diff options
author | Edoardo Pasca <edo.paskino@gmail.com> | 2017-08-02 15:21:05 +0100 |
---|---|---|
committer | Edoardo Pasca <edo.paskino@gmail.com> | 2017-08-02 15:21:05 +0100 |
commit | d9e090a5e56de630f85f0bd4238991fb307ce46b (patch) | |
tree | 540b340de61251b3b8f787f908c96883e29707ae | |
parent | 5d4464a78d1807565a75c9430cfe5e6857fe9232 (diff) | |
download | regularization-d9e090a5e56de630f85f0bd4238991fb307ce46b.tar.gz regularization-d9e090a5e56de630f85f0bd4238991fb307ce46b.tar.bz2 regularization-d9e090a5e56de630f85f0bd4238991fb307ce46b.tar.xz regularization-d9e090a5e56de630f85f0bd4238991fb307ce46b.zip |
initial split of C files to be used both by Matlab and Python
the regularizers routines have been splitted to separate the Matlab from
the C implementation. This will allow the concurrent use of the C code
from Boost Python.
-rw-r--r-- | main_func/regularizers_CPU/FGP_TV.c | 198 | ||||
-rw-r--r-- | main_func/regularizers_CPU/FGP_TV_core.c | 200 | ||||
-rw-r--r-- | main_func/regularizers_CPU/FGP_TV_core.h | 63 | ||||
-rw-r--r-- | main_func/regularizers_CPU/LLT_model.c | 324 | ||||
-rw-r--r-- | main_func/regularizers_CPU/LLT_model_core.c | 300 | ||||
-rw-r--r-- | main_func/regularizers_CPU/LLT_model_core.h | 64 | ||||
-rw-r--r-- | main_func/regularizers_CPU/PatchBased_Regul.c | 199 | ||||
-rw-r--r-- | main_func/regularizers_CPU/PatchBased_Regul_core.c | 220 | ||||
-rw-r--r-- | main_func/regularizers_CPU/PatchBased_Regul_core.h | 64 | ||||
-rw-r--r-- | main_func/regularizers_CPU/SplitBregman_TV.c | 261 | ||||
-rw-r--r-- | main_func/regularizers_CPU/SplitBregman_TV_core.c | 270 | ||||
-rw-r--r-- | main_func/regularizers_CPU/SplitBregman_TV_core.h | 59 | ||||
-rw-r--r-- | main_func/regularizers_CPU/TGV_PD.c | 207 | ||||
-rw-r--r-- | main_func/regularizers_CPU/TGV_PD_core.c | 217 | ||||
-rw-r--r-- | main_func/regularizers_CPU/TGV_PD_core.h | 64 |
15 files changed, 1619 insertions, 1091 deletions
diff --git a/main_func/regularizers_CPU/FGP_TV.c b/main_func/regularizers_CPU/FGP_TV.c index 1a1fd13..5d8cfb9 100644 --- a/main_func/regularizers_CPU/FGP_TV.c +++ b/main_func/regularizers_CPU/FGP_TV.c @@ -1,10 +1,23 @@ +/* +This work is part of the Core Imaging Library developed by +Visual Analytics and Imaging System Group of the Science Technology +Facilities Council, STFC + +Copyright 2017 Daniil Kazanteev +Copyright 2017 Srikanth Nagella, Edoardo Pasca + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +*/ #include "mex.h" -#include <matrix.h> -#include <math.h> -#include <stdlib.h> -#include <memory.h> -#include <stdio.h> -#include "omp.h" +#include "FGP_TV_core.h" /* C-OMP implementation of FGP-TV [1] denoising/regularization model (2D/3D case) * @@ -33,17 +46,6 @@ * */ -float copyIm(float *A, float *B, int dimX, int dimY, int dimZ); -float Obj_func2D(float *A, float *D, float *R1, float *R2, float lambda, int dimX, int dimY); -float Grad_func2D(float *P1, float *P2, float *D, float *R1, float *R2, float lambda, int dimX, int dimY); -float Proj_func2D(float *P1, float *P2, int methTV, int dimX, int dimY); -float Rupd_func2D(float *P1, float *P1_old, float *P2, float *P2_old, float *R1, float *R2, float tkp1, float tk, int dimX, int dimY); - -float Obj_func3D(float *A, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ); -float Grad_func3D(float *P1, float *P2, float *P3, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ); -float Proj_func3D(float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ); -float Rupd_func3D(float *P1, float *P1_old, float *P2, float *P2_old, float *P3, float *P3_old, float *R1, float *R2, float *R3, float tkp1, float tk, int dimX, int dimY, int dimZ); - void mexFunction( int nlhs, mxArray *plhs[], @@ -236,165 +238,3 @@ void mexFunction( printf("FGP-TV iterations stopped at iteration %i with the function value %f \n", ll, funcvalA[0]); } } - -/* 2D-case related Functions */ -/*****************************************************************/ -float Obj_func2D(float *A, float *D, float *R1, float *R2, float lambda, int dimX, int dimY) -{ - float val1, val2; - int i,j; -#pragma omp parallel for shared(A,D,R1,R2) private(i,j,val1,val2) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - /* boundary conditions */ - if (i == 0) {val1 = 0.0f;} else {val1 = R1[(i-1)*dimY + (j)];} - if (j == 0) {val2 = 0.0f;} else {val2 = R2[(i)*dimY + (j-1)];} - D[(i)*dimY + (j)] = A[(i)*dimY + (j)] - lambda*(R1[(i)*dimY + (j)] + R2[(i)*dimY + (j)] - val1 - val2); - }} - return *D; -} -float Grad_func2D(float *P1, float *P2, float *D, float *R1, float *R2, float lambda, int dimX, int dimY) -{ - float val1, val2, multip; - int i,j; - multip = (1.0f/(8.0f*lambda)); -#pragma omp parallel for shared(P1,P2,D,R1,R2,multip) private(i,j,val1,val2) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - /* boundary conditions */ - if (i == dimX-1) val1 = 0.0f; else val1 = D[(i)*dimY + (j)] - D[(i+1)*dimY + (j)]; - if (j == dimY-1) val2 = 0.0f; else val2 = D[(i)*dimY + (j)] - D[(i)*dimY + (j+1)]; - P1[(i)*dimY + (j)] = R1[(i)*dimY + (j)] + multip*val1; - P2[(i)*dimY + (j)] = R2[(i)*dimY + (j)] + multip*val2; - }} - return 1; -} -float Proj_func2D(float *P1, float *P2, int methTV, int dimX, int dimY) -{ - float val1, val2, denom; - int i,j; - if (methTV == 0) { - /* isotropic TV*/ -#pragma omp parallel for shared(P1,P2) private(i,j,denom) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - denom = pow(P1[(i)*dimY + (j)],2) + pow(P2[(i)*dimY + (j)],2); - if (denom > 1) { - P1[(i)*dimY + (j)] = P1[(i)*dimY + (j)]/sqrt(denom); - P2[(i)*dimY + (j)] = P2[(i)*dimY + (j)]/sqrt(denom); - } - }} - } - else { - /* anisotropic TV*/ -#pragma omp parallel for shared(P1,P2) private(i,j,val1,val2) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - val1 = fabs(P1[(i)*dimY + (j)]); - val2 = fabs(P2[(i)*dimY + (j)]); - if (val1 < 1.0f) {val1 = 1.0f;} - if (val2 < 1.0f) {val2 = 1.0f;} - P1[(i)*dimY + (j)] = P1[(i)*dimY + (j)]/val1; - P2[(i)*dimY + (j)] = P2[(i)*dimY + (j)]/val2; - }} - } - return 1; -} -float Rupd_func2D(float *P1, float *P1_old, float *P2, float *P2_old, float *R1, float *R2, float tkp1, float tk, int dimX, int dimY) -{ - int i,j; - float multip; - multip = ((tk-1.0f)/tkp1); -#pragma omp parallel for shared(P1,P2,P1_old,P2_old,R1,R2,multip) private(i,j) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - R1[(i)*dimY + (j)] = P1[(i)*dimY + (j)] + multip*(P1[(i)*dimY + (j)] - P1_old[(i)*dimY + (j)]); - R2[(i)*dimY + (j)] = P2[(i)*dimY + (j)] + multip*(P2[(i)*dimY + (j)] - P2_old[(i)*dimY + (j)]); - }} - return 1; -} - -/* 3D-case related Functions */ -/*****************************************************************/ -float Obj_func3D(float *A, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ) -{ - float val1, val2, val3; - int i,j,k; -#pragma omp parallel for shared(A,D,R1,R2,R3) private(i,j,k,val1,val2,val3) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - for(k=0; k<dimZ; k++) { - /* boundary conditions */ - if (i == 0) {val1 = 0.0f;} else {val1 = R1[(dimX*dimY)*k + (i-1)*dimY + (j)];} - if (j == 0) {val2 = 0.0f;} else {val2 = R2[(dimX*dimY)*k + (i)*dimY + (j-1)];} - if (k == 0) {val3 = 0.0f;} else {val3 = R3[(dimX*dimY)*(k-1) + (i)*dimY + (j)];} - D[(dimX*dimY)*k + (i)*dimY + (j)] = A[(dimX*dimY)*k + (i)*dimY + (j)] - lambda*(R1[(dimX*dimY)*k + (i)*dimY + (j)] + R2[(dimX*dimY)*k + (i)*dimY + (j)] + R3[(dimX*dimY)*k + (i)*dimY + (j)] - val1 - val2 - val3); - }}} - return *D; -} -float Grad_func3D(float *P1, float *P2, float *P3, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ) -{ - float val1, val2, val3, multip; - int i,j,k; - multip = (1.0f/(8.0f*lambda)); -#pragma omp parallel for shared(P1,P2,P3,D,R1,R2,R3,multip) private(i,j,k,val1,val2,val3) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - for(k=0; k<dimZ; k++) { - /* boundary conditions */ - if (i == dimX-1) val1 = 0.0f; else val1 = D[(dimX*dimY)*k + (i)*dimY + (j)] - D[(dimX*dimY)*k + (i+1)*dimY + (j)]; - if (j == dimY-1) val2 = 0.0f; else val2 = D[(dimX*dimY)*k + (i)*dimY + (j)] - D[(dimX*dimY)*k + (i)*dimY + (j+1)]; - if (k == dimZ-1) val3 = 0.0f; else val3 = D[(dimX*dimY)*k + (i)*dimY + (j)] - D[(dimX*dimY)*(k+1) + (i)*dimY + (j)]; - P1[(dimX*dimY)*k + (i)*dimY + (j)] = R1[(dimX*dimY)*k + (i)*dimY + (j)] + multip*val1; - P2[(dimX*dimY)*k + (i)*dimY + (j)] = R2[(dimX*dimY)*k + (i)*dimY + (j)] + multip*val2; - P3[(dimX*dimY)*k + (i)*dimY + (j)] = R3[(dimX*dimY)*k + (i)*dimY + (j)] + multip*val3; - }}} - return 1; -} -float Proj_func3D(float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ) -{ - float val1, val2, val3; - int i,j,k; -#pragma omp parallel for shared(P1,P2,P3) private(i,j,k,val1,val2,val3) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - for(k=0; k<dimZ; k++) { - val1 = fabs(P1[(dimX*dimY)*k + (i)*dimY + (j)]); - val2 = fabs(P2[(dimX*dimY)*k + (i)*dimY + (j)]); - val3 = fabs(P3[(dimX*dimY)*k + (i)*dimY + (j)]); - if (val1 < 1.0f) {val1 = 1.0f;} - if (val2 < 1.0f) {val2 = 1.0f;} - if (val3 < 1.0f) {val3 = 1.0f;} - - P1[(dimX*dimY)*k + (i)*dimY + (j)] = P1[(dimX*dimY)*k + (i)*dimY + (j)]/val1; - P2[(dimX*dimY)*k + (i)*dimY + (j)] = P2[(dimX*dimY)*k + (i)*dimY + (j)]/val2; - P3[(dimX*dimY)*k + (i)*dimY + (j)] = P3[(dimX*dimY)*k + (i)*dimY + (j)]/val3; - }}} - return 1; -} -float Rupd_func3D(float *P1, float *P1_old, float *P2, float *P2_old, float *P3, float *P3_old, float *R1, float *R2, float *R3, float tkp1, float tk, int dimX, int dimY, int dimZ) -{ - int i,j,k; - float multip; - multip = ((tk-1.0f)/tkp1); -#pragma omp parallel for shared(P1,P2,P3,P1_old,P2_old,P3_old,R1,R2,R3,multip) private(i,j,k) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - for(k=0; k<dimZ; k++) { - R1[(dimX*dimY)*k + (i)*dimY + (j)] = P1[(dimX*dimY)*k + (i)*dimY + (j)] + multip*(P1[(dimX*dimY)*k + (i)*dimY + (j)] - P1_old[(dimX*dimY)*k + (i)*dimY + (j)]); - R2[(dimX*dimY)*k + (i)*dimY + (j)] = P2[(dimX*dimY)*k + (i)*dimY + (j)] + multip*(P2[(dimX*dimY)*k + (i)*dimY + (j)] - P2_old[(dimX*dimY)*k + (i)*dimY + (j)]); - R3[(dimX*dimY)*k + (i)*dimY + (j)] = P3[(dimX*dimY)*k + (i)*dimY + (j)] + multip*(P3[(dimX*dimY)*k + (i)*dimY + (j)] - P3_old[(dimX*dimY)*k + (i)*dimY + (j)]); - }}} - return 1; -} - -/* General Functions */ -/*****************************************************************/ -/* Copy Image */ -float copyIm(float *A, float *B, int dimX, int dimY, int dimZ) -{ - int j; -#pragma omp parallel for shared(A, B) private(j) - for(j=0; j<dimX*dimY*dimZ; j++) B[j] = A[j]; - return *B; -} diff --git a/main_func/regularizers_CPU/FGP_TV_core.c b/main_func/regularizers_CPU/FGP_TV_core.c new file mode 100644 index 