summaryrefslogtreecommitdiffstats
path: root/Wrappers
diff options
context:
space:
mode:
Diffstat (limited to 'Wrappers')
-rw-r--r--Wrappers/Python/wip/demo_colourbay.py137
1 files changed, 137 insertions, 0 deletions
diff --git a/Wrappers/Python/wip/demo_colourbay.py b/Wrappers/Python/wip/demo_colourbay.py
new file mode 100644
index 0000000..5dbf2e1
--- /dev/null
+++ b/Wrappers/Python/wip/demo_colourbay.py
@@ -0,0 +1,137 @@
+# This script demonstrates how to load a mat-file with UoM colour-bay data
+# into the CIL optimisation framework and run (simple) multichannel
+# reconstruction methods.
+
+# All third-party imports.
+import numpy
+from scipy.io import loadmat
+import matplotlib.pyplot as plt
+
+# All own imports.
+from ccpi.framework import AcquisitionData, AcquisitionGeometry, ImageGeometry, ImageData
+from ccpi.astra.ops import AstraProjectorMC
+from ccpi.optimisation.algs import CGLS, FISTA
+from ccpi.optimisation.funcs import Norm2sq, Norm1
+
+# Load full data and permute to expected ordering. Change path as necessary.
+# The loaded X has dims 80x60x80x150, which is pix x angle x pix x channel.
+# Permute (numpy.transpose) puts into our default ordering which is
+# (channel, angle, vertical, horizontal).
+
+pathname = '/media/jakob/050d8d45-fab3-4285-935f-260e6c5f162c1/Data/ColourBay/spectral_data_sets/CarbonPd/'
+filename = 'carbonPd_full_sinogram_stripes_removed.mat'
+
+X = loadmat(pathname + filename)
+X = numpy.transpose(X['SS'],(3,1,2,0))
+
+# Store geometric variables for reuse
+num_channels = X.shape[0]
+num_pixels_h = X.shape[3]
+num_pixels_v = X.shape[2]
+num_angles = X.shape[1]
+
+# Display a single projection in a single channel
+plt.imshow(X[100,5,:,:])
+plt.title('Example of a projection image in one channel' )
+plt.show()
+
+# Set angles to use
+angles = numpy.linspace(-numpy.pi,numpy.pi,num_angles,endpoint=False)
+
+# Define full 3D acquisition geometry and data container.
+# Geometric info is taken from the txt-file in the same dir as the mat-file
+ag = AcquisitionGeometry('cone',
+ '3D',
+ angles,
+ pixel_num_h=num_pixels_h,
+ pixel_size_h=0.25,
+ pixel_num_v=num_pixels_v,
+ pixel_size_v=0.25,
+ dist_source_center=233.0,
+ dist_center_detector=245.0,
+ channels=num_channels)
+data = AcquisitionData(X, geometry=ag)
+
+# Reduce to central slice by extracting relevant parameters from data and its
+# geometry. Perhaps create function to extract central slice automatically?
+data2d = data.subset(vertical=40)
+ag2d = AcquisitionGeometry('cone',
+ '2D',
+ ag.angles,
+ pixel_num_h=ag.pixel_num_h,
+ pixel_size_h=ag.pixel_size_h,
+ pixel_num_v=1,
+ pixel_size_v=ag.pixel_size_h,
+ dist_source_center=ag.dist_source_center,
+ dist_center_detector=ag.dist_center_detector,
+ channels=ag.channels)
+data2d.geometry = ag2d
+
+# Set up 2D Image Geometry.
+# First need the geometric magnification to scale the voxel size relative
+# to the detector pixel size.
+mag = (ag.dist_source_center + ag.dist_center_detector)/ag.dist_source_center
+ig2d = ImageGeometry(voxel_num_x=ag2d.pixel_num_h,
+ voxel_num_y=ag2d.pixel_num_h,
+ voxel_size_x=ag2d.pixel_size_h/mag,
+ voxel_size_y=ag2d.pixel_size_h/mag,
+ channels=X.shape[0])
+
+# Create GPU multichannel projector/backprojector operator with ASTRA.
+Aall = AstraProjectorMC(ig2d,ag2d,'gpu')
+
+# Compute and simple backprojction and display one channel as image.
+Xbp = Aall.adjoint(data2d)
+plt.imshow(Xbp.subset(channel=100).array)
+plt.show()
+
+# Set initial guess ImageData with zeros for algorithms, and algorithm options.
+x_init = ImageData(numpy.zeros((num_channels,num_pixels_v,num_pixels_h)),
+ geometry=ig2d,
+ dimension_labels=['channel','horizontal_y','horizontal_x'])
+opt_CGLS = {'tol': 1e-4, 'iter': 5}
+
+# Run CGLS algorithm and display one channel.
+x_CGLS, it_CGLS, timing_CGLS, criter_CGLS = CGLS(x_init, Aall, data2d, opt_CGLS)
+
+plt.imshow(x_CGLS.subset(channel=100).array)
+plt.title('CGLS')
+plt.show()
+
+plt.semilogy(criter_CGLS)
+plt.title('CGLS Criterion vs iterations')
+plt.show()
+
+# Create least squares object instance with projector, test data and a constant
+# coefficient of 0.5. Note it is least squares over all channels.
+f = Norm2sq(Aall,data2d,c=0.5)
+
+# Options for FISTA algorithm.
+opt = {'tol': 1e-4, 'iter': 100}
+
+# Run FISTA for least squares without regularization and display one channel
+# reconstruction as image.
+x_fista0, it0, timing0, criter0 = FISTA(x_init, f, None, opt)
+
+plt.imshow(x_fista0.subset(channel=100).array)
+plt.title('FISTA LS')
+plt.show()
+
+plt.semilogy(criter0)
+plt.title('FISTA LS Criterion vs iterations')
+plt.show()
+
+# Set up 1-norm regularisation (over all channels), solve with FISTA, and
+# display one channel of reconstruction.
+lam = 0.1
+g0 = Norm1(lam)
+
+x_fista1, it1, timing1, criter1 = FISTA(x_init, f, g0, opt)
+
+plt.imshow(x_fista1.subset(channel=100).array)
+plt.title('FISTA LS+1')
+plt.show()
+
+plt.semilogy(criter1)
+plt.title('FISTA LS+1 Criterion vs iterations')
+plt.show() \ No newline at end of file