diff options
author | Daniil Kazantsev <dkazanc3@googlemail.com> | 2018-10-17 15:23:23 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2018-10-17 15:23:23 +0100 |
commit | abc61cfd1258969d5cc5eedec5d52183e5407556 (patch) | |
tree | a44be3e78745fbca0ecca1f67585c755f11836c3 | |
parent | 56d876e94e67f0d774627378c0527ae7b390e13a (diff) | |
parent | 6887ae5026e20fa8acad644f040fdab1a085e772 (diff) | |
download | regularization-abc61cfd1258969d5cc5eedec5d52183e5407556.tar.gz regularization-abc61cfd1258969d5cc5eedec5d52183e5407556.tar.bz2 regularization-abc61cfd1258969d5cc5eedec5d52183e5407556.tar.xz regularization-abc61cfd1258969d5cc5eedec5d52183e5407556.zip |
Merge pull request #62 from vais-ral/demo_tests
fixes tests/demos and closes #43
-rw-r--r-- | Core/regularisers_CPU/FGP_TV_core.c | 14 | ||||
-rwxr-xr-x | Wrappers/Python/conda-recipe/run_test.py | 20 | ||||
-rw-r--r-- | Wrappers/Python/demos/demo_cpu_regularisers.py | 2 | ||||
-rw-r--r-- | Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py | 8 |
4 files changed, 22 insertions, 22 deletions
diff --git a/Core/regularisers_CPU/FGP_TV_core.c b/Core/regularisers_CPU/FGP_TV_core.c index d828d48..68d58b7 100644 --- a/Core/regularisers_CPU/FGP_TV_core.c +++ b/Core/regularisers_CPU/FGP_TV_core.c @@ -55,7 +55,7 @@ float TV_FGP_CPU_main(float *Input, float *Output, float lambdaPar, int iteratio P1 = calloc(DimTotal, sizeof(float)); P2 = calloc(DimTotal, sizeof(float)); P1_prev = calloc(DimTotal, sizeof(float)); - P2_prev = calloc(DimTotal, sizeof(float)); + P2_prev = calloc(DimTotal, sizeof(float)); R1 = calloc(DimTotal, sizeof(float)); R2 = calloc(DimTotal, sizeof(float)); @@ -63,13 +63,13 @@ float TV_FGP_CPU_main(float *Input, float *Output, float lambdaPar, int iteratio for(ll=0; ll<iterationsNumb; ll++) { /* computing the gradient of the objective function */ - Obj_func2D(Input, Output, R1, R2, lambdaPar, (long)(dimY), (long)(dimZ)); + Obj_func2D(Input, Output, R1, R2, lambdaPar, (long)(dimX), (long)(dimY)); /* apply nonnegativity */ - if (nonneg == 1) for(j=0; j<DimTotal; j++) {if (Output[j] < 0.0f) Output[j] = 0.0f;} + if (nonneg == 1) for(j=0; j<DimTotal; j++) {if (Output[j] < 0.0f) Output[j] = 0.0f;} /*Taking a step towards minus of the gradient*/ - Grad_func2D(P1, P2, Output, R1, R2, lambdaPar, (long)(dimY), (long)(dimZ)); + Grad_func2D(P1, P2, Output, R1, R2, lambdaPar, (long)(dimX), (long)(dimY)); /* projection step */ Proj_func2D(P1, P2, methodTV, DimTotal); @@ -90,9 +90,9 @@ float TV_FGP_CPU_main(float *Input, float *Output, float lambdaPar, int iteratio if (count > 4) break; /*storing old values*/ - copyIm(Output, Output_prev, (long)(dimY), (long)(dimZ), 1l); - copyIm(P1, P1_prev, (long)(dimY), (long)(dimZ), 1l); - copyIm(P2, P2_prev, (long)(dimY), (long)(dimZ), 1l); + copyIm(Output, Output_prev, (long)(dimX), (long)(dimY), 1l); + copyIm(P1, P1_prev, (long)(dimX), (long)(dimY), 1l); + copyIm(P2, P2_prev, (long)(dimX), (long)(dimY), 1l); tk = tkp1; } if (printM == 1) printf("FGP-TV iterations stopped at iteration %i \n", ll); diff --git a/Wrappers/Python/conda-recipe/run_test.py b/Wrappers/Python/conda-recipe/run_test.py index 398ef60..86013a3 100755 --- a/Wrappers/Python/conda-recipe/run_test.py +++ b/Wrappers/Python/conda-recipe/run_test.py @@ -65,8 +65,8 @@ class TestRegularisers(unittest.TestCase): pars = {'algorithm': ROF_TV, \
'input' : u0,\
'regularisation_parameter':0.04,\
- 'number_of_iterations': 1200,\
- 'time_marching_parameter': 0.0025
+ 'number_of_iterations': 1000,\
+ 'time_marching_parameter': 0.0001
}
print ("#############ROF TV CPU####################")
start_time = timeit.default_timer()