0000000..c383a71 --- /dev/null +++ b/main_func/regularizers_CPU/FGP_TV_core.c @@ -0,0 +1,200 @@ +/* +This work is part of the Core Imaging Library developed by +Visual Analytics and Imaging System Group of the Science Technology +Facilities Council, STFC + +Copyright 2017 Daniil Kazanteev +Copyright 2017 Srikanth Nagella, Edoardo Pasca + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +*/ + +#include "FGP_TV_core.h" + +/* 2D-case related Functions */ +/*****************************************************************/ +float Obj_func2D(float *A, float *D, float *R1, float *R2, float lambda, int dimX, int dimY) +{ + float val1, val2; + int i, j; +#pragma omp parallel for shared(A,D,R1,R2) private(i,j,val1,val2) + for (i = 0; i<dimX; i++) { + for (j = 0; j<dimY; j++) { + /* boundary conditions */ + if (i == 0) { val1 = 0.0f; } + else { val1 = R1[(i - 1)*dimY + (j)]; } + if (j == 0) { val2 = 0.0f; } + else { val2 = R2[(i)*dimY + (j - 1)]; } + D[(i)*dimY + (j)] = A[(i)*dimY + (j)] - lambda*(R1[(i)*dimY + (j)] + R2[(i)*dimY + (j)] - val1 - val2); + } + } + return *D; +} +float Grad_func2D(float *P1, float *P2, float *D, float *R1, float *R2, float lambda, int dimX, int dimY) +{ + float val1, val2, multip; + int i, j; + multip = (1.0f / (8.0f*lambda)); +#pragma omp parallel for shared(P1,P2,D,R1,R2,multip) private(i,j,val1,val2) + for (i = 0; i<dimX; i++) { + for (j = 0; j<dimY; j++) { + /* boundary conditions */ + if (i == dimX - 1) val1 = 0.0f; else val1 = D[(i)*dimY + (j)] - D[(i + 1)*dimY + (j)]; + if (j == dimY - 1) val2 = 0.0f; else val2 = D[(i)*dimY + (j)] - D[(i)*dimY + (j + 1)]; + P1[(i)*dimY + (j)] = R1[(i)*dimY + (j)] + multip*val1; + P2[(i)*dimY + (j)] = R2[(i)*dimY + (j)] + multip*val2; + } + } + return 1; +} +float Proj_func2D(float *P1, float *P2, int methTV, int dimX, int dimY) +{ + float val1, val2, denom; + int i, j; + if (methTV == 0) { + /* isotropic TV*/ +#pragma omp parallel for shared(P1,P2) private(i,j,denom) + for (i = 0; i<dimX; i++) { + for (j = 0; j<dimY; j++) { + denom = pow(P1[(i)*dimY + (j)], 2) + pow(P2[(i)*dimY + (j)], 2); + if (denom > 1) { + P1[(i)*dimY + (j)] = P1[(i)*dimY + (j)] / sqrt(denom); + P2[(i)*dimY + (j)] = P2[(i)*dimY + (j)] / sqrt(denom); + } + } + } + } + else { + /* anisotropic TV*/ +#pragma omp parallel for shared(P1,P2) private(i,j,val1,val2) + for (i = 0; i<dimX; i++) { + for (j = 0; j<dimY; j++) { + val1 = fabs(P1[(i)*dimY + (j)]); + val2 = fabs(P2[(i)*dimY + (j)]); + if (val1 < 1.0f) { val1 = 1.0f; } + if (val2 < 1.0f) { val2 = 1.0f; } + P1[(i)*dimY + (j)] = P1[(i)*dimY + (j)] / val1; + P2[(i)*dimY + (j)] = P2[(i)*dimY + (j)] / val2; + } + } + } + return 1; +} +float Rupd_func2D(float *P1, float *P1_old, float *P2, float *P2_old, float *R1, float *R2, float tkp1, float tk, int dimX, int dimY) +{ + int i, j; + float multip; + multip = ((tk - 1.0f) / tkp1); +#pragma omp parallel for shared(P1,P2,P1_old,P2_old,R1,R2,multip) private(i,j) + for (i = 0; i<dimX; i++) { + for (j = 0; j<dimY; j++) { + R1[(i)*dimY + (j)] = P1[(i)*dimY + (j)] + multip*(P1[(i)*dimY + (j)] - P1_old[(i)*dimY + (j)]); + R2[(i)*dimY + (j)] = P2[(i)*dimY + (j)] + multip*(P2[(i)*dimY + (j)] - P2_old[(i)*dimY + (j)]); + } + } + return 1; +} + +/* 3D-case related Functions */ +/*****************************************************************/ +float Obj_func3D(float *A, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ) +{ + float val1, val2, val3; + int i, j, k; +#pragma omp parallel for shared(A,D,R1,R2,R3) private(i,j,k,val1,val2,val3) + for (i = 0; i<dimX; i++) { + for (j = 0; j<dimY; j++) { + for (k = 0; k<dimZ; k++) { + /* boundary conditions */ + if (i == 0) { val1 = 0.0f; } + else { val1 = R1[(dimX*dimY)*k + (i - 1)*dimY + (j)]; } + if (j == 0) { val2 = 0.0f; } + else { val2 = R2[(dimX*dimY)*k + (i)*dimY + (j - 1)]; } + if (k == 0) { val3 = 0.0f; } + else { val3 = R3[(dimX*dimY)*(k - 1) + (i)*dimY + (j)]; } + D[(dimX*dimY)*k + (i)*dimY + (j)] = A[(dimX*dimY)*k + (i)*dimY + (j)] - lambda*(R1[(dimX*dimY)*k + (i)*dimY + (j)] + R2[(dimX*dimY)*k + (i)*dimY + (j)] + R3[(dimX*dimY)*k + (i)*dimY + (j)] - val1 - val2 - val3); + } + } + } + return *D; +} +float Grad_func3D(float *P1, float *P2, float *P3, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ) +{ + float val1, val2, val3, multip; + int i, j, k; + multip = (1.0f / (8.0f*lambda)); +#pragma omp parallel for shared(P1,P2,P3,D,R1,R2,R3,multip) private(i,j,k,val1,val2,val3) + for (i = 0; i<dimX; i++) { + for (j = 0; j<dimY; j++) { + for (k = 0; k<dimZ; k++) { + /* boundary conditions */ + if (i == dimX - 1) val1 = 0.0f; else val1 = D[(dimX*dimY)*k + (i)*dimY + (j)] - D[(dimX*dimY)*k + (i + 1)*dimY + (j)]; + if (j == dimY - 1) val2 = 0.0f; else val2 = D[(dimX*dimY)*k + (i)*dimY + (j)] - D[(dimX*dimY)*k + (i)*dimY + (j + 1)]; + if (k == dimZ - 1) val3 = 0.0f; else val3 = D[(dimX*dimY)*k + (i)*dimY + (j)] - D[(dimX*dimY)*(k + 1) + (i)*dimY + (j)]; + P1[(dimX*dimY)*k + (i)*dimY + (j)] = R1[(dimX*dimY)*k + (i)*dimY + (j)] + multip*val1; + P2[(dimX*dimY)*k + (i)*dimY + (j)] = R2[(dimX*dimY)*k + (i)*dimY + (j)] + multip*val2; + P3[(dimX*dimY)*k + (i)*dimY + (j)] = R3[(dimX*dimY)*k + (i)*dimY + (j)] + multip*val3; + } + } + } + return 1; +} +float Proj_func3D(float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ) +{ + float val1, val2, val3; + int i, j, k; +#pragma omp parallel for shared(P1,P2,P3) private(i,j,k,val1,val2,val3) + for (i = 0; i<dimX; i++) { + for (j = 0; j<dimY; j++) { + for (k = 0; k<dimZ; k++) { + val1 = fabs(P1[(dimX*dimY)*k + (i)*dimY + (j)]); + val2 = fabs(P2[(dimX*dimY)*k + (i)*dimY + (j)]); + val3 = fabs(P3[(dimX*dimY)*k + (i)*dimY + (j)]); + if (val1 < 1.0f) { val1 = 1.0f; } + if (val2 < 1.0f) { val2 = 1.0f; } + if (val3 < 1.0f) { val3 = 1.0f; } + + P1[(dimX*dimY)*k + (i)*dimY + (j)] = P1[(dimX*dimY)*k + (i)*dimY + (j)] / val1; + P2[(dimX*dimY)*k + (i)*dimY + (j)] = P2[(dimX*dimY)*k + (i)*dimY + (j)] / val2; + P3[(dimX*dimY)*k + (i)*dimY + (j)] = P3[(dimX*dimY)*k + (i)*dimY + (j)] / val3; + } + } + } + return 1; +} +float Rupd_func3D(float *P1, float *P1_old, float *P2, float *P2_old, float *P3, float *P3_old, float *R1, float *R2, float *R3, float tkp1, float tk, int dimX, int dimY, int dimZ) +{ + int i, j, k; + float multip; + multip = ((tk - 1.0f) / tkp1); +#pragma omp parallel for shared(P1,P2,P3,P1_old,P2_old,P3_old,R1,R2,R3,multip) private(i,j,k) + for (i = 0; i<dimX; i++) { + for (j = 0; j<dimY; j++) { + for (k = 0; k<dimZ; k++) { + R1[(dimX*dimY)*k + (i)*dimY + (j)] = P1[(dimX*dimY)*k + (i)*dimY + (j)] + multip*(P1[(dimX*dimY)*k + (i)*dimY + (j)] - P1_old[(dimX*dimY)*k + (i)*dimY + (j)]); + R2[(dimX*dimY)*k + (i)*dimY + (j)] = P2[(dimX*dimY)*k + (i)*dimY + (j)] + multip*(P2[(dimX*dimY)*k + (i)*dimY + (j)] - P2_old[(dimX*dimY)*k + (i)*dimY + (j)]); + R3[(dimX*dimY)*k + (i)*dimY + (j)] = P3[(dimX*dimY)*k + (i)*dimY + (j)] + multip*(P3[(dimX*dimY)*k + (i)*dimY + (j)] - P3_old[(dimX*dimY)*k + (i)*dimY + (j)]); + } + } + } + return 1; +} + +/* General Functions */ +/*****************************************************************/ +/* Copy Image */ +float copyIm(float *A, float *B, int dimX, int dimY, int dimZ) +{ + int j; +#pragma omp parallel for shared(A, B) private(j) + for (j = 0; j<dimX*dimY*dimZ; j++) B[j] = A[j]; + return *B; +} diff --git a/main_func/regularizers_CPU/FGP_TV_core.h b/main_func/regularizers_CPU/FGP_TV_core.h new file mode 100644 index 0000000..8d6af3e --- /dev/null +++ b/main_func/regularizers_CPU/FGP_TV_core.h @@ -0,0 +1,63 @@ +/* +This work is part of the Core Imaging Library developed by +Visual Analytics and Imaging System Group of the Science Technology +Facilities Council, STFC + +Copyright 2017 Daniil Kazanteev +Copyright 2017 Srikanth Nagella, Edoardo Pasca + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +*/ + +#include <matrix.h> +#include <math.h> +#include <stdlib.h> +#include <memory.h> +#include <stdio.h> +#include "omp.h" + +/* C-OMP implementation of FGP-TV [1] denoising/regularization model (2D/3D case) +* +* Input Parameters: +* 1. Noisy image/volume [REQUIRED] +* 2. lambda - regularization parameter [REQUIRED] +* 3. Number of iterations [OPTIONAL parameter] +* 4. eplsilon: tolerance constant [OPTIONAL parameter] +* 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter] +* +* Output: +* [1] Filtered/regularized image +* [2] last function value +* +* Example of image denoising: +* figure; +* Im = double(imread('lena_gray_256.tif'))/255; % loading image +* u0 = Im + .05*randn(size(Im)); % adding noise +* u = FGP_TV(single(u0), 0.05, 100, 1e-04); +* +* to compile with OMP support: mex FGP_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" +* This function is based on the Matlab's code and paper by +* [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems" +* +* D. Kazantsev, 2016-17 +* +*/ + +float copyIm(float *A, float *B, int dimX, int dimY, int dimZ); +float Obj_func2D(float *A, float *D, float *R1, float *R2, float lambda, int dimX, int dimY); +float Grad_func2D(float *P1, float *P2, float *D, float *R1, float *R2, float lambda, int dimX, int dimY); +float Proj_func2D(float *P1, float *P2, int methTV, int dimX, int dimY); +float Rupd_func2D(float *P1, float *P1_old, float *P2, float *P2_old, float *R1, float *R2, float tkp1, float tk, int dimX, int dimY); + +float Obj_func3D(float *A, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ); +float Grad_func3D(float *P1, float *P2, float *P3, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ); +float Proj_func3D(float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ); +float Rupd_func3D(float *P1, float *P1_old, float *P2, float *P2_old, float *P3, float *P3_old, float *R1, float *R2, float *R3, float tkp1, float tk, int dimX, int dimY, int dimZ); diff --git a/main_func/regularizers_CPU/LLT_model.c b/main_func/regularizers_CPU/LLT_model.c index 0aed31e..6b50d33 100644 --- a/main_func/regularizers_CPU/LLT_model.c +++ b/main_func/regularizers_CPU/LLT_model.c @@ -1,49 +1,25 @@ -#include "mex.h" -#include <matrix.h> -#include <math.h> -#include <stdlib.h> -#include <memory.h> -#include <stdio.h> -#include "omp.h" - -#define EPS 0.01 +/* +This work is part of the Core Imaging Library developed by +Visual Analytics and Imaging System Group of the Science Technology +Facilities Council, STFC -/* C-OMP implementation of Lysaker, Lundervold and Tai (LLT) model of higher order regularization penalty - * - * Input Parameters: - * 1. U0 - origanal noise image/volume - * 2. lambda - regularization parameter - * 3. tau - time-step for explicit scheme - * 4. iter - iterations number - * 5. epsil - tolerance constant (to terminate earlier) - * 6. switcher - default is 0, switch to (1) to restrictive smoothing in Z dimension (in test) - * - * Output: - * Filtered/regularized image - * - * Example: - * figure; - * Im = double(imread('lena_gray_256.tif'))/255; % loading image - * u0 = Im + .03*randn(size(Im)); % adding noise - * [Den] = LLT_model(single(u0), 10, 0.1, 1); - * - * - * to compile with OMP support: mex LLT_model.