diff options
author | Edoardo Pasca <edo.paskino@gmail.com> | 2018-01-29 13:45:09 +0000 |
---|---|---|
committer | Edoardo Pasca <edo.paskino@gmail.com> | 2018-01-29 13:45:09 +0000 |
commit | 03de6319509014c2ab8be6cf74487f3a377d94fb (patch) | |
tree | 24786ee6aeda6355c591f419f4f394789ba70011 | |
parent | 107eb18c28255c4c8dbdf8245ffb85fe6f7535d6 (diff) | |
parent | bc286e76483c366ba221ce79349a277fb6db32ed (diff) | |
download | regularization-03de6319509014c2ab8be6cf74487f3a377d94fb.tar.gz regularization-03de6319509014c2ab8be6cf74487f3a377d94fb.tar.bz2 regularization-03de6319509014c2ab8be6cf74487f3a377d94fb.tar.xz regularization-03de6319509014c2ab8be6cf74487f3a377d94fb.zip |
Merge remote-tracking branch 'origin/master' into gpu
-rw-r--r-- | Core/regularizers_CPU/ROF_TV_core.c | 259 | ||||
-rw-r--r-- | Core/regularizers_CPU/ROF_TV_core.h | 54 | ||||
-rw-r--r-- | Wrappers/Matlab/mex_compile/compile_mex.m | 3 | ||||
-rw-r--r-- | Wrappers/Matlab/mex_compile/regularizers_CPU/ROF_TV.c | 106 |
4 files changed, 421 insertions, 1 deletions
diff --git a/Core/regularizers_CPU/ROF_TV_core.c b/Core/regularizers_CPU/ROF_TV_core.c new file mode 100644 index 0000000..0b24806 --- /dev/null +++ b/Core/regularizers_CPU/ROF_TV_core.c @@ -0,0 +1,259 @@ +/* + * This work is part of the Core Imaging Library developed by + * Visual Analytics and Imaging System Group of the Science Technology + * Facilities Council, STFC + * + * Copyright 2017 Daniil Kazantsev + * Copyright 2017 Srikanth Nagella, Edoardo Pasca + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * http://www.apache.org/licenses/LICENSE-2.0 + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "ROF_TV_core.h" + +#define EPS 0.000001 +#define MAX(x, y) (((x) > (y)) ? (x) : (y)) +#define MIN(x, y) (((x) < (y)) ? (x) : (y)) + +int sign(float x) { + return (x > 0) - (x < 0); +} + +/* C-OMP implementation of ROF-TV denoising/regularization model [1] (2D/3D case) + * + * Input Parameters: + * 1. Noisy image/volume [REQUIRED] + * 2. lambda - regularization parameter [REQUIRED] + * 3. tau - marching step for explicit scheme, ~0.001 is recommended [REQUIRED] + * 4. Number of iterations, for explicit scheme >= 150 is recommended [REQUIRED] + * + * Output: + * [1] Regularized image/volume + * + * This function is based on the paper by + * [1] Rudin, Osher, Fatemi, "Nonlinear Total Variation based noise removal algorithms" + * + * D. Kazantsev, 2016-18 + */ + +/* calculate differences 1 */ +float D1_func(float *A, float *D1, int dimY, int dimX, int dimZ) +{ + float NOMx_1, NOMy_1, NOMy_0, NOMz_1, NOMz_0, denom1, denom2,denom3, T1; + int i,j,k,i1,i2,k1,j1,j2,k2; + + if (dimZ == 0) { +#pragma omp parallel for shared (A, D1, dimX, dimY) private(i, j, i1, j1, i2, j2,NOMx_1,NOMy_1,NOMy_0,denom1,denom2,T1) + for(j=0; j<dimY; j++) { + for(i=0; i<dimX; i++) { + /* symmetric boundary conditions (Neuman) */ + i1 = i + 1; if (i1 >= dimY) i1 = i-1; + i2 = i - 1; if (i2 < 0) i2 = i+1; + j1 = j + 1; if (j1 >= dimX) j1 = j-1; + j2 = j - 1; if (j2 < 0) j2 = j+1; + + /* Forward-backward differences */ + NOMx_1 = A[i1*dimY + j] - A[(i)*dimY + j]; /* x+ */ + NOMy_1 = A[i*dimY + j1] - A[(i)*dimY + j]; /* y+ */ + /*NOMx_0 = (A[(i)*dimY + j] - A[(i2)*dimY + j]); */ /* x- */ + NOMy_0 = A[(i)*dimY + j] - A[(i)*dimY + j2]; /* y- */ + + denom1 = NOMx_1*NOMx_1; + denom2 = 0.5*(sign(NOMy_1) + sign(NOMy_0))*(MIN(fabs(NOMy_1),fabs(NOMy_0))); + denom2 = denom2*denom2; + T1 = sqrt(denom1 + denom2 + EPS); + D1[i*dimY+j] = NOMx_1/T1; + }} + } + else { +#pragma omp parallel for shared (A, D1, dimX, dimY, dimZ) private(i, j, k, i1, j1, k1, i2, j2, k2, NOMx_1,NOMy_1,NOMy_0,NOMz_1,NOMz_0,denom1,denom2,denom3,T1) + for(j=0; j<dimY; j++) { + for(i=0; i<dimX; i++) { + for(k=0; k<dimZ; k++) { + /* symmetric boundary conditions (Neuman) */ + i1 = i + 1; if (i1 >= dimY) i1 = i-1; + i2 = i - 1; if (i2 < 0) i2 = i+1; + j1 = j + 1; if (j1 >= dimX) j1 = j-1; + j2 = j - 1; if (j2 < 0) j2 = j+1; + k1 = k + 1; if (k1 >= dimZ) k1 = k-1; + k2 = k - 1; if (k2 < 0) k2 = k+1; + /*B[(dimX*dimY)*k + i*dimY+j] = 0.25*(A[(dimX*dimY)*k + (i1)*dimY + j] + A[(dimX*dimY)*k + (i2)*dimY + j] + A[(dimX*dimY)*k + (i)*dimY + j1] + A[(dimX*dimY)*k + (i)*dimY + j2]) - A[(dimX*dimY)*k + i*dimY + j];*/ + + /* Forward-backward differences */ + NOMx_1 = A[(dimX*dimY)*k + (i1)*dimY + j] - A[(dimX*dimY)*k + (i)*dimY + j]; /* x+ */ + NOMy_1 = A[(dimX*dimY)*k + (i)*dimY + j1] - A[(dimX*dimY)*k + (i)*dimY + j]; /* y+ */ + /*NOMx_0 = (A[(i)*dimY + j] - A[(i2)*dimY + j]); */ /* x- */ + NOMy_0 = A[(dimX*dimY)*k + (i)*dimY + j] - A[(dimX*dimY)*k + (i)*dimY + j2]; /* y- */ + + NOMz_1 = A[(dimX*dimY)*k1 + (i)*dimY + j] - A[(dimX*dimY)*k + (i)*dimY + j]; /* z+ */ + NOMz_0 = A[(dimX*dimY)*k + (i)*dimY + j] - A[(dimX*dimY)*k2 + (i)*dimY + j]; /* z- */ + + + denom1 = NOMx_1*NOMx_1; + denom2 = 0.5*(sign(NOMy_1) + sign(NOMy_0))*(MIN(fabs(NOMy_1),fabs(NOMy_0))); + denom2 = denom2*denom2; + denom3 = 0.5*(sign(NOMz_1) + sign(NOMz_0))*(MIN(fabs(NOMz_1),fabs(NOMz_0))); + denom3 = denom3*denom3; + T1 = sqrt(denom1 + denom2 + denom3 + EPS); + D1[(dimX*dimY)*k + i*dimY+j] = NOMx_1/T1; + }}} + } + return *D1; +} +/* calculate differences 2 */ +float D2_func(float *A, float *D2, int dimY, int dimX, int dimZ) +{ + float NOMx_1, NOMy_1, NOMx_0, NOMz_1, NOMz_0, denom1, denom2, denom3, T2; + int i,j,k,i1,i2,k1,j1,j2,k2; + + if (dimZ == 0) { +#pragma omp parallel for shared (A, D2, dimX, dimY) private(i, j, i1, j1, i2, j2, NOMx_1,NOMy_1,NOMx_0,denom1,denom2,T2) + for(j=0; j<dimY; j++) { + for(i=0; i<dimX; i++) { + /* symmetric boundary conditions (Neuman) */ + i1 = i + 1; if (i1 >= dimY) i1 = i-1; + i2 = i - 1; if (i2 < 0) i2 = i+1; + j1 = j + 1; if (j1 >= dimX) j1 = j-1; + j2 = j - 1; if (j2 < 0) j2 = j+1; + + /* Forward-backward differences */ + NOMx_1 = A[(i1)*dimY + j] - A[(i)*dimY + j]; /* x+ */ + NOMy_1 = A[i*dimY + j1] - A[(i)*dimY + j]; /* y+ */ + NOMx_0 = A[(i)*dimY + j] - A[(i2)*dimY + j]; /* x- */ + /*NOMy_0 = A[(i)*dimY + j] - A[(i)*dimY + j2]; */ /* y- */ + + denom1 = NOMy_1*NOMy_1; + denom2 = 0.5*(sign(NOMx_1) + sign(NOMx_0))*(MIN(fabs(NOMx_1),fabs(NOMx_0))); + denom2 = denom2*denom2; + T2 = sqrt(denom1 + denom2 + EPS); + D2[i*dimY+j] = NOMy_1/T2; + }} + } + else { +#pragma omp parallel for shared (A, D2, dimX, dimY, dimZ) private(i, j, k, i1, j1, k1, i2, j2, k2, NOMx_1, NOMy_1, NOMx_0, NOMz_1, NOMz_0, denom1, denom2, denom3, T2) + for(j=0; j<dimY; j++) { + for(i=0; i<dimX; i++) { + for(k=0; k<dimZ; k++) { + /* symmetric boundary conditions (Neuman) */ + i1 = i + 1; if (i1 >= dimY) i1 = i-1; + i2 = i - 1; if (i2 < 0) i2 = i+1; + j1 = j + 1; if (j1 >= dimX) j1 = j-1; + j2 = j - 1; if (j2 < 0) j2 = j+1; + k1 = k + 1; if (k1 >= dimZ) k1 = k-1; + k2 = k - 1; if (k2 < 0) k2 = k+1; + + + /* Forward-backward differences */ + NOMx_1 = A[(dimX*dimY)*k + (i1)*dimY + j] - A[(dimX*dimY)*k + (i)*dimY + j]; /* x+ */ + NOMy_1 = A[(dimX*dimY)*k + (i)*dimY + j1] - A[(dimX*dimY)*k + (i)*dimY + j]; /* y+ */ + NOMx_0 = A[(dimX*dimY)*k + (i)*dimY + j] - A[(dimX*dimY)*k + (i2)*dimY + j]; /* x- */ + NOMz_1 = A[(dimX*dimY)*k1 + (i)*dimY + j] - A[(dimX*dimY)*k + (i)*dimY + j]; /* z+ */ + NOMz_0 = A[(dimX*dimY)*k + (i)*dimY + j] - A[(dimX*dimY)*k2 + (i)*dimY + j]; /* z- */ + + + denom1 = NOMy_1*NOMy_1; + denom2 = 0.5*(sign(NOMx_1) + sign(NOMx_0))*(MIN(fabs(NOMx_1),fabs(NOMx_0))); + denom2 = denom2*denom2; + denom3 = 0.5*(sign(NOMz_1) + sign(NOMz_0))*(MIN(fabs(NOMz_1),fabs(NOMz_0))); + denom3 = denom3*denom3; + T2 = sqrt(denom1 + denom2 + denom3 + EPS); + D2[(dimX*dimY)*k + i*dimY+j] = NOMy_1/T2; + }}} + } + return *D2; +} + +/* calculate differences 3 */ +float D3_func(float *A, float *D3, int dimY, int dimX, int dimZ) +{ + float NOMx_1, NOMy_1, NOMx_0, NOMy_0, NOMz_1, denom1, denom2, denom3, T3; + int i,j,k,i1,i2,k1,j1,j2,k2; + +#pragma omp parallel for shared (A, D3, dimX, dimY, dimZ) private(i, j, k, i1, j1, k1, i2, j2, k2, NOMx_1, NOMy_1, NOMy_0, NOMx_0, NOMz_1, denom1, denom2, denom3, T3) + for(j=0; j<dimY; j++) { + for(i=0; i<dimX; i++) { + for(k=0; k<dimZ; k++) { + /* symmetric boundary conditions (Neuman) */ + i1 = i + 1; if (i1 >= dimY) i1 = i-1; + i2 = i - 1; if (i2 < 0) i2 = i+1; + j1 = j + 1; if (j1 >= dimX) j1 = j-1; + j2 = j - 1; if (j2 < 0) j2 = j+1; + k1 = k + 1; if (k1 >= dimZ) k1 = k-1; + k2 = k - 1; if (k2 < 0) k2 = k+1; + + /* Forward-backward differences */ + NOMx_1 = A[(dimX*dimY)*k + (i1)*dimY + j] - A[(dimX*dimY)*k + (i)*dimY + j]; /* x+ */ + NOMy_1 = A[(dimX*dimY)*k + (i)*dimY + j1] - A[(dimX*dimY)*k + (i)*dimY + j]; /* y+ */ + NOMy_0 = A[(dimX*dimY)*k + (i)*dimY + j] - A[(dimX*dimY)*k + (i)*dimY + j2]; /* y- */ + NOMx_0 = A[(dimX*dimY)*k + (i)*dimY + j] - A[(dimX*dimY)*k + (i2)*dimY + j]; /* x- */ + NOMz_1 = A[(dimX*dimY)*k1 + (i)*dimY + j] - A[(dimX*dimY)*k + (i)*dimY + j]; /* z+ */ + /*NOMz_0 = A[(dimX*dimY)*k + (i)*dimY + j] - A[(dimX*dimY)*k2 + (i)*dimY + j]; */ /* z- */ + + denom1 = NOMz_1*NOMz_1; + denom2 = 0.5*(sign(NOMx_1) + sign(NOMx_0))*(MIN(fabs(NOMx_1),fabs(NOMx_0))); + denom2 = denom2*denom2; + denom3 = 0.5*(sign(NOMy_1) + sign(NOMy_0))*(MIN(fabs(NOMy_1),fabs(NOMy_0))); + denom3 = denom3*denom3; + T3 = sqrt(denom1 + denom2 + denom3 + EPS); + D3[(dimX*dimY)*k + i*dimY+j] = NOMz_1/T3; + }}} + return *D3; +} + +/* calculate divergence */ +float TV_main(float *D1, float *D2, float *D3, float *B, float *A, float lambda, float tau, int dimY, int dimX, int dimZ) +{ + float dv1, dv2, dv3; + int index,i,j,k,i1,i2,k1,j1,j2,k2; + + if (dimZ == 0) { +#pragma omp parallel for shared (D1, D2, B, dimX, dimY) private(index, i, j, i1, j1, i2, j2,dv1,dv2) + for(j=0; j<dimY; j++) { + for(i=0; i<dimX; i++) { + index = (i)*dimY + j; + /* symmetric boundary conditions (Neuman) */ + i1 = i + 1; if (i1 >= dimY) i1 = i-1; + i2 = i - 1; if (i2 < 0) i2 = i+1; + j1 = j + 1; if (j1 >= dimX) j1 = j-1; + j2 = j - 1; if (j2 < 0) j2 = j+1; + + /* divergence components */ + dv1 = D1[index] - D1[(i2)*dimY + j]; + dv2 = D2[index] - D2[(i)*dimY + j2]; + + B[index] = B[index] + tau*lambda*(dv1 + dv2) + tau*(A[index] - B[index]); + + }} + } + else { +#pragma omp parallel for shared (D1, D2, D3, B, dimX, dimY, dimZ) private(index, i, j, k, i1, j1, k1, i2, j2, k2, dv1,dv2,dv3) + for(j=0; j<dimY; j++) { + for(i=0; i<dimX; i++) { + for(k=0; k<dimZ; k++) { + index = (dimX*dimY)*k + i*dimY+j; + /* symmetric boundary conditions (Neuman) */ + i1 = i + 1; if (i1 >= dimY) i1 = i-1; + i2 = i - 1; if (i2 < 0) i2 = i+1; + j1 = j + 1; if (j1 >= dimX) j1 = j-1; + j2 = j - 1; if (j2 < 0) j2 = j+1; + k1 = k + 1; if (k1 >= dimZ) k1 = k-1; + k2 = k - 1; if (k2 < 0) k2 = k+1; + + /*divergence components */ + dv1 = D1[index] - D1[(dimX*dimY)*k + i2*dimY+j]; + dv2 = D2[index] - D2[(dimX*dimY)*k + i*dimY+j2]; + dv3 = D3[index] - D3[(dimX*dimY)*k2 + i*dimY+j]; + + B[index] = B[index] + tau*lambda*(dv1 + dv2 + dv3) + tau*(A[index] - B[index]); + }}} + } + return *B; +}
\ No newline at end of file diff --git a/Core/regularizers_CPU/ROF_TV_core.h b/Core/regularizers_CPU/ROF_TV_core.h new file mode 100644 index 0000000..6e4f961 --- /dev/null +++ b/Core/regularizers_CPU/ROF_TV_core.h @@ -0,0 +1,54 @@ +/* +This work is part of the Core Imaging Library developed by +Visual Analytics and Imaging System Group of the Science Technology +Facilities Council, STFC + +Copyright 2017 Daniil Kazantsev +Copyright 2017 Srikanth Nagella, Edoardo Pasca + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +*/ + +#include <math.h> +#include <stdlib.h> +#include <memory.h> +#include <stdio.h> +#include "omp.h" +#include "utils.h" +#include "CCPiDefines.h" + +/* C-OMP implementation of ROF-TV denoising/regularization model [1] (2D/3D case) +* +* Input Parameters: + * 1. Noisy image/volume [REQUIRED] + * 2. lambda - regularization parameter [REQUIRED] + * 3. tau - marching step for explicit scheme, ~0.001 is recommended [REQUIRED] + * 4. Number of iterations, for explicit scheme >= 150 is recommended [REQUIRED] +* +* Output: +* [1] Regularized image/volume + + * This function is based on the paper by +* [1] Rudin, Osher, Fatemi, "Nonlinear Total Variation based noise removal algorithms" +* +* D. Kazantsev, 2016-18 +*/ +#ifdef __cplusplus +extern "C" { +#endif +//float copyIm(float *A, float *B, int dimX, int dimY, int dimZ); +CCPI_EXPORT float TV_main(float *D1, float *D2, float *D3, float *B, float *A, float lambda, float tau, int dimY, int dimX, int dimZ); +CCPI_EXPORT float D1_func(float *A, float *D1, int dimY, int dimX, int dimZ); +CCPI_EXPORT float D2_func(float *A, float *D2, int dimY, int dimX, int dimZ); +CCPI_EXPORT float D3_func(float *A, float *D3, int dimY, int dimX, int dimZ); +#ifdef __cplusplus +} +#endif
\ No newline at end of file diff --git a/Wrappers/Matlab/mex_compile/compile_mex.m b/Wrappers/Matlab/mex_compile/compile_mex.m index e1debf3..ee85b49 100644 --- a/Wrappers/Matlab/mex_compile/compile_mex.m +++ b/Wrappers/Matlab/mex_compile/compile_mex.m @@ -7,13 +7,14 @@ cd regularizers_CPU/ % compile C regularizers +mex ROF_TV.c ROF_TV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" mex LLT_model.c LLT_model_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" mex FGP_TV.c FGP_TV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" mex SplitBregman_TV.c SplitBregman_TV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" mex TGV_PD.c TGV_PD_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" mex PatchBased_Regul.c PatchBased_Regul_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -delete LLT_model_core.c LLT_model_core.h FGP_TV_core.c FGP_TV_core.h SplitBregman_TV_core.c SplitBregman_TV_core.h TGV_PD_core.c TGV_PD_core.h PatchBased_Regul_core.c PatchBased_Regul_core.h utils.c utils.h CCPiDefines.h +delete ROF_TV_core.c ROF_TV_core.h LLT_model_core.c LLT_model_core.h FGP_TV_core.c FGP_TV_core.h SplitBregman_TV_core.c SplitBregman_TV_core.h TGV_PD_core.c TGV_PD_core.h PatchBased_Regul_core.c PatchBased_Regul_core.h utils.c utils.h CCPiDefines.h % compile CUDA-based regularizers %cd regularizers_GPU/ diff --git a/Wrappers/Matlab/mex_compile/regularizers_CPU/ROF_TV.c b/Wrappers/Matlab/mex_compile/regularizers_CPU/ROF_TV.c new file mode 100644 index 0000000..a800add --- /dev/null +++ b/Wrappers/Matlab/mex_compile/regularizers_CPU/ROF_TV.c @@ -0,0 +1,106 @@ +/* + * This work is part of the Core Imaging Library developed by + * Visual Analytics and Imaging System Group of the Science Technology + * Facilities Council, STFC + * + * Copyright 2017 Daniil Kazantsev + * Copyright 2017 Srikanth Nagella, Edoardo Pasca + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * http://www.apache.org/licenses/LICENSE-2.0 + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#include "matrix.h" +#include "mex.h" +#include "ROF_TV_core.h" + +/* C-OMP implementation of ROF-TV denoising/regularization model [1] (2D/3D case) + * + * Input Parameters: + * 1. Noisy image/volume [REQUIRED] + * 2. lambda - regularization parameter [REQUIRED] + * 3. tau - marching step for explicit scheme, ~0.001 is recommended [REQUIRED] + * 4. Number of iterations, for explicit scheme >= 150 is recommended [REQUIRED] + * + * Output: + * [1] Regularized image/volume + * + * This function is based on the paper by + * [1] Rudin, Osher, Fatemi, "Nonlinear Total Variation based noise removal algorithms" + * compile: mex ROF_TV.c ROF_TV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" + * D. Kazantsev, 2016-18 + */ + +void mexFunction( + int nlhs, mxArray *plhs[], + int nrhs, const mxArray *prhs[]) + +{ + int i, number_of_dims, iter_numb, dimX, dimY, dimZ; + const int *dim_array; + float *A, *B, *D1, *D2, *D3, lambda, tau; + + dim_array = mxGetDimensions(prhs[0]); + number_of_dims = mxGetNumberOfDimensions(prhs[0]); + + /*Handling Matlab input data*/ + A = (float *) mxGetData(prhs[0]); + lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */ + tau = (float) mxGetScalar(prhs[2]); /* marching step parameter */ + iter_numb = (int) mxGetScalar(prhs[3]); /* iterations number */ + + if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } + /*Handling Matlab output data*/ + dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; + + /* output arrays*/ + if (number_of_dims == 2) { + dimZ = 0; /*2D case*/ + B = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + D1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + D2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + + /* copy into B */ + copyIm(A, B, dimX, dimY, 1); + + /* start TV iterations */ + for(i=0; i < iter_numb; i++) { + + /* calculate differences */ + D1_func(B, D1, dimX, dimY, dimZ); + D2_func(B, D2, dimX, dimY, dimZ); + + /* calculate divergence and image update*/ + TV_main(D1, D2, D2, B, A, lambda, tau, dimX, dimY, dimZ); + } + } + + if (number_of_dims == 3) { + B = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + D1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + D2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + D3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + + /* copy into B */ + copyIm(A, B, dimX, dimY, dimZ); + + /* start TV iterations */ + for(i=0; i < iter_numb; i++) { + + /* calculate differences */ + D1_func(B, D1, dimX, dimY, dimZ); + D2_func(B, D2, dimX, dimY, dimZ); + D3_func(B, D3, dimX, dimY, dimZ); + + /* calculate divergence and image update*/ + TV_main(D1, D2, D3, B, A, lambda, tau, dimX, dimY, dimZ); + } + } + +} |