxZ(self):
- return self.center_z + 0.5*self.voxel_num_z*self.voxel_size_z
+ if not voxel_num_z == 0:
+ return self.center_z + 0.5*self.voxel_num_z*self.voxel_size_z
+ else:
+ return 0
class SinogramGeometry:
- def __init__(self, \
- geom_type, \
- dimension, \
- angles, \
- pixel_num_h=None, \
- pixel_size_h=1, \
- pixel_num_v=None, \
- pixel_size_v=1, \
- dist_source_center=None, \
- dist_center_detector=None, \
+ def __init__(self,
+ geom_type,
+ dimension,
+ angles,
+ pixel_num_h=0,
+ pixel_size_h=1,
+ pixel_num_v=0,
+ pixel_size_v=1,
+ dist_source_center=None,
+ dist_center_detector=None,
+ channels=1
):
"""
General inputs for standard type projection geometries
@@ -91,6 +100,8 @@ class SinogramGeometry:
self.pixel_size_h = pixel_size_h
self.pixel_num_v = pixel_num_v
self.pixel_size_v = pixel_size_v
+
+ self.channels = channels
diff --git a/Wrappers/Python/setup.py b/Wrappers/Python/setup.py
index bbd210f..3f83081 100644
--- a/Wrappers/Python/setup.py
+++ b/Wrappers/Python/setup.py
@@ -35,7 +35,7 @@ if cil_version == '':
setup(
name="ccpi-common",
version=cil_version,
- packages=['ccpi' , 'ccpi.reconstruction'],
+ packages=['ccpi' , 'ccpi.reconstruction' , 'ccpi.astra'],
# Project uses reStructuredText, so ensure that the docutils get
# installed or upgraded on the target machine
diff --git a/Wrappers/Python/test/DemoRecIP.py b/Wrappers/Python/wip/DemoRecIP.py
index 483a202..483a202 100644
--- a/Wrappers/Python/test/DemoRecIP.py
+++ b/Wrappers/Python/wip/DemoRecIP.py
diff --git a/Wrappers/Python/test/regularizers.py b/Wrappers/Python/wip/regularizers.py
index 04ac3aa..04ac3aa 100644
--- a/Wrappers/Python/test/regularizers.py
+++ b/Wrappers/Python/wip/regularizers.py
diff --git a/Wrappers/Python/test/simple_demo.py b/Wrappers/Python/wip/simple_demo.py
index 0bbb687..7c5f43e 100644
--- a/Wrappers/Python/test/simple_demo.py
+++ b/Wrappers/Python/wip/simple_demo.py
@@ -1,34 +1,30 @@
+#import sys
+#sys.path.append("..")
-import sys
-
-sys.path.append("..")
-
-from ccpi.framework import *
-from ccpi.reconstruction.algs import *
-from ccpi.reconstruction.funcs import *
-from ccpi.reconstruction.ops import *
-from ccpi.reconstruction.astra_ops import *
-from ccpi.reconstruction.geoms import *
+from ccpi.framework import VolumeData
+from ccpi.reconstruction.algs import FISTA
+from ccpi.reconstruction.funcs import Norm2sq, Norm1
+from ccpi.reconstruction.astra_ops import AstraProjectorSimple
+from ccpi.reconstruction.geoms import VolumeGeometry, SinogramGeometry
import numpy as np
import matplotlib.pyplot as plt
-test_case = 2 # 1=parallel2D, 2=cone2D
+test_case = 1 # 1=parallel2D, 2=cone2D
# Set up phantom
N = 128
-x = np.zeros((N,N))
+vg = VolumeGeometry(voxel_num_x=N,voxel_num_y=N)
+Phantom = VolumeData(geometry=vg)
+
+x = Phantom.as_array()
x[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 1.0
x[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 2.0
plt.imshow(x)
plt.show()
-vg = VolumeGeometry(N,N,None, 1,1,None)
-
-Phantom = VolumeData(x,geometry=vg)
-
# Set up measurement geometry
angles_num = 20; # angles number
diff --git a/Wrappers/Python/wip/simple_mc_demo.py b/Wrappers/Python/wip/simple_mc_demo.py
new file mode 100755
index 0000000..0d976d7
--- /dev/null
+++ b/Wrappers/Python/wip/simple_mc_demo.py
@@ -0,0 +1,143 @@
+#import sys
+#sys.path.append("..")