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" - * References: Lysaker, Lundervold and Tai (LLT) 2003, IEEE - * - * 28.11.16/Harwell - */ -/* 2D functions */ -float der2D(float *U, float *D1, float *D2, int dimX, int dimY, int dimZ); -float div_upd2D(float *U0, float *U, float *D1, float *D2, int dimX, int dimY, int dimZ, float lambda, float tau); +Copyright 2017 Daniil Kazanteev +Copyright 2017 Srikanth Nagella, Edoardo Pasca -float der3D(float *U, float *D1, float *D2, float *D3, int dimX, int dimY, int dimZ); -float div_upd3D(float *U0, float *U, float *D1, float *D2, float *D3, unsigned short *Map, int switcher, int dimX, int dimY, int dimZ, float lambda, float tau); +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +*/ -float calcMap(float *U, unsigned short *Map, int dimX, int dimY, int dimZ); -float cleanMap(unsigned short *Map, int dimX, int dimY, int dimZ); +#include "mex.h" +#include "LLT_model_core.h" -float copyIm(float *A, float *U, int dimX, int dimY, int dimZ); void mexFunction( int nlhs, mxArray *plhs[], @@ -165,267 +141,3 @@ void mexFunction( printf("HO iterations stopped at iteration: %i\n", ll); } } - -float der2D(float *U, float *D1, float *D2, int dimX, int dimY, int dimZ) -{ - int i, j, i_p, i_m, j_m, j_p; - float dxx, dyy, denom_xx, denom_yy; -#pragma omp parallel for shared(U,D1,D2) private(i, j, i_p, i_m, j_m, j_p, denom_xx, denom_yy, dxx, dyy) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - /* symmetric boundary conditions (Neuman) */ - i_p = i + 1; if (i_p == dimX) i_p = i - 1; - i_m = i - 1; if (i_m < 0) i_m = i + 1; - j_p = j + 1; if (j_p == dimY) j_p = j - 1; - j_m = j - 1; if (j_m < 0) j_m = j + 1; - - dxx = U[i_p*dimY + j] - 2.0f*U[i*dimY + j] + U[i_m*dimY + j]; - dyy = U[i*dimY + j_p] - 2.0f*U[i*dimY + j] + U[i*dimY + j_m]; - - denom_xx = fabs(dxx) + EPS; - denom_yy = fabs(dyy) + EPS; - - D1[i*dimY + j] = dxx/denom_xx; - D2[i*dimY + j] = dyy/denom_yy; - }} - return 1; -} -float div_upd2D(float *U0, float *U, float *D1, float *D2, int dimX, int dimY, int dimZ, float lambda, float tau) -{ - int i, j, i_p, i_m, j_m, j_p; - float div, dxx, dyy; -#pragma omp parallel for shared(U,U0,D1,D2) private(i, j, i_p, i_m, j_m, j_p, div, dxx, dyy) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - /* symmetric boundary conditions (Neuman) */ - i_p = i + 1; if (i_p == dimX) i_p = i - 1; - i_m = i - 1; if (i_m < 0) i_m = i + 1; - j_p = j + 1; if (j_p == dimY) j_p = j - 1; - j_m = j - 1; if (j_m < 0) j_m = j + 1; - - dxx = D1[i_p*dimY + j] - 2.0f*D1[i*dimY + j] + D1[i_m*dimY + j]; - dyy = D2[i*dimY + j_p] - 2.0f*D2[i*dimY + j] + D2[i*dimY + j_m]; - - div = dxx + dyy; - - U[i*dimY + j] = U[i*dimY + j] - tau*div - tau*lambda*(U[i*dimY + j] - U0[i*dimY + j]); - }} - return *U0; -} - -float der3D(float *U, float *D1, float *D2, float *D3, int dimX, int dimY, int dimZ) -{ - int i, j, k, i_p, i_m, j_m, j_p, k_p, k_m; - float dxx, dyy, dzz, denom_xx, denom_yy, denom_zz; -#pragma omp parallel for shared(U,D1,D2,D3) private(i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, denom_xx, denom_yy, denom_zz, dxx, dyy, dzz) - for(i=0; i<dimX; i++) { - /* symmetric boundary conditions (Neuman) */ - i_p = i + 1; if (i_p == dimX) i_p = i - 1; - i_m = i - 1; if (i_m < 0) i_m = i + 1; - for(j=0; j<dimY; j++) { - j_p = j + 1; if (j_p == dimY) j_p = j - 1; - j_m = j - 1; if (j_m < 0) j_m = j + 1; - for(k=0; k<dimZ; k++) { - k_p = k + 1; if (k_p == dimZ) k_p = k - 1; - k_m = k - 1; if (k_m < 0) k_m = k + 1; - - dxx = U[dimX*dimY*k + i_p*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k + i_m*dimY + j]; - dyy = U[dimX*dimY*k + i*dimY + j_p] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k + i*dimY + j_m]; - dzz = U[dimX*dimY*k_p + i*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k_m + i*dimY + j]; - - denom_xx = fabs(dxx) + EPS; - denom_yy = fabs(dyy) + EPS; - denom_zz = fabs(dzz) + EPS; - - D1[dimX*dimY*k + i*dimY + j] = dxx/denom_xx; - D2[dimX*dimY*k + i*dimY + j] = dyy/denom_yy; - D3[dimX*dimY*k + i*dimY + j] = dzz/denom_zz; - - }}} - return 1; -} - -float div_upd3D(float *U0, float *U, float *D1, float *D2, float *D3, unsigned short *Map, int switcher, int dimX, int dimY, int dimZ, float lambda, float tau) -{ - int i, j, k, i_p, i_m, j_m, j_p, k_p, k_m; - float div, dxx, dyy, dzz; -#pragma omp parallel for shared(U,U0,D1,D2,D3) private(i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, div, dxx, dyy, dzz) - for(i=0; i<dimX; i++) { - /* symmetric boundary conditions (Neuman) */ - i_p = i + 1; if (i_p == dimX) i_p = i - 1; - i_m = i - 1; if (i_m < 0) i_m = i + 1; - for(j=0; j<dimY; j++) { - j_p = j + 1; if (j_p == dimY) j_p = j - 1; - j_m = j - 1; if (j_m < 0) j_m = j + 1; - for(k=0; k<dimZ; k++) { - k_p = k + 1; if (k_p == dimZ) k_p = k - 1; - k_m = k - 1; if (k_m < 0) k_m = k + 1; -// k_p1 = k + 2; if (k_p1 >= dimZ) k_p1 = k - 2; -// k_m1 = k - 2; if (k_m1 < 0) k_m1 = k + 2; - - dxx = D1[dimX*dimY*k + i_p*dimY + j] - 2.0f*D1[dimX*dimY*k + i*dimY + j] + D1[dimX*dimY*k + i_m*dimY + j]; - dyy = D2[dimX*dimY*k + i*dimY + j_p] - 2.0f*D2[dimX*dimY*k + i*dimY + j] + D2[dimX*dimY*k + i*dimY + j_m]; - dzz = D3[dimX*dimY*k_p + i*dimY + j] - 2.0f*D3[dimX*dimY*k + i*dimY + j] + D3[dimX*dimY*k_m + i*dimY + j]; - - if ((switcher == 1) && (Map[dimX*dimY*k + i*dimY + j] == 0)) dzz = 0; - div = dxx + dyy + dzz; - -// if (switcher == 1) { - // if (Map2[dimX*dimY*k + i*dimY + j] == 0) dzz2 = 0; - //else dzz2 = D4[dimX*dimY*k_p1 + i*dimY + j] - 2.0f*D4[dimX*dimY*k + i*dimY + j] + D4[dimX*dimY*k_m1 + i*dimY + j]; -// div = dzz + dzz2; -// } - -// dzz = D3[dimX*dimY*k_p + i*dimY + j] - 2.0f*D3[dimX*dimY*k + i*dimY + j] + D3[dimX*dimY*k_m + i*dimY + j]; -// dzz2 = D4[dimX*dimY*k_p1 + i*dimY + j] - 2.0f*D4[dimX*dimY*k + i*dimY + j] + D4[dimX*dimY*k_m1 + i*dimY + j]; -// div = dzz + dzz2; - - U[dimX*dimY*k + i*dimY + j] = U[dimX*dimY*k + i*dimY + j] - tau*div - tau*lambda*(U[dimX*dimY*k + i*dimY + j] - U0[dimX*dimY*k + i*dimY + j]); - }}} - return *U0; - } - -// float der3D_2(float *U, float *D1, float *D2, float *D3, float *D4, int dimX, int dimY, int dimZ) -// { -// int i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, k_p1, k_m1; -// float dxx, dyy, dzz, dzz2, denom_xx, denom_yy, denom_zz, denom_zz2; -// #pragma omp parallel for shared(U,D1,D2,D3,D4) private(i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, denom_xx, denom_yy, denom_zz, denom_zz2, dxx, dyy, dzz, dzz2, k_p1, k_m1) -// for(i=0; i<dimX; i++) { -// /* symmetric boundary conditions (Neuman) */ -// i_p = i + 1; if (i_p == dimX) i_p = i - 1; -// i_m = i - 1; if (i_m < 0) i_m = i + 1; -// for(j=0; j<dimY; j++) { -// j_p = j + 1; if (j_p == dimY) j_p = j - 1; -// j_m = j - 1; if (j_m < 0) j_m = j + 1; -// for(k=0; k<dimZ; k++) { -// k_p = k + 1; if (k_p == dimZ) k_p = k - 1; -// k_m = k - 1; if (k_m < 0) k_m = k + 1; -// k_p1 = k + 2; if (k_p1 >= dimZ) k_p1 = k - 2; -// k_m1 = k - 2; if (k_m1 < 0) k_m1 = k + 2; -// -// dxx = U[dimX*dimY*k + i_p*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k + i_m*dimY + j]; -// dyy = U[dimX*dimY*k + i*dimY + j_p] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k + i*dimY + j_m]; -// dzz = U[dimX*dimY*k_p + i*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k_m + i*dimY + j]; -// dzz2 = U[dimX*dimY*k_p1 + i*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k_m1 + i*dimY + j]; -// -// denom_xx = fabs(dxx) + EPS; -// denom_yy = fabs(dyy) + EPS; -// denom_zz = fabs(dzz) + EPS; -// denom_zz2 = fabs(dzz2) + EPS; -// -// D1[dimX*dimY*k + i*dimY + j] = dxx/denom_xx; -// D2[dimX*dimY*k + i*dimY + j] = dyy/denom_yy; -// D3[dimX*dimY*k + i*dimY + j] = dzz/denom_zz; -// D4[dimX*dimY*k + i*dimY + j] = dzz2/denom_zz2; -// }}} -// return 1; -// } - -float calcMap(float *U, unsigned short *Map, int dimX, int dimY, int dimZ) -{ - int i,j,k,i1,j1,i2,j2,windowSize; - float val1, val2,thresh_val,maxval; - windowSize = 1; - thresh_val = 0.0001; /*thresh_val = 0.0035;*/ - - /* normalize volume first */ - maxval = 0.0f; - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - for(k=0; k<dimZ; k++) { - if (U[dimX*dimY*k + i*dimY + j] > maxval) maxval = U[dimX*dimY*k + i*dimY + j]; - }}} - - if (maxval != 0.0f) { - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - for(k=0; k<dimZ; k++) { - U[dimX*dimY*k + i*dimY + j] = U[dimX*dimY*k + i*dimY + j]/maxval; - }}} - } - else { - printf("%s \n", "Maximum value is zero!"); - return 0; - } - - #pragma omp parallel for shared(U,Map) private(i, j, k, i1, j1, i2, j2, val1, val2) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - for(k=0; k<dimZ; k++) { - - Map[dimX*dimY*k + i*dimY + j] = 0; -// Map2[dimX*dimY*k + i*dimY + j] = 0; - - val1 = 0.0f; val2 = 0.0f; - for(i1=-windowSize; i1<=windowSize; i1++) { - for(j1=-windowSize; j1<=windowSize; j1++) { - i2 = i+i1; - j2 = j+j1; - - if ((i2 >= 0) && (i2 < dimX) && (j2 >= 0) && (j2 < dimY)) { - if (k == 0) { - val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+1) + i2*dimY + j2],2); -// val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+2) + i2*dimY + j2],2); - } - else if (k == dimZ-1) { - val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-1) + i2*dimY + j2],2); -// val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-2) + i2*dimY + j2],2); - } -// else if (k == 1) { -// val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-1) + i2*dimY + j2],2); -// val2 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+1) + i2*dimY + j2],2); -// val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+2) + i2*dimY + j2],2); -// } -// else if (k == dimZ-2) { -// val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-1) + i2*dimY + j2],2); -// val2 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+1) + i2*dimY + j2],2); -// val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-2) + i2*dimY + j2],2); -// } - else { - val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-1) + i2*dimY + j2],2); - val2 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+1) + i2*dimY + j2],2); -// val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-2) + i2*dimY + j2],2); -// val4 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+2) + i2*dimY + j2],2); - } - } - }} - - val1 = 0.111f*val1; val2 = 0.111f*val2; -// val3 = 0.111f*val3; val4 = 0.111f*val4; - if ((val1 <= thresh_val) && (val2 <= thresh_val)) Map[dimX*dimY*k + i*dimY + j] = 1; -// if ((val3 <= thresh_val) && (val4 <= thresh_val)) Map2[dimX*dimY*k + i*dimY + j] = 1; - }}} - return 1; -} - -float cleanMap(unsigned short *Map, int dimX, int dimY, int dimZ) -{ - int i, j, k, i1, j1, i2, j2, counter; - #pragma omp parallel for shared(Map) private(i, j, k, i1, j1, i2, j2, counter) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - for(k=0; k<dimZ; k++) { - - counter=0; - for(i1=-3; i1<=3; i1++) { - for(j1=-3; j1<=3; j1++) { - i2 = i+i1; - j2 = j+j1; - if ((i2 >= 0) && (i2 < dimX) && (j2 >= 0) && (j2 < dimY)) { - if (Map[dimX*dimY*k + i2*dimY + j2] == 0) counter++; - } - }} - if (counter < 24) Map[dimX*dimY*k + i*dimY + j] = 1; - }}} - return *Map; -} - - /* Copy Image */ - float copyIm(float *A, float *U, int dimX, int dimY, int dimZ) - { - int j; -#pragma omp parallel for shared(A, U) private(j) - for(j=0; j<dimX*dimY*dimZ; j++) U[j] = A[j]; - return *U; - } - /*********************3D *********************/