@@ -94,7 +94,7 @@ class TestRegularisers(unittest.TestCase): txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
print (txtstr)
print ("--------Compare the results--------")
- tolerance = 1e-05
+ tolerance = 1e-04
diff_im = np.zeros(np.shape(rof_cpu))
diff_im = abs(rof_cpu - rof_gpu)
diff_im[diff_im > tolerance] = 1
@@ -361,8 +361,8 @@ class TestRegularisers(unittest.TestCase): 'input' : u0,\
'regularisation_parameterROF':0.04, \
'regularisation_parameterLLT':0.01, \
- 'number_of_iterations' :500 ,\
- 'time_marching_parameter' :0.0025 ,\
+ 'number_of_iterations' :1000 ,\
+ 'time_marching_parameter' :0.0001 ,\
}
print ("#############LLT- ROF CPU####################")
@@ -394,7 +394,7 @@ class TestRegularisers(unittest.TestCase): txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
print (txtstr)
print ("--------Compare the results--------")
- tolerance = 1e-05
+ tolerance = 1e-04
diff_im = np.zeros(np.shape(lltrof_gpu))
diff_im = abs(lltrof_cpu - lltrof_gpu)
diff_im[diff_im > tolerance] = 1
@@ -643,14 +643,14 @@ class TestRegularisers(unittest.TestCase): Im = np.asarray(Im, dtype='float32')
"""
tolerance = 1e-05
- rms_rof_exp = 0.006812507 #expected value for ROF model
+ rms_rof_exp = 8.313131464999238e-05 #expected value for ROF model
# set parameters for ROF-TV
pars_rof_tv = {'algorithm': ROF_TV, \
'input' : Im,\
'regularisation_parameter':0.04,\
'number_of_iterations': 50,\
- 'time_marching_parameter': 0.0025
+ 'time_marching_parameter': 0.00001
}
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("_________testing ROF-TV (2D, CPU)__________")
@@ -715,14 +715,14 @@ class TestRegularisers(unittest.TestCase): Im = Im/255
tolerance = 1e-05
- rms_rof_exp = 0.006812507 #expected value for ROF model
+ rms_rof_exp = 8.313131464999238e-05 #expected value for ROF model
# set parameters for ROF-TV
pars_rof_tv = {'algorithm': ROF_TV, \
'input' : Im,\
'regularisation_parameter':0.04,\
'number_of_iterations': 50,\
- 'time_marching_parameter': 0.0025
+ 'time_marching_parameter': 0.00001
}
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("_________testing ROF-TV (2D, GPU)__________")
diff --git a/Wrappers/Python/demos/demo_cpu_regularisers.py b/Wrappers/Python/demos/demo_cpu_regularisers.py index b94f11c..e99b271 100644 --- a/Wrappers/Python/demos/demo_cpu_regularisers.py +++ b/Wrappers/Python/demos/demo_cpu_regularisers.py @@ -36,7 +36,7 @@ filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif") Im = plt.imread(filename) Im = np.asarray(Im, dtype='float32') -Im = Im/255 +Im = Im/255.0 perc = 0.05 u0 = Im + np.random.normal(loc = 0 , scale = perc * Im , diff --git a/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py b/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py index e45dc40..3d6e92f 100644 --- a/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py +++ b/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py @@ -66,8 +66,8 @@ imgplot = plt.imshow(u0,cmap="gray") pars = {'algorithm': ROF_TV, \ 'input' : u0,\ 'regularisation_parameter':0.04,\ - 'number_of_iterations': 1200,\ - 'time_marching_parameter': 0.0025 + 'number_of_iterations': 4500,\ + 'time_marching_parameter': 0.00002 } print ("#############ROF TV CPU####################") start_time = timeit.default_timer() @@ -406,8 +406,8 @@ pars = {'algorithm' : LLT_ROF, \ 'input' : u0,\ 'regularisation_parameterROF':0.04, \ 'regularisation_parameterLLT':0.01, \ - 'number_of_iterations' :500 ,\ - 'time_marching_parameter' :0.0025 ,\ + 'number_of_iterations' :4500 ,\ + 'time_marching_parameter' :0.00002 ,\ } print ("#############LLT- ROF CPU####################") |