+
+from ccpi.framework import VolumeData, SinogramData
+from ccpi.reconstruction.algs import FISTA
+from ccpi.reconstruction.funcs import Norm2sq, Norm1
+from ccpi.reconstruction.astra_ops import AstraProjectorMC
+from ccpi.reconstruction.geoms import VolumeGeometry, SinogramGeometry
+
+import numpy
+import matplotlib.pyplot as plt
+
+test_case = 1 # 1=parallel2D, 2=cone2D
+
+# Set up phantom
+N = 128
+M = 100
+numchannels = 3
+
+vg = VolumeGeometry(voxel_num_x=N,voxel_num_y=N,channels=numchannels)
+Phantom = VolumeData(geometry=vg)
+
+x = Phantom.as_array()
+x[0 , round(N/4):round(3*N/4) , round(N/4):round(3*N/4) ] = 1.0
+x[0 , round(N/8):round(7*N/8) , round(3*N/8):round(5*N/8)] = 2.0
+
+x[1 , round(N/4):round(3*N/4) , round(N/4):round(3*N/4) ] = 0.7
+x[1 , round(N/8):round(7*N/8) , round(3*N/8):round(5*N/8)] = 1.2
+
+x[2 , round(N/4):round(3*N/4) , round(N/4):round(3*N/4) ] = 1.5
+x[2 , round(N/8):round(7*N/8) , round(3*N/8):round(5*N/8)] = 2.2
+
+#x = numpy.zeros((N,N,1,numchannels))
+
+#x[round(N/4):round(3*N/4),round(N/4):round(3*N/4),:,0] = 1.0
+#x[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8),:,0] = 2.0
+
+#x[round(N/4):round(3*N/4),round(N/4):round(3*N/4),:,1] = 0.7
+#x[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8),:,1] = 1.2
+
+#x[round(N/4):round(3*N/4),round(N/4):round(3*N/4),:,2] = 1.5
+#x[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8),:,2] = 2.2
+
+f, axarr = plt.subplots(1,numchannels)
+for k in numpy.arange(3):
+ axarr[k].imshow(x[k],vmin=0,vmax=2.5)
+plt.show()
+
+#vg = VolumeGeometry(N,N,None, 1,1,None,channels=numchannels)
+
+
+#Phantom = VolumeData(x,geometry=vg)
+
+# Set up measurement geometry
+angles_num = 20; # angles number
+
+if test_case==1:
+ angles = numpy.linspace(0,numpy.pi,angles_num,endpoint=False)
+elif test_case==2:
+ angles = numpy.linspace(0,2*numpy.pi,angles_num,endpoint=False)
+else:
+ NotImplemented
+
+det_w = 1.0
+det_num = N
+SourceOrig = 200
+OrigDetec = 0
+
+# Parallelbeam geometry test
+if test_case==1:
+ pg = SinogramGeometry('parallel',
+ '2D',
+ angles,
+ det_num,
+ det_w,
+ channels=numchannels)
+elif test_case==2:
+ pg = SinogramGeometry('cone',
+ '2D',
+ angles,
+ det_num,
+ det_w,
+ dist_source_center=SourceOrig,
+ dist_center_detector=OrigDetec,
+ channels=numchannels)
+
+# ASTRA operator using volume and sinogram geometries
+Aop = AstraProjectorMC(vg, pg, 'cpu')
+
+
+# Try forward and backprojection
+b = Aop.direct(Phantom)
+
+fb, axarrb = plt.subplots(1,numchannels)
+for k in numpy.arange(3):
+ axarrb[k].imshow(b.as_array()[k],vmin=0,vmax=250)
+plt.show()
+
+out2 = Aop.adjoint(b)
+
+fo, axarro = plt.subplots(1,numchannels)
+for k in range(3):
+ axarro[k].imshow(out2.as_array()[k],vmin=0,vmax=3500)
+plt.show()
+
+# Create least squares object instance with projector and data.
+f = Norm2sq(Aop,b,c=0.5)
+
+# Initial guess
+x_init = VolumeData(numpy.zeros(x.shape),geometry=vg)
+
+# FISTA options
+opt = {'tol': 1e-4, 'iter': 200}
+
+# Run FISTA for least squares without regularization
+x_fista0, it0, timing0, criter0 = FISTA(x_init, f, None, opt)
+
+
+ff0, axarrf0 = plt.subplots(1,numchannels)
+for k in numpy.arange(3):
+ axarrf0[k].imshow(x_fista0.as_array()[k],vmin=0,vmax=2.5)
+plt.show()
+
+plt.semilogy(criter0)
+plt.title('Criterion vs iterations, least squares')
+plt.show()
+
+# Now least squares plus 1-norm regularization
+lam = 0.1
+g0 = Norm1(lam)
+
+
+# Run FISTA for least squares plus 1-norm function.
+x_fista1, it1, timing1, criter1 = FISTA(x_init, f, g0, opt)
+
+ff1, axarrf1 = plt.subplots(1,numchannels)
+for k in numpy.arange(3):
+ axarrf1[k].imshow(x_fista1.as_array()[k],vmin=0,vmax=2.5)
+plt.show()
+
+plt.semilogy(criter1)
+plt.title('Criterion vs iterations, least squares plus 1-norm regu')
+plt.show() \ No newline at end of file