\ No newline at end of file diff --git a/main_func/regularizers_CPU/LLT_model_core.c b/main_func/regularizers_CPU/LLT_model_core.c new file mode 100644 index 0000000..3098269 --- /dev/null +++ b/main_func/regularizers_CPU/LLT_model_core.c @@ -0,0 +1,300 @@ +/* +This work is part of the Core Imaging Library developed by +Visual Analytics and Imaging System Group of the Science Technology +Facilities Council, STFC + +Copyright 2017 Daniil Kazanteev +Copyright 2017 Srikanth Nagella, Edoardo Pasca + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +*/ + +#include "LLT_model_core.h" + +float der2D(float *U, float *D1, float *D2, int dimX, int dimY, int dimZ) +{ + int i, j, i_p, i_m, j_m, j_p; + float dxx, dyy, denom_xx, denom_yy; +#pragma omp parallel for shared(U,D1,D2) private(i, j, i_p, i_m, j_m, j_p, denom_xx, denom_yy, dxx, dyy) + for (i = 0; i<dimX; i++) { + for (j = 0; j<dimY; j++) { + /* symmetric boundary conditions (Neuman) */ + i_p = i + 1; if (i_p == dimX) i_p = i - 1; + i_m = i - 1; if (i_m < 0) i_m = i + 1; + j_p = j + 1; if (j_p == dimY) j_p = j - 1; + j_m = j - 1; if (j_m < 0) j_m = j + 1; + + dxx = U[i_p*dimY + j] - 2.0f*U[i*dimY + j] + U[i_m*dimY + j]; + dyy = U[i*dimY + j_p] - 2.0f*U[i*dimY + j] + U[i*dimY + j_m]; + + denom_xx = fabs(dxx) + EPS; + denom_yy = fabs(dyy) + EPS; + + D1[i*dimY + j] = dxx / denom_xx; + D2[i*dimY + j] = dyy / denom_yy; + } + } + return 1; +} +float div_upd2D(float *U0, float *U, float *D1, float *D2, int dimX, int dimY, int dimZ, float lambda, float tau) +{ + int i, j, i_p, i_m, j_m, j_p; + float div, dxx, dyy; +#pragma omp parallel for shared(U,U0,D1,D2) private(i, j, i_p, i_m, j_m, j_p, div, dxx, dyy) + for (i = 0; i<dimX; i++) { + for (j = 0; j<dimY; j++) { + /* symmetric boundary conditions (Neuman) */ + i_p = i + 1; if (i_p == dimX) i_p = i - 1; + i_m = i - 1; if (i_m < 0) i_m = i + 1; + j_p = j + 1; if (j_p == dimY) j_p = j - 1; + j_m = j - 1; if (j_m < 0) j_m = j + 1; + + dxx = D1[i_p*dimY + j] - 2.0f*D1[i*dimY + j] + D1[i_m*dimY + j]; + dyy = D2[i*dimY + j_p] - 2.0f*D2[i*dimY + j] + D2[i*dimY + j_m]; + + div = dxx + dyy; + + U[i*dimY + j] = U[i*dimY + j] - tau*div - tau*lambda*(U[i*dimY + j] - U0[i*dimY + j]); + } + } + return *U0; +} + +float der3D(float *U, float *D1, float *D2, float *D3, int dimX, int dimY, int dimZ) +{ + int i, j, k, i_p, i_m, j_m, j_p, k_p, k_m; + float dxx, dyy, dzz, denom_xx, denom_yy, denom_zz; +#pragma omp parallel for shared(U,D1,D2,D3) private(i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, denom_xx, denom_yy, denom_zz, dxx, dyy, dzz) + for (i = 0; i<dimX; i++) { + /* symmetric boundary conditions (Neuman) */ + i_p = i + 1; if (i_p == dimX) i_p = i - 1; + i_m = i - 1; if (i_m < 0) i_m = i + 1; + for (j = 0; j<dimY; j++) { + j_p = j + 1; if (j_p == dimY) j_p = j - 1; + j_m = j - 1; if (j_m < 0) j_m = j + 1; + for (k = 0; k<dimZ; k++) { + k_p = k + 1; if (k_p == dimZ) k_p = k - 1; + k_m = k - 1; if (k_m < 0) k_m = k + 1; + + dxx = U[dimX*dimY*k + i_p*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k + i_m*dimY + j]; + dyy = U[dimX*dimY*k + i*dimY + j_p] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k + i*dimY + j_m]; + dzz = U[dimX*dimY*k_p + i*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k_m + i*dimY + j]; + + denom_xx = fabs(dxx) + EPS; + denom_yy = fabs(dyy) + EPS; + denom_zz = fabs(dzz) + EPS; + + D1[dimX*dimY*k + i*dimY + j] = dxx / denom_xx; + D2[dimX*dimY*k + i*dimY + j] = dyy / denom_yy; + D3[dimX*dimY*k + i*dimY + j] = dzz / denom_zz; + + } + } + } + return 1; +} + +float div_upd3D(float *U0, float *U, float *D1, float *D2, float *D3, unsigned short *Map, int switcher, int dimX, int dimY, int dimZ, float lambda, float tau) +{ + int i, j, k, i_p, i_m, j_m, j_p, k_p, k_m; + float div, dxx, dyy, dzz; +#pragma omp parallel for shared(U,U0,D1,D2,D3) private(i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, div, dxx, dyy, dzz) + for (i = 0; i<dimX; i++) { + /* symmetric boundary conditions (Neuman) */ + i_p = i + 1; if (i_p == dimX) i_p = i - 1; + i_m = i - 1; if (i_m < 0) i_m = i + 1; + for (j = 0; j<dimY; j++) { + j_p = j + 1; if (j_p == dimY) j_p = j - 1; + j_m = j - 1; if (j_m < 0) j_m = j + 1; + for (k = 0; k<dimZ; k++) { + k_p = k + 1; if (k_p == dimZ) k_p = k - 1; + k_m = k - 1; if (k_m < 0) k_m = k + 1; + // k_p1 = k + 2; if (k_p1 >= dimZ) k_p1 = k - 2; + // k_m1 = k - 2; if (k_m1 < 0) k_m1 = k + 2; + + dxx = D1[dimX*dimY*k + i_p*dimY + j] - 2.0f*D1[dimX*dimY*k + i*dimY + j] + D1[dimX*dimY*k + i_m*dimY + j]; + dyy = D2[dimX*dimY*k + i*dimY + j_p] - 2.0f*D2[dimX*dimY*k + i*dimY + j] + D2[dimX*dimY*k + i*dimY + j_m]; + dzz = D3[dimX*dimY*k_p + i*dimY + j] - 2.0f*D3[dimX*dimY*k + i*dimY + j] + D3[dimX*dimY*k_m + i*dimY + j]; + + if ((switcher == 1) && (Map[dimX*dimY*k + i*dimY + j] == 0)) dzz = 0; + div = dxx + dyy + dzz; + + // if (switcher == 1) { + // if (Map2[dimX*dimY*k + i*dimY + j] == 0) dzz2 = 0; + //else dzz2 = D4[dimX*dimY*k_p1 + i*dimY + j] - 2.0f*D4[dimX*dimY*k + i*dimY + j] + D4[dimX*dimY*k_m1 + i*dimY + j]; + // div = dzz + dzz2; + // } + + // dzz = D3[dimX*dimY*k_p + i*dimY + j] - 2.0f*D3[dimX*dimY*k + i*dimY + j] + D3[dimX*dimY*k_m + i*dimY + j]; + // dzz2 = D4[dimX*dimY*k_p1 + i*dimY + j] - 2.0f*D4[dimX*dimY*k + i*dimY + j] + D4[dimX*dimY*k_m1 + i*dimY + j]; + // div = dzz + dzz2; + + U[dimX*dimY*k + i*dimY + j] = U[dimX*dimY*k + i*dimY + j] - tau*div - tau*lambda*(U[dimX*dimY*k + i*dimY + j] - U0[dimX*dimY*k + i*dimY + j]); + } + } + } + return *U0; +} + +// float der3D_2(float *U, float *D1, float *D2, float *D3, float *D4, int dimX, int dimY, int dimZ) +// { +// int i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, k_p1, k_m1; +// float dxx, dyy, dzz, dzz2, denom_xx, denom_yy, denom_zz, denom_zz2; +// #pragma omp parallel for shared(U,D1,D2,D3,D4) private(i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, denom_xx, denom_yy, denom_zz, denom_zz2, dxx, dyy, dzz, dzz2, k_p1, k_m1) +// for(i=0; i<dimX; i++) { +// /* symmetric boundary conditions (Neuman) */ +// i_p = i + 1; if (i_p == dimX) i_p = i - 1; +// i_m = i - 1; if (i_m < 0) i_m = i + 1; +// for(j=0; j<dimY; j++) { +// j_p = j + 1; if (j_p == dimY) j_p = j - 1; +// j_m = j - 1; if (j_m < 0) j_m = j + 1; +// for(k=0; k<dimZ; k++) { +// k_p = k + 1; if (k_p == dimZ) k_p = k - 1; +// k_m = k - 1; if (k_m < 0) k_m = k + 1; +// k_p1 = k + 2; if (k_p1 >= dimZ) k_p1 = k - 2; +// k_m1 = k - 2; if (k_m1 < 0) k_m1 = k + 2; +// +// dxx = U[dimX*dimY*k + i_p*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k + i_m*dimY + j]; +// dyy = U[dimX*dimY*k + i*dimY + j_p] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k + i*dimY + j_m]; +// dzz = U[dimX*dimY*k_p + i*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k_m + i*dimY + j]; +// dzz2 = U[dimX*dimY*k_p1 + i*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k_m1 + i*dimY + j]; +// +// denom_xx = fabs(dxx) + EPS; +// denom_yy = fabs(dyy) + EPS; +// denom_zz = fabs(dzz) + EPS; +// denom_zz2 = fabs(dzz2) + EPS; +// +// D1[dimX*dimY*k + i*dimY + j] = dxx/denom_xx; +// D2[dimX*dimY*k + i*dimY + j] = dyy/denom_yy; +// D3[dimX*dimY*k + i*dimY + j] = dzz/denom_zz; +// D4[dimX*dimY*k + i*dimY + j] = dzz2/denom_zz2; +// }}} +// return 1; +// } + +float calcMap(float *U, unsigned short *Map, int dimX, int dimY, int dimZ) +{ + int i, j, k, i1, j1, i2, j2, windowSize; + float val1, val2, thresh_val, maxval; + windowSize = 1; + thresh_val = 0.0001; /*thresh_val = 0.0035;*/ + + /* normalize volume first */ + maxval = 0.0f; + for (i = 0; i<dimX; i++) { + for (j = 0; j<dimY; j++) { + for (k = 0; k<dimZ; k++) { + if (U[dimX*dimY*k + i*dimY + j] > maxval) maxval = U[dimX*dimY*k + i*dimY + j]; + } + } + } + + if (maxval != 0.0f) { + for (i = 0; i<dimX; i++) { + for (j = 0; j<dimY; j++) { + for (k = 0; k<dimZ; k++) { + U[dimX*dimY*k + i*dimY + j] = U[dimX*dimY*k + i*dimY + j] / maxval; + } + } + } + } + else { + printf("%s \n", "Maximum value is zero!"); + return 0; + } + +#pragma omp parallel for shared(U,Map) private(i, j, k, i1, j1, i2, j2, val1, val2) + for (i = 0; i<dimX; i++) { + for (j = 0; j<dimY; j++) { + for (k = 0; k<dimZ; k++) { + + Map[dimX*dimY*k + i*dimY + j] = 0; + // Map2[dimX*dimY*k + i*dimY + j] = 0; + + val1 = 0.0f; val2 = 0.0f; + for (i1 = -windowSize; i1 <= windowSize; i1++) { + for (j1 = -windowSize; j1 <= windowSize; j1++) { + i2 = i + i1; + j2 = j + j1; + + if ((i2 >= 0) && (i2 < dimX) && (j2 >= 0) && (j2 < dimY)) { + if (k == 0) { + val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k + 1) + i2*dimY + j2], 2); + // val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+2) + i2*dimY + j2],2); + } + else if (k == dimZ - 1) { + val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k - 1) + i2*dimY + j2], 2); + // val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-2) + i2*dimY + j2],2); + } + // else if (k == 1) { + // val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-1) + i2*dimY + j2],2); + // val2 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+1) + i2*dimY + j2],2); + // val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+2) + i2*dimY + j2],2); + // } + // else if (k == dimZ-2) { + // val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-1) + i2*dimY + j2],2); + // val2 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+1) + i2*dimY + j2],2); + // val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-2) + i2*dimY + j2],2); + // } + else { + val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k - 1) + i2*dimY + j2], 2); + val2 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k + 1) + i2*dimY + j2], 2); + // val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-2) + i2*dimY + j2],2); + // val4 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+2) + i2*dimY + j2],2); + } + } + } + } + + val1 = 0.111f*val1; val2 = 0.111f*val2; + // val3 = 0.111f*val3; val4 = 0.111f*val4; + if ((val1 <= thresh_val) && (val2 <= thresh_val)) Map[dimX*dimY*k + i*dimY + j] = 1; + // if ((val3 <= thresh_val) && (val4 <= thresh_val)) Map2[dimX*dimY*k + i*dimY + j] = 1; + } + } + } + return 1; +} + +float cleanMap(unsigned short *Map, int dimX, int dimY, int dimZ) +{ + int i, j, k, i1, j1, i2, j2, counter; +#pragma omp parallel for shared(Map) private(i, j, k, i1, j1, i2, j2, counter) + for (i = 0; i<dimX; i++) { + for (j = 0; j<dimY; j++) { + for (k = 0; k<dimZ; k++) { + + counter = 0; + for (i1 = -3; i1 <= 3; i1++) { + for (j1 = -3; j1 <= 3; j1++) { + i2 = i + i1; + j2 = j + j1; + if ((i2 >= 0) && (i2 < dimX) && (j2 >= 0) && (j2 < dimY)) { + if (Map[dimX*dimY*k + i2*dimY + j2] == 0) counter++; + } + } + } + if (counter < 24) Map[dimX*dimY*k + i*dimY + j] = 1; + } + } + } + return *Map; +} + +/* Copy Image */ +float copyIm(float *A, float *U, int dimX, int dimY, int dimZ) +{ + int j; +#pragma omp parallel for shared(A, U) private(j) + for (j = 0; j<dimX*dimY*dimZ; j++) U[j] = A[j]; + return *U; +} +/*********************3D *********************/
\ No newline at end of file diff --git a/main_func/regularizers_CPU/LLT_model_core.h b/main_func/regularizers_CPU/LLT_model_core.h new file mode 100644 index 0000000..ef8803d --- /dev/null +++ b/main_func/regularizers_CPU/LLT_model_core.h @@ -0,0 +1,64 @@ +/* +This work is part of the Core Imaging Library developed by +Visual Analytics and Imaging System Group of the Science Technology +Facilities Council, STFC + +Copyright 2017 Daniil Kazanteev +Copyright 2017 Srikanth Nagella, Edoardo Pasca + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +*/ + +#include <matrix.h> +#include <math.h> +#include <stdlib.h> +#include <memory.h> +#include <stdio.h> +#include "omp.h" + +#define EPS 0.01 + +/* C-OMP implementation of Lysaker, Lundervold and Tai (LLT) model of higher order regularization penalty +* +* Input Parameters: +* 1. U0 - origanal noise image/volume +* 2. lambda - regularization parameter +* 3. tau - time-step for explicit scheme +* 4. iter - iterations number +* 5. epsil - tolerance constant (to terminate earlier) +* 6. switcher - default is 0, switch to (1) to restrictive smoothing in Z dimension (in test) +* +* Output: +* Filtered/regularized image +* +* Example: +* figure; +* Im = double(imread('lena_gray_256.tif'))/255; % loading image +* u0 = Im + .03*randn(size(Im)); % adding noise +* [Den] = LLT_model(single(u0), 10, 0.1, 1); +* +* +* to compile with OMP support: mex LLT_model.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" +* References: Lysaker, Lundervold and Tai (LLT) 2003, IEEE +* +* 28.11.16/Harwell +*/ +/* 2D functions */ +float der2D(float *U, float *D1, float *D2, int dimX, int dimY, int dimZ); +float div_upd2D(float *U0, float *U, float *D1, float *D2, int dimX, int dimY, int dimZ, float lambda, float tau); + +float der3D(float *U, float *D1, float *D2, float *D3, int dimX, int dimY, int dimZ); +float div_upd3D(float *U0, float *U, float *D1, float *D2, float *D3, unsigned short *Map, int switcher, int dimX, int dimY, int dimZ, float lambda, float tau); + +float calcMap(float *U, unsigned short *Map, int dimX, int dimY, int dimZ); +float cleanMap(unsigned short *Map, int dimX, int dimY, int dimZ); + +float copyIm(float *A, float *U, int dimX, int dimY, int dimZ); diff --git a/main_func/regularizers_CPU/PatchBased_Regul.c b/main_func/regularizers_CPU/PatchBased_Regul.c index 1ed29d4..24ee210 100644 --- a/main_func/regularizers_CPU/PatchBased_Regul.c +++ b/main_func/regularizers_CPU/PatchBased_Regul.c @@ -1,12 +1,25 @@ -#define _USE_MATH_DEFINES
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazanteev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
#include "mex.h"
-#include <matrix.h>
-#include <math.h>
-#include <stdlib.h>
-#include <memory.h>
-#include <stdio.h>
-#include "omp.h"
+#include "PatchBased_Regul_core.h"
+
/* C-OMP implementation of patch-based (PB) regularization (2D and 3D cases).
* This method finds self-similar patches in data and performs one fixed point iteration to mimimize the PB penalty function
@@ -41,9 +54,6 @@ * Harwell, UK
*/
-float pad_crop(float *A, float *Ap, int OldSizeX, int OldSizeY, int OldSizeZ, int NewSizeX, int NewSizeY, int NewSizeZ, int padXY, int switchpad_crop);
-float PB_FUNC2D(float *A, float *B, int dimX, int dimY, int padXY, int SearchW, int SimilW, float h, float lambda);
-float PB_FUNC3D(float *A, float *B, int dimX, int dimY, int dimZ, int padXY, int SearchW, int SimilW, float h, float lambda);
void mexFunction(
int nlhs, mxArray *plhs[],
@@ -125,171 +135,4 @@ void mexFunction( switchpad_crop = 1; /*cropping*/
pad_crop(Bp, B, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop);
} /*end else ndims*/
-}
-
-/*2D version*/
-float PB_FUNC2D(float *A, float *B, int dimX, int dimY, int padXY, int SearchW, int SimilW, float h, float lambda)
-{
- int i, j, i_n, j_n, i_m, j_m, i_p, j_p, i_l, j_l, i1, j1, i2, j2, i3, j3, i5,j5, count, SimilW_full;
- float *Eucl_Vec, h2, denh2, normsum, Weight, Weight_norm, value, denom, WeightGlob, t1;
-
- /*SearchW_full = 2*SearchW + 1; */ /* the full searching window size */
- SimilW_full = 2*SimilW + 1; /* the full similarity window size */
- h2 = h*h;
- denh2 = 1/(2*h2);
-
- /*Gaussian kernel */
- Eucl_Vec = (float*) calloc (SimilW_full*SimilW_full,sizeof(float));
- count = 0;
- for(i_n=-SimilW; i_n<=SimilW; i_n++) {
- for(j_n=-SimilW; j_n<=SimilW; j_n++) {
- t1 = pow(((float)i_n), 2) + pow(((float)j_n), 2);
- Eucl_Vec[count] = exp(-(t1)/(2*SimilW*SimilW));
- count = count + 1;
- }} /*main neighb loop */
-
- /*The NLM code starts here*/
- /* setting OMP here */
- #pragma omp parallel for shared (A, B, dimX, dimY, Eucl_Vec, lambda, denh2) private(denom, i, j, WeightGlob, count, i1, j1, i2, j2, i3, j3, i5, j5, Weight_norm, normsum, i_m, j_m, i_n, j_n, i_l, j_l, i_p, j_p, Weight, value)
-
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- if (((i >= padXY) && (i < dimX-padXY)) && ((j >= padXY) && (j < dimY-padXY))) {
-
- /* Massive Search window loop */
- Weight_norm = 0; value = 0.0;
- for(i_m=-SearchW; i_m<=SearchW; i_m++) {
- for(j_m=-SearchW; j_m<=SearchW; j_m++) {
- /*checking boundaries*/
- i1 = i+i_m; j1 = j+j_m;
-
- WeightGlob = 0.0;
- /* if inside the searching window */
- for(i_l=-SimilW; i_l<=SimilW; i_l++) {
- for(j_l=-SimilW; j_l<=SimilW; j_l++) {
- i2 = i1+i_l; j2 = j1+j_l;
-
- i3 = i+i_l; j3 = j+j_l; /*coordinates of the inner patch loop */
-
- count = 0; normsum = 0.0;
- for(i_p=-SimilW; i_p<=SimilW; i_p++) {
- for(j_p=-SimilW; j_p<=SimilW; j_p++) {
- i5 = i2 + i_p; j5 = j2 + j_p;
- normsum = normsum + Eucl_Vec[count]*pow(A[(i3+i_p)*dimY+(j3+j_p)]-A[i5*dimY+j5], 2);
- count = count + 1;
- }}
- if (normsum != 0) Weight = (exp(-normsum*denh2));
- else Weight = 0.0;
- WeightGlob += Weight;
- }}
-
- value += A[i1*dimY+j1]*WeightGlob;
- Weight_norm += WeightGlob;
- }} /*search window loop end*/
-
- /* the final loop to average all values in searching window with weights */
- denom = 1 + lambda*Weight_norm;
- B[i*dimY+j] = (A[i*dimY+j] + lambda*value)/denom;
- }
- }} /*main loop*/
- return (*B);
- free(Eucl_Vec);
-}
-
-/*3D version*/
- float PB_FUNC3D(float *A, float *B, int dimX, int dimY, int dimZ, int padXY, int SearchW, int SimilW, float h, float lambda)
- {
- int SimilW_full, count, i, j, k, i_n, j_n, k_n, i_m, j_m, k_m, i_p, j_p, k_p, i_l, j_l, k_l, i1, j1, k1, i2, j2, k2, i3, j3, k3, i5, j5, k5;
- float *Eucl_Vec, h2, denh2, normsum, Weight, Weight_norm, value, denom, WeightGlob;
-
- /*SearchW_full = 2*SearchW + 1; */ /* the full searching window size */
- SimilW_full = 2*SimilW + 1; /* the full similarity window size */
- h2 = h*h;
- denh2 = 1/(2*h2);
-
- /*Gaussian kernel */
- Eucl_Vec = (float*) calloc (SimilW_full*SimilW_full*SimilW_full,sizeof(float));
- count = 0;
- for(i_n=-SimilW; i_n<=SimilW; i_n++) {
- for(j_n=-SimilW; j_n<=SimilW; j_n++) {
- for(k_n=-SimilW; k_n<=SimilW; k_n++) {
- Eucl_Vec[count] = exp(-(pow((float)i_n, 2) + pow((float)j_n, 2) + pow((float)k_n, 2))/(2*SimilW*SimilW*SimilW));
- count = count + 1;
- }}} /*main neighb loop */
-
- /*The NLM code starts here*/
- /* setting OMP here */
- #pragma omp parallel for shared (A, B, dimX, dimY, dimZ, Eucl_Vec, lambda, denh2) private(denom, i, j, k, WeightGlob,count, i1, j1, k1, i2, j2, k2, i3, j3, k3, i5, j5, k5, Weight_norm, normsum, i_m, j_m, k_m, i_n, j_n, k_n, i_l, j_l, k_l, i_p, j_p, k_p, Weight, value)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- if (((i >= padXY) && (i < dimX-padXY)) && ((j >= padXY) && (j < dimY-padXY)) && ((k >= padXY) && (k < dimZ-padXY))) {
- /* take all elements around the pixel of interest */
- /* Massive Search window loop */
- Weight_norm = 0; value = 0.0;
- for(i_m=-SearchW; i_m<=SearchW; i_m++) {
- for(j_m=-SearchW; j_m<=SearchW; j_m++) {
- for(k_m=-SearchW; k_m<=SearchW; k_m++) {
- /*checking boundaries*/
- i1 = i+i_m; j1 = j+j_m; k1 = k+k_m;
-
- WeightGlob = 0.0;
- /* if inside the searching window */
- for(i_l=-SimilW; i_l<=SimilW; i_l++) {
- for(j_l=-SimilW; j_l<=SimilW; j_l++) {
- for(k_l=-SimilW; k_l<=SimilW; k_l++) {
- i2 = i1+i_l; j2 = j1+j_l; k2 = k1+k_l;
-
- i3 = i+i_l; j3 = j+j_l; k3 = k+k_l; /*coordinates of the inner patch loop */
-
- count = 0; normsum = 0.0;
- for(i_p=-SimilW; i_p<=SimilW; i_p++) {
- for(j_p=-SimilW; j_p<=SimilW; j_p++) {
- for(k_p=-SimilW; k_p<=SimilW; k_p++) {
- i5 = i2 + i_p; j5 = j2 + j_p; k5 = k2 + k_p;
- normsum = normsum + Eucl_Vec[count]*pow(A[(dimX*dimY)*(k3+k_p)+(i3+i_p)*dimY+(j3+j_p)]-A[(dimX*dimY)*k5 + i5*dimY+j5], 2);
- count = count + 1;
- }}}
- if (normsum != 0) Weight = (exp(-normsum*denh2));
- else Weight = 0.0;
- WeightGlob += Weight;
- }}}
- value += A[(dimX*dimY)*k1 + i1*dimY+j1]*WeightGlob;
- Weight_norm += WeightGlob;
-
- }}} /*search window loop end*/
-
- /* the final loop to average all values in searching window with weights */
- denom = 1 + lambda*Weight_norm;
- B[(dimX*dimY)*k + i*dimY+j] = (A[(dimX*dimY)*k + i*dimY+j] + lambda*value)/denom;
- }
- }}} /*main loop*/
- free(Eucl_Vec);
- return *B;
-}
-
-float pad_crop(float *A, float *Ap, int OldSizeX, int OldSizeY, int OldSizeZ, int NewSizeX, int NewSizeY, int NewSizeZ, int padXY, int switchpad_crop)
-{
- /* padding-cropping function */
- int i,j,k;
- if (NewSizeZ > 1) {
- for (i=0; i < NewSizeX; i++) {
- for (j=0; j < NewSizeY; j++) {
- for (k=0; k < NewSizeZ; k++) {
- if (((i >= padXY) && (i < NewSizeX-padXY)) && ((j >= padXY) && (j < NewSizeY-padXY)) && ((k >= padXY) && (k < NewSizeZ-padXY))) {
- if (switchpad_crop == 0) Ap[NewSizeX*NewSizeY*k + i*NewSizeY+j] = A[OldSizeX*OldSizeY*(k - padXY) + (i-padXY)*(OldSizeY)+(j-padXY)];
- else Ap[OldSizeX*OldSizeY*(k - padXY) + (i-padXY)*(OldSizeY)+(j-padXY)] = A[NewSizeX*NewSizeY*k + i*NewSizeY+j];
- }
- }}}
- }
- else {
- for (i=0; i < NewSizeX; i++) {
- for (j=0; j < NewSizeY; j++) {
- if (((i >= padXY) && (i < NewSizeX-padXY)) && ((j >= padXY) && (j < NewSizeY-padXY))) {
- if (switchpad_crop == 0) Ap[i*NewSizeY+j] = A[(i-padXY)*(OldSizeY)+(j-padXY)];
- else Ap[(i-padXY)*(OldSizeY)+(j-padXY)] = A[i*NewSizeY+j];
- }
- }}
- }
- return *Ap;
-}
\ No newline at end of file +}
\ No newline at end of file diff --git a/main_func/regularizers_CPU/PatchBased_Regul_core.c b/main_func/regularizers_CPU/PatchBased_Regul_core.c new file mode 100644 index 0000000..6f0a48d --- /dev/null +++ b/main_func/regularizers_CPU/PatchBased_Regul_core.c @@ -0,0 +1,220 @@ +/* +This work is part of the Core Imaging Library developed by +Visual Analytics and Imaging System Group of the Science Technology +Facilities Council, STFC + +Copyright 2017 Daniil Kazanteev +Copyright 2017 Srikanth Nagella, Edoardo Pasca + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +*/ + +#include "PatchBased_Regul_core.h" + +/* C-OMP implementation of patch-based (PB) regularization (2D and 3D cases). +* This method finds self-similar patches in data and performs one fixed point iteration to mimimize the PB penalty function +* +* References: 1. Yang Z. & Jacob M. "Nonlocal Regularization of Inverse Problems" +* 2. Kazantsev D. et al. "4D-CT reconstruction with unified spatial-temporal patch-based regularization" +* +* Input Parameters (mandatory): +* 1. Image (2D or 3D) +* 2. ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window) +* 3. ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window) +* 4. h - parameter for the PB penalty function +* 5. lambda - regularization parameter + +* Output: +* 1. regularized (denoised) Image (N x N)/volume (N x N x N) +* +* Quick 2D denoising example in Matlab: +Im = double(imread('lena_gray_256.tif'))/255; % loading image +u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise +ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); +* +* Please see more tests in a file: +TestTemporalSmoothing.m + +* +* Matlab + C/mex compilers needed +* to compile with OMP support: mex PB_Regul_CPU.c CFLAGS="\$CFLAGS -fopenmp -Wall" LDFLAGS="\$LDFLAGS -fopenmp" +* +* D. Kazantsev * +* 02/07/2014 +* Harwell, UK +*/ + +/*2D version*/ +float PB_FUNC2D(float *A, float *B, int dimX, int dimY, int padXY, int SearchW, int SimilW, float h, float lambda) +{ + int i, j, i_n, j_n, i_m, j_m, i_p, j_p, i_l, j_l, i1, j1, i2, j2, i3, j3, i5,j5, count, SimilW_full; + float *Eucl_Vec, h2, denh2, normsum, Weight, Weight_norm, value, denom, WeightGlob, t1; + + /*SearchW_full = 2*SearchW + 1; */ /* the full searching window size */ + SimilW_full = 2*SimilW + 1; /* the full similarity window size */ + h2 = h*h; + denh2 = 1/(2*h2); + + /*Gaussian kernel */ + Eucl_Vec = (float*) calloc (SimilW_full*SimilW_full,sizeof(float)); + count = 0; + for(i_n=-SimilW; i_n<=SimilW; i_n++) { + for(j_n=-SimilW; j_n<=SimilW; j_n++) { + t1 = pow(((float)i_n), 2) + pow(((float)j_n), 2); + Eucl_Vec[count] = exp(-(t1)/(2*SimilW*SimilW)); + count = count + 1; + }} /*main neighb loop */ + + /*The NLM code starts here*/ + /* setting OMP here */ + #pragma omp parallel for shared (A, B, dimX, dimY, Eucl_Vec, lambda, denh2) private(denom, i, j, WeightGlob, count, i1, j1, i2, j2, i3, j3, i5, j5, Weight_norm, normsum, i_m, j_m, i_n, j_n, i_l, j_l, i_p, j_p, Weight, value) + + for(i=0; i<dimX; i++) { + for(j=0; j<dimY; j++) { + if (((i >= padXY) && (i < dimX-padXY)) && ((j >= padXY) && (j < dimY-padXY))) { + + /* Massive Search window loop */ + Weight_norm = 0; value = 0.0; + for(i_m=-SearchW; i_m<=SearchW; i_m++) { + for(j_m=-SearchW; j_m<=SearchW; j_m++) { + /*checking boundaries*/ + i1 = i+i_m; j1 = j+j_m; + + WeightGlob = 0.0; + /* if inside the searching window */ + for(i_l=-SimilW; i_l<=SimilW; i_l++) { + for(j_l=-SimilW; j_l<=SimilW; j_l++) { + i2 = i1+i_l; j2 = j1+j_l; + + i3 = i+i_l; j3 = j+j_l; /*coordinates of the inner patch loop */ + + count = 0; normsum = 0.0; + for(i_p=-SimilW; i_p<=SimilW; i_p++) { + for(j_p=-SimilW; j_p<=SimilW; j_p++) { + i5 = i2 + i_p; j5 = j2 + j_p; + normsum = normsum + Eucl_Vec[count]*pow(A[(i3+i_p)*dimY+(j3+j_p)]-A[i5*dimY+j5], 2); + count = count + 1; + }} + if (normsum != 0) Weight = (exp(-normsum*denh2)); + else Weight = 0.0; + WeightGlob += Weight; + }} + + value += A[i1*dimY+j1]*WeightGlob; + Weight_norm += WeightGlob; + }} /*search window loop end*/ + + /* the final loop to average all values in searching window with weights */ + denom = 1 + lambda*Weight_norm; + B[i*dimY+j] = (A[i*dimY+j] + lambda*value)/denom; + } + }} /*main loop*/ + return (*B); + free(Eucl_Vec); +} + +/*3D version*/ + float PB_FUNC3D(float *A, float *B, int dimX, int dimY, int dimZ, int padXY, int SearchW, int SimilW, float h, float lambda) + { + int SimilW_full, count, i, j, k, i_n, j_n, k_n, i_m, j_m, k_m, i_p, j_p, k_p, i_l, j_l, k_l, i1, j1, k1, i2, j2, k2, i3, j3, k3, i5, j5, k5; + float *Eucl_Vec, h2, denh2, normsum, Weight, Weight_norm, value, denom, WeightGlob; + + /*SearchW_full = 2*SearchW + 1; */ /* the full searching window size */ + SimilW_full = 2*SimilW + 1; /* the full similarity window size */ + h2 = h*h; + denh2 = 1/(2*h2); + + /*Gaussian kernel */ + Eucl_Vec = (float*) calloc (SimilW_full*SimilW_full*SimilW_full,sizeof(float)); + count = 0; + for(i_n=-SimilW; i_n<=SimilW; i_n++) { + for(j_n=-SimilW; j_n<=SimilW; j_n++) { + for(k_n=-SimilW; k_n<=SimilW; k_n++) { + Eucl_Vec[count] = exp(-(pow((float)i_n, 2) + pow((float)j_n, 2) + pow((float)k_n, 2))/(2*SimilW*SimilW*SimilW)); + count = count + 1; + }}} /*main neighb loop */ + + /*The NLM code starts here*/ + /* setting OMP here */ + #pragma omp parallel for shared (A, B, dimX, dimY, dimZ, Eucl_Vec, lambda, denh2) private(denom, i, j, k, WeightGlob,count, i1, j1, k1, i2, j2, k2, i3, j3, k3, i5, j5, k5, Weight_norm, normsum, i_m, j_m, k_m, i_n, j_n, k_n, i_l, j_l, k_l, i_p, j_p, k_p, Weight, value) + for(i=0; i<dimX; i++) { + for(j=0; j<dimY; j++) { + for(k=0; k<dimZ; k++) { + if (((i >= padXY) && (i < dimX-padXY)) && ((j >= padXY) && (j < dimY-padXY)) && ((k >= padXY) && (k < dimZ-padXY))) { + /* take all elements around the pixel of interest */ + /* Massive Search window loop */ + Weight_norm = 0; value = 0.0; + for(i_m=-SearchW; i_m<=SearchW; i_m++) { + for(j_m=-SearchW; j_m<=SearchW; j_m++) { + for(k_m=-SearchW; k_m<=SearchW; k_m++) { + /*checking boundaries*/ + i1 = i+i_m; j1 = j+j_m; k1 = k+k_m; + + WeightGlob = 0.0; + /* if inside the searching window */ + for(i_l=-SimilW; i_l<=SimilW; i_l++) { + for(j_l=-SimilW; j_l<=SimilW; j_l++) { + for(k_l=-SimilW; k_l<=SimilW; k_l++) { + i2 = i1+i_l; j2 = j1+j_l; k2 = k1+k_l; + + i3 = i+i_l; j3 = j+j_l; k3 = k+k_l; /*coordinates of the inner patch loop */ + + count = 0; normsum = 0.0; + for(i_p=-SimilW; i_p<=SimilW; i_p++) { + for(j_p=-SimilW; j_p<=SimilW; j_p++) { + for(k_p=-SimilW; k_p<=SimilW; k_p++) { + i5 = i2 + i_p; j5 = j2 + j_p; k5 = k2 + k_p; + normsum = normsum + Eucl_Vec[count]*pow(A[(dimX*dimY)*(k3+k_p)+(i3+i_p)*dimY+(j3+j_p)]-A[(dimX*dimY)*k5 + i5*dimY+j5], 2); + count = count + 1; + }}} + if (normsum != 0) Weight = (exp(-normsum*denh2)); + else Weight = 0.0; + WeightGlob += Weight; + }}} + value += A[(dimX*dimY)*k1 + i1*dimY+j1]*WeightGlob; + Weight_norm += WeightGlob; + + }}} /*search window loop end*/ + + /* the final loop to average all values in searching window with weights */ + denom = 1 + lambda*Weight_norm; + B[(dimX*dimY)*k + i*dimY+j] = (A[(dimX*dimY)*k + i*dimY+j] + lambda*value)/denom; + } + }}} /*main loop*/ + free(Eucl_Vec); + return *B; +} + +float pad_crop(float *A, float *Ap, int OldSizeX, int OldSizeY, int OldSizeZ, int NewSizeX, int NewSizeY, int NewSizeZ, int padXY, int switchpad_crop) +{ + /* padding-cropping function */ + int i,j,k; + if (NewSizeZ > 1) { + for (i=0; i < NewSizeX; i++) { + for (j=0; j < NewSizeY; j++) { + for (k=0; k < NewSizeZ; k++) { + if (((i >= padXY) && (i < NewSizeX-padXY)) && ((j >= padXY) && (j < NewSizeY-padXY)) && ((k >= padXY) && (k < NewSizeZ-padXY))) { + if (switchpad_crop == 0) Ap[NewSizeX*NewSizeY*k + i*NewSizeY+j] = A[OldSizeX*OldSizeY*(k - padXY) + (i-padXY)*(OldSizeY)+(j-padXY)]; + else Ap[OldSizeX*OldSizeY*(k - padXY) + (i-padXY)*(OldSizeY)+(j-padXY)] = A[NewSizeX*NewSizeY*k + i*NewSizeY+j]; + } + }}} + } + else { + for (i=0; i < NewSizeX; i++) { + for (j=0; j < NewSizeY; j++) { + if (((i >= padXY) && (i < NewSizeX-padXY)) && ((j >= padXY) && (j < NewSizeY-padXY))) { + if (switchpad_crop == 0) Ap[i*NewSizeY+j] = A[(i-padXY)*(OldSizeY)+(j-padXY)]; + else Ap[(i-padXY)*(OldSizeY)+(j-padXY)] = A[i*NewSizeY+j]; + } + }} + } + return *Ap; +}
\ No newline at end of file diff --git a/main_func/regularizers_CPU/PatchBased_Regul_core.h b/main_func/regularizers_CPU/PatchBased_Regul_core.h new file mode 100644 index 0000000..b83cf10 --- /dev/null +++ b/main_func/regularizers_CPU/PatchBased_Regul_core.h @@ -0,0 +1,64 @@ +/* +This work is part of the Core Imaging Library developed by +Visual Analytics and Imaging System Group of the Science Technology +Facilities Council, STFC + +Copyright 2017 Daniil Kazanteev +Copyright 2017 Srikanth Nagella, Edoardo Pasca + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +*/ + +#define _USE_MATH_DEFINES + +#include <matrix.h> +#include <math.h> +#include <stdlib.h> +#include <memory.h> +#include <stdio.h> +#include "omp.h" + +/* C-OMP implementation of patch-based (PB) regularization (2D and 3D cases). +* This method finds self-similar patches in data and performs one fixed point iteration to mimimize the PB penalty function +* +* References: 1. Yang Z. & Jacob M. "Nonlocal Regularization of Inverse Problems" +* 2. Kazantsev D. et al. "4D-CT reconstruction with unified spatial-temporal patch-based regularization" +* +* Input Parameters (mandatory): +* 1. Image (2D or 3D) +* 2. ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window) +* 3. ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window) +* 4. h - parameter for the PB penalty function +* 5. lambda - regularization parameter + +* Output: +* 1. regularized (denoised) Image (N x N)/volume (N x N x N) +* +* Quick 2D denoising example in Matlab: +Im = double(imread('lena_gray_256.tif'))/255; % loading image +u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise +ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); +* +* Please see more tests in a file: +TestTemporalSmoothing.m + +* +* Matlab + C/mex compilers needed +* to compile with OMP support: mex PB_Regul_CPU.c CFLAGS="\$CFLAGS -fopenmp -Wall" LDFLAGS="\$LDFLAGS -fopenmp" +* +* D. Kazantsev * +* 02/07/2014 +* Harwell, UK +*/ + +float pad_crop(float *A, float *Ap, int OldSizeX, int OldSizeY, int OldSizeZ, int NewSizeX, int NewSizeY, int NewSizeZ, int padXY, int switchpad_crop); +float PB_FUNC2D(float *A, float *B, int dimX, int dimY, int padXY, int SearchW, int SimilW, float h, float lambda); +float PB_FUNC3D(float *A, float *B, int dimX, int dimY, int dimZ, int padXY, int SearchW, int SimilW, float h, float lambda); diff --git a/main_func/regularizers_CPU/SplitBregman_TV.c b/main_func/regularizers_CPU/SplitBregman_TV.c index f143aa6..0dc638d 100644 --- a/main_func/regularizers_CPU/SplitBregman_TV.c +++ b/main_func/regularizers_CPU/SplitBregman_TV.c @@ -1,10 +1,24 @@ +/* +This work is part of the Core Imaging Library developed by +Visual Analytics and Imaging System Group of the Science Technology +Facilities Council, STFC + +Copyright 2017 Daniil Kazanteev +Copyright 2017 Srikanth Nagella, Edoardo Pasca + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +*/ + #include "mex.h" -#include <matrix.h> -#include <math.h> -#include <stdlib.h> -#include <memory.h> -#include <stdio.h> -#include "omp.h" +#include "SplitBregman_TV_core.h" /* C-OMP implementation of Split Bregman - TV denoising-regularization model (2D/3D) * @@ -30,16 +44,6 @@ * D. Kazantsev, 2016* */ -float copyIm(float *A, float *B, int dimX, int dimY, int dimZ); -float gauss_seidel2D(float *U, float *A, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda, float mu); -float updDxDy_shrinkAniso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda); -float updDxDy_shrinkIso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda); -float updBxBy2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY); - -float gauss_seidel3D(float *U, float *A, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda, float mu); -float updDxDyDz_shrinkAniso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda); -float updDxDyDz_shrinkIso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda); -float updBxByBz3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ); void mexFunction( int nlhs, mxArray *plhs[], @@ -171,229 +175,4 @@ void mexFunction( } printf("SB iterations stopped at iteration: %i\n", ll); } -} - -/* 2D-case related Functions */ -/*****************************************************************/ -float gauss_seidel2D(float *U, float *A, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda, float mu) -{ - float sum, normConst; - int i,j,i1,i2,j1,j2; - normConst = 1.0f/(mu + 4.0f*lambda); - -#pragma omp parallel for shared(U) private(i,j,i1,i2,j1,j2,sum) - for(i=0; i<dimX; i++) { - /* symmetric boundary conditions (Neuman) */ - i1 = i+1; if (i1 == dimX) i1 = i-1; - i2 = i-1; if (i2 < 0) i2 = i+1; - for(j=0; j<dimY; j++) { - /* symmetric boundary conditions (Neuman) */ - j1 = j+1; if (j1 == dimY) j1 = j-1; - j2 = j-1; if (j2 < 0) j2 = j+1; - - sum = Dx[(i2)*dimY + (j)] - Dx[(i)*dimY + (j)] + Dy[(i)*dimY + (j2)] - Dy[(i)*dimY + (j)] - Bx[(i2)*dimY + (j)] + Bx[(i)*dimY + (j)] - By[(i)*dimY + (j2)] + By[(i)*dimY + (j)]; - sum += (U[(i1)*dimY + (j)] + U[(i2)*dimY + (j)] + U[(i)*dimY + (j1)] + U[(i)*dimY + (j2)]); - sum *= lambda; - sum += mu*A[(i)*dimY + (j)]; - U[(i)*dimY + (j)] = normConst*sum; - }} - return *U; -} - -float updDxDy_shrinkAniso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda) -{ - int i,j,i1,j1; - float val1, val11, val2, val22, denom_lam; - denom_lam = 1.0f/lambda; -#pragma omp parallel for shared(U,denom_lam) private(i,j,i1,j1,val1,val11,val2,val22) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - /* symmetric boundary conditions (Neuman) */ - i1 = i+1; if (i1 == dimX) i1 = i-1; - j1 = j+1; if (j1 == dimY) j1 = j-1; - - val1 = (U[(i1)*dimY + (j)] - U[(i)*dimY + (j)]) + Bx[(i)*dimY + (j)]; - val2 = (U[(i)*dimY + (j1)] - U[(i)*dimY + (j)]) + By[(i)*dimY + (j)]; - - val11 = fabs(val1) - denom_lam; if (val11 < 0) val11 = 0; - val22 = fabs(val2) - denom_lam; if (val22 < 0) val22 = 0; - - if (val1 !=0) Dx[(i)*dimY + (j)] = (val1/fabs(val1))*val11; else Dx[(i)*dimY + (j)] = 0; - if (val2 !=0) Dy[(i)*dimY + (j)] = (val2/fabs(val2))*val22; else Dy[(i)*dimY + (j)] = 0; - - }} - return 1; -} -float updDxDy_shrinkIso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda) -{ - int i,j,i1,j1; - float val1, val11, val2, denom, denom_lam; - denom_lam = 1.0f/lambda; - -#pragma omp parallel for shared(U,denom_lam) private(i,j,i1,j1,val1,val11,val2,denom) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - /* symmetric boundary conditions (Neuman) */ - i1 = i+1; if (i1 == dimX) i1 = i-1; - j1 = j+1; if (j1 == dimY) j1 = j-1; - - val1 = (U[(i1)*dimY + (j)] - U[(i)*dimY + (j)]) + Bx[(i)*dimY + (j)]; - val2 = (U[(i)*dimY + (j1)] - U[(i)*dimY + (j)]) + By[(i)*dimY + (j)]; - - denom = sqrt(val1*val1 + val2*val2); - - val11 = (denom - denom_lam); if (val11 < 0) val11 = 0.0f; - - if (denom != 0.0f) { - Dx[(i)*dimY + (j)] = val11*(val1/denom); - Dy[(i)*dimY + (j)] = val11*(val2/denom); - } - else { - Dx[(i)*dimY + (j)] = 0; - Dy[(i)*dimY + (j)] = 0; - } - }} - return 1; -} -float updBxBy2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY) -{ - int i,j,i1,j1; -#pragma omp parallel for shared(U) private(i,j,i1,j1) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - /* symmetric boundary conditions (Neuman) */ - i1 = i+1; if (i1 == dimX) i1 = i-1; - j1 = j+1; if (j1 == dimY) j1 = j-1; - - Bx[(i)*dimY + (j)] = Bx[(i)*dimY + (j)] + ((U[(i1)*dimY + (j)] - U[(i)*dimY + (j)]) - Dx[(i)*dimY + (j)]); - By[(i)*dimY + (j)] = By[(i)*dimY + (j)] + ((U[(i)*dimY + (j1)] - U[(i)*dimY + (j)]) - Dy[(i)*dimY + (j)]); - }} - return 1; -} - - -/* 3D-case related Functions */ -/*****************************************************************/ -float gauss_seidel3D(float *U, float *A, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda, float mu) -{ - float normConst, d_val, b_val, sum; - int i,j,i1,i2,j1,j2,k,k1,k2; - normConst = 1.0f/(mu + 6.0f*lambda); -#pragma omp parallel for shared(U) private(i,j,i1,i2,j1,j2,k,k1,k2,d_val,b_val,sum) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - for(k=0; k<dimZ; k++) { - /* symmetric boundary conditions (Neuman) */ - i1 = i+1; if (i1 == dimX) i1 = i-1; - i2 = i-1; if (i2 < 0) i2 = i+1; - j1 = j+1; if (j1 == dimY) j1 = j-1; - j2 = j-1; if (j2 < 0) j2 = j+1; - k1 = k+1; if (k1 == dimZ) k1 = k-1; - k2 = k-1; if (k2 < 0) k2 = k+1; - - d_val = Dx[(dimX*dimY)*k + (i2)*dimY + (j)] - Dx[(dimX*dimY)*k + (i)*dimY + (j)] + Dy[(dimX*dimY)*k + (i)*dimY + (j2)] - Dy[(dimX*dimY)*k + (i)*dimY + (j)] + Dz[(dimX*dimY)*k2 + (i)*dimY + (j)] - Dz[(dimX*dimY)*k + (i)*dimY + (j)]; - b_val = -Bx[(dimX*dimY)*k + (i2)*dimY + (j)] + Bx[(dimX*dimY)*k + (i)*dimY + (j)] - By[(dimX*dimY)*k + (i)*dimY + (j2)] + By[(dimX*dimY)*k + (i)*dimY + (j)] - Bz[(dimX*dimY)*k2 + (i)*dimY + (j)] + Bz[(dimX*dimY)*k + (i)*dimY + (j)]; - sum = d_val + b_val; - sum += U[(dimX*dimY)*k + (i1)*dimY + (j)] + U[(dimX*dimY)*k + (i2)*dimY + (j)] + U[(dimX*dimY)*k + (i)*dimY + (j1)] + U[(dimX*dimY)*k + (i)*dimY + (j2)] + U[(dimX*dimY)*k1 + (i)*dimY + (j)] + U[(dimX*dimY)*k2 + (i)*dimY + (j)]; - sum *= lambda; - sum += mu*A[(dimX*dimY)*k + (i)*dimY + (j)]; - U[(dimX*dimY)*k + (i)*dimY + (j)] = normConst*sum; - }}} - return *U; -} - -float updDxDyDz_shrinkAniso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda) -{ - int i,j,i1,j1,k,k1,index; - float val1, val11, val2, val22, val3, val33, denom_lam; - denom_lam = 1.0f/lambda; -#pragma omp parallel for shared(U,denom_lam) private(index,i,j,i1,j1,k,k1,val1,val11,val2,val22,val3,val33) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - for(k=0; k<dimZ; k++) { - index = (dimX*dimY)*k + (i)*dimY + (j); - /* symmetric boundary conditions (Neuman) */ - i1 = i+1; if (i1 == dimX) i1 = i-1; - j1 = j+1; if (j1 == dimY) j1 = j-1; - k1 = k+1; if (k1 == dimZ) k1 = k-1; - - val1 = (U[(dimX*dimY)*k + (i1)*dimY + (j)] - U[index]) + Bx[index]; - val2 = (U[(dimX*dimY)*k + (i)*dimY + (j1)] - U[index]) + By[index]; - val3 = (U[(dimX*dimY)*k1 + (i)*dimY + (j)] - U[index]) + Bz[index]; - - val11 = fabs(val1) - denom_lam; if (val11 < 0) val11 = 0; - val22 = fabs(val2) - denom_lam; if (val22 < 0) val22 = 0; - val33 = fabs(val3) - denom_lam; if (val33 < 0) val33 = 0; - - if (val1 !=0) Dx[index] = (val1/fabs(val1))*val11; else Dx[index] = 0; - if (val2 !=0) Dy[index] = (val2/fabs(val2))*val22; else Dy[index] = 0; - if (val3 !=0) Dz[index] = (val3/fabs(val3))*val33; else Dz[index] = 0; - - }}} - return 1; -} -float updDxDyDz_shrinkIso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda) -{ - int i,j,i1,j1,k,k1,index; - float val1, val11, val2, val3, denom, denom_lam; - denom_lam = 1.0f/lambda; -#pragma omp parallel for shared(U,denom_lam) private(index,denom,i,j,i1,j1,k,k1,val1,val11,val2,val3) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - for(k=0; k<dimZ; k++) { - index = (dimX*dimY)*k + (i)*dimY + (j); - /* symmetric boundary conditions (Neuman) */ - i1 = i+1; if (i1 == dimX) i1 = i-1; - j1 = j+1; if (j1 == dimY) j1 = j-1; - k1 = k+1; if (k1 == dimZ) k1 = k-1; - - val1 = (U[(dimX*dimY)*k + (i1)*dimY + (j)] - U[index]) + Bx[index]; - val2 = (U[(dimX*dimY)*k + (i)*dimY + (j1)] - U[index]) + By[index]; - val3 = (U[(dimX*dimY)*k1 + (i)*dimY + (j)] - U[index]) + Bz[index]; - - denom = sqrt(val1*val1 + val2*val2 + val3*val3); - - val11 = (denom - denom_lam); if (val11 < 0) val11 = 0.0f; - - if (denom != 0.0f) { - Dx[index] = val11*(val1/denom); - Dy[index] = val11*(val2/denom); - Dz[index] = val11*(val3/denom); - } - else { - Dx[index] = 0; - Dy[index] = 0; - Dz[index] = 0; - } - }}} - return 1; -} -float updBxByBz3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ) -{ - int i,j,k,i1,j1,k1; -#pragma omp parallel for shared(U) private(i,j,k,i1,j1,k1) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - for(k=0; k<dimZ; k++) { - /* symmetric boundary conditions (Neuman) */ - i1 = i+1; if (i1 == dimX) i1 = i-1; - j1 = j+1; if (j1 == dimY) j1 = j-1; - k1 = k+1; if (k1 == dimZ) k1 = k-1; - - Bx[(dimX*dimY)*k + (i)*dimY + (j)] = Bx[(dimX*dimY)*k + (i)*dimY + (j)] + ((U[(dimX*dimY)*k + (i1)*dimY + (j)] - U[(dimX*dimY)*k + (i)*dimY + (j)]) - Dx[(dimX*dimY)*k + (i)*dimY + (j)]); - By[(dimX*dimY)*k + (i)*dimY + (j)] = By[(dimX*dimY)*k + (i)*dimY + (j)] + ((U[(dimX*dimY)*k + (i)*dimY + (j1)] - U[(dimX*dimY)*k + (i)*dimY + (j)]) - Dy[(dimX*dimY)*k + (i)*dimY + (j)]); - Bz[(dimX*dimY)*k + (i)*dimY + (j)] = Bz[(dimX*dimY)*k + (i)*dimY + (j)] + ((U[(dimX*dimY)*k1 + (i)*dimY + (j)] - U[(dimX*dimY)*k + (i)*dimY + (j)]) - Dz[(dimX*dimY)*k + (i)*dimY + (j)]); - - }}} - return 1; -} -/* General Functions */ -/*****************************************************************/ -/* Copy Image */ -float copyIm(float *A, float *B, int dimX, int dimY, int dimZ) -{ - int j; -#pragma omp parallel for shared(A, B) private(j) - for(j=0; j<dimX*dimY*dimZ; j++) B[j] = A[j]; - return *B; }
\ No newline at end of file diff --git a/main_func/regularizers_CPU/SplitBregman_TV_core.c b/main_func/regularizers_CPU/SplitBregman_TV_core.c new file mode 100644 index 0000000..26ad5b1 --- /dev/null +++ b/main_func/regularizers_CPU/SplitBregman_TV_core.c @@ -0,0 +1,270 @@ +/* +This work is part of the Core Imaging Library developed by +Visual Analytics and Imaging System Group of the Science Technology +Facilities Council, STFC + +Copyright 2017 Daniil Kazanteev +Copyright 2017 Srikanth Nagella, Edoardo Pasca + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +*/ + +#include "SplitBregman_TV_core.h" + +/* C-OMP implementation of Split Bregman - TV denoising-regularization model (2D/3D) +* +* Input Parameters: +* 1. Noisy image/volume +* 2. lambda - regularization parameter +* 3. Number of iterations [OPTIONAL parameter] +* 4. eplsilon - tolerance constant [OPTIONAL parameter] +* 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter] +* +* Output: +* Filtered/regularized image +* +* Example: +* figure; +* Im = double(imread('lena_gray_256.tif'))/255; % loading image +* u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; +* u = SplitBregman_TV(single(u0), 10, 30, 1e-04); +* +* to compile with OMP support: mex SplitBregman_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" +* References: +* The Split Bregman Method for L1 Regularized Problems, by Tom Goldstein and Stanley Osher. +* D. Kazantsev, 2016* +*/ + + +/* 2D-case related Functions */ +/*****************************************************************/ +float gauss_seidel2D(float *U, float *A, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda, float mu) +{ + float sum, normConst; + int i,j,i1,i2,j1,j2; + normConst = 1.0f/(mu + 4.0f*lambda); + +#pragma omp parallel for shared(U) private(i,j,i1,i2,j1,j2,sum) + for(i=0; i<dimX; i++) { + /* symmetric boundary conditions (Neuman) */ + i1 = i+1; if (i1 == dimX) i1 = i-1; + i2 = i-1; if (i2 < 0) i2 = i+1; + for(j=0; j<dimY; j++) { + /* symmetric boundary conditions (Neuman) */ + j1 = j+1; if (j1 == dimY) j1 = j-1; + j2 = j-1; if (j2 < 0) j2 = j+1; + + sum = Dx[(i2)*dimY + (j)] - Dx[(i)*dimY + (j)] + Dy[(i)*dimY + (j2)] - Dy[(i)*dimY + (j)] - Bx[(i2)*dimY + (j)] + Bx[(i)*dimY + (j)] - By[(i)*dimY + (j2)] + By[(i)*dimY + (j)]; + sum += (U[(i1)*dimY + (j)] + U[(i2)*dimY + (j)] + U[(i)*dimY + (j1)] + U[(i)*dimY + (j2)]); + sum *= lambda; + sum += mu*A[(i)*dimY + (j)]; + U[(i)*dimY + (j)] = normConst*sum; + }} + return *U; +} + +float updDxDy_shrinkAniso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda) +{ + int i,j,i1,j1; + float val1, val11, val2, val22, denom_lam; + denom_lam = 1.0f/lambda; +#pragma omp parallel for shared(U,denom_lam) private(i,j,i1,j1,val1,val11,val2,val22) + for(i=0; i<dimX; i++) { + for(j=0; j<dimY; j++) { + /* symmetric boundary conditions (Neuman) */ + i1 = i+1; if (i1 == dimX) i1 = i-1; + j1 = j+1; if (j1 == dimY) j1 = j-1; + + val1 = (U[(i1)*dimY + (j)] - U[(i)*dimY + (j)]) + Bx[(i)*dimY + (j)]; + val2 = (U[(i)*dimY + (j1)] - U[(i)*dimY + (j)]) + By[(i)*dimY + (j)]; + + val11 = fabs(val1) - denom_lam; if (val11 < 0) val11 = 0; + val22 = fabs(val2) - denom_lam; if (val22 < 0) val22 = 0; + + if (val1 !=0) Dx[(i)*dimY + (j)] = (val1/fabs(val1))*val11; else Dx[(i)*dimY + (j)] = 0; + if (val2 !=0) Dy[(i)*dimY + (j)] = (val2/fabs(val2))*val22; else Dy[(i)*dimY + (j)] = 0; + + }} + return 1; +} +float updDxDy_shrinkIso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda) +{ + int i,j,i1,j1; + float val1, val11, val2, denom, denom_lam; + denom_lam = 1.0f/lambda; + +#pragma omp parallel for shared(U,denom_lam) private(i,j,i1,j1,val1,val11,val2,denom) + for(i=0; i<dimX; i++) { + for(j=0; j<dimY; j++) { + /* symmetric boundary conditions (Neuman) */ + i1 = i+1; if (i1 == dimX) i1 = i-1; + j1 = j+1; if (j1 == dimY) j1 = j-1; + + val1 = (U[(i1)*dimY + (j)] - U[(i)*dimY + (j)]) + Bx[(i)*dimY + (j)]; + val2 = (U[(i)*dimY + (j1)] - U[(i)*dimY + (j)]) + By[(i)*dimY + (j)]; + + denom = sqrt(val1*val1 + val2*val2); + + val11 = (denom - denom_lam); if (val11 < 0) val11 = 0.0f; + + if (denom != 0.0f) { + Dx[(i)*dimY + (j)] = val11*(val1/denom); + Dy[(i)*dimY + (j)] = val11*(val2/denom); + } + else { + Dx[(i)*dimY + (j)] = 0; + Dy[(i)*dimY + (j)] = 0; + } + }} + return 1; +} +float updBxBy2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY) +{ + int i,j,i1,j1; +#pragma omp parallel for shared(U) private(i,j,i1,j1) + for(i=0; i<dimX; i++) { + for(j=0; j<dimY; j++) { + /* symmetric boundary conditions (Neuman) */ + i1 = i+1; if (i1 == dimX) i1 = i-1; + j1 = j+1; if (j1 == dimY) j1 = j-1; + + Bx[(i)*dimY + (j)] = Bx[(i)*dimY + (j)] + ((U[(i1)*dimY + (j)] - U[(i)*dimY + (j)]) - Dx[(i)*dimY + (j)]); + By[(i)*dimY + (j)] = By[(i)*dimY + (j)] + ((U[(i)*dimY + (j1)] - U[(i)*dimY + (j)]) - Dy[(i)*dimY + (j)]); + }} + return 1; +} + + +/* 3D-case related Functions */ +/*****************************************************************/ +float gauss_seidel3D(float *U, float *A, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda, float mu) +{ + float normConst, d_val, b_val, sum; + int i,j,i1,i2,j1,j2,k,k1,k2; + normConst = 1.0f/(mu + 6.0f*lambda); +#pragma omp parallel for shared(U) private(i,j,i1,i2,j1,j2,k,k1,k2,d_val,b_val,sum) + for(i=0; i<dimX; i++) { + for(j=0; j<dimY; j++) { + for(k=0; k<dimZ; k++) { + /* symmetric boundary conditions (Neuman) */ + i1 = i+1; if (i1 == dimX) i1 = i-1; + i2 = i-1; if (i2 < 0) i2 = i+1; + j1 = j+1; if (j1 == dimY) j1 = j-1; + j2 = j-1; if (j2 < 0) j2 = j+1; + k1 = k+1; if (k1 == dimZ) k1 = k-1; + k2 = k-1; if (k2 < 0) k2 = k+1; + + d_val = Dx[(dimX*dimY)*k + (i2)*dimY + (j)] - Dx[(dimX*dimY)*k + (i)*dimY + (j)] + Dy[(dimX*dimY)*k + (i)*dimY + (j2)] - Dy[(dimX*dimY)*k + (i)*dimY + (j)] + Dz[(dimX*dimY)*k2 + (i)*dimY + (j)] - Dz[(dimX*dimY)*k + (i)*dimY + (j)]; + b_val = -Bx[(dimX*dimY)*k + (i2)*dimY + (j)] + Bx[(dimX*dimY)*k + (i)*dimY + (j)] - By[(dimX*dimY)*k + (i)*dimY + (j2)] + By[(dimX*dimY)*k + (i)*dimY + (j)] - Bz[(dimX*dimY)*k2 + (i)*dimY + (j)] + Bz[(dimX*dimY)*k + (i)*dimY + (j)]; + sum = d_val + b_val; + sum += U[(dimX*dimY)*k + (i1)*dimY + (j)] + U[(dimX*dimY)*k + (i2)*dimY + (j)] + U[(dimX*dimY)*k + (i)*dimY + (j1)] + U[(dimX*dimY)*k + (i)*dimY + (j2)] + U[(dimX*dimY)*k1 + (i)*dimY + (j)] + U[(dimX*dimY)*k2 + (i)*dimY + (j)]; + sum *= lambda; + sum += mu*A[(dimX*dimY)*k + (i)*dimY + (j)]; + U[(dimX*dimY)*k + (i)*dimY + (j)] = normConst*sum; + }}} + return *U; +} + +float updDxDyDz_shrinkAniso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda) +{ + int i,j,i1,j1,k,k1,index; + float val1, val11, val2, val22, val3, val33, denom_lam; + denom_lam = 1.0f/lambda; +#pragma omp parallel for shared(U,denom_lam) private(index,i,j,i1,j1,k,k1,val1,val11,val2,val22,val3,val33) + for(i=0; i<dimX; i++) { + for(j=0; j<dimY; j++) { + for(k=0; k<dimZ; k++) { + index = (dimX*dimY)*k + (i)*dimY + (j); + /* symmetric boundary conditions (Neuman) */ + i1 = i+1; if (i1 == dimX) i1 = i-1; + j1 = j+1; if (j1 == dimY) j1 = j-1; + k1 = k+1; if (k1 == dimZ) k1 = k-1; + + val1 = (U[(dimX*dimY)*k + (i1)*dimY + (j)] - U[index]) + Bx[index]; + val2 = (U[(dimX*dimY)*k + (i)*dimY + (j1)] - U[index]) + By[index]; + val3 = (U[(dimX*dimY)*k1 + (i)*dimY + (j)] - U[index]) + Bz[index]; + + val11 = fabs(val1) - denom_lam; if (val11 < 0) val11 = 0; + val22 = fabs(val2) - denom_lam; if (val22 < 0) val22 = 0; + val33 = fabs(val3) - denom_lam; if (val33 < 0) val33 = 0; + + if (val1 !=0) Dx[index] = (val1/fabs(val1))*val11; else Dx[index] = 0; + if (val2 !=0) Dy[index] = (val2/fabs(val2))*val22; else Dy[index] = 0; + if (val3 !=0) Dz[index] = (val3/fabs(val3))*val33; else Dz[index] = 0; + + }}} + return 1; +} +float updDxDyDz_shrinkIso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda) +{ + int i,j,i1,j1,k,k1,index; + float val1, val11, val2, val3, denom, denom_lam; + denom_lam = 1.0f/lambda; +#pragma omp parallel for shared(U,denom_lam) private(index,denom,i,j,i1,j1,k,k1,val1,val11,val2,val3) + for(i=0; i<dimX; i++) { + for(j=0; j<dimY; j++) { + for(k=0; k<dimZ; k++) { + index = (dimX*dimY)*k + (i)*dimY + (j); + /* symmetric boundary conditions (Neuman) */ + i1 = i+1; if (i1 == dimX) i1 = i-1; + j1 = j+1; if (j1 == dimY) j1 = j-1; + k1 = k+1; if (k1 == dimZ) k1 = k-1; + + val1 = (U[(dimX*dimY)*k + (i1)*dimY + (j)] - U[index]) + Bx[index]; + val2 = (U[(dimX*dimY)*k + (i)*dimY + (j1)] - U[index]) + By[index]; + val3 = (U[(dimX*dimY)*k1 + (i)*dimY + (j)] - U[index]) + Bz[index]; + + denom = sqrt(val1*val1 + val2*val2 + val3*val3); + + val11 = (denom - denom_lam); if (val11 < 0) val11 = 0.0f; + + if (denom != 0.0f) { + Dx[index] = val11*(val1/denom); + Dy[index] = val11*(val2/denom); + Dz[index] = val11*(val3/denom); + } + else { + Dx[index] = 0; + Dy[index] = 0; + Dz[index] = 0; + } + }}} + return 1; +} +float updBxByBz3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ) +{ + int i,j,k,i1,j1,k1; +#pragma omp parallel for shared(U) private(i,j,k,i1,j1,k1) + for(i=0; i<dimX; i++) { + for(j=0; j<dimY; j++) { + for(k=0; k<dimZ; k++) { + /* symmetric boundary conditions (Neuman) */ + i1 = i+1; if (i1 == dimX) i1 = i-1; + j1 = j+1; if (j1 == dimY) j1 = j-1; + k1 = k+1; if (k1 == dimZ) k1 = k-1; + + Bx[(dimX*dimY)*k + (i)*dimY + (j)] = Bx[(dimX*dimY)*k + (i)*dimY + (j)] + ((U[(dimX*dimY)*k + (i1)*dimY + (j)] - U[(dimX*dimY)*k + (i)*dimY + (j)]) - Dx[(dimX*dimY)*k + (i)*dimY + (j)]); + By[(dimX*dimY)*k + (i)*dimY + (j)] = By[(dimX*dimY)*k + (i)*dimY + (j)] + ((U[(dimX*dimY)*k + (i)*dimY + (j1)] - U[(dimX*dimY)*k + (i)*dimY + (j)]) - Dy[(dimX*dimY)*k + (i)*dimY + (j)]); + Bz[(dimX*dimY)*k + (i)*dimY + (j)] = Bz[(dimX*dimY)*k + (i)*dimY + (j)] + ((U[(dimX*dimY)*k1 + (i)*dimY + (j)] - U[(dimX*dimY)*k + (i)*dimY + (j)]) - Dz[(dimX*dimY)*k + (i)*dimY + (j)]); + + }}} + return 1; +} +/* General Functions */ +/*****************************************************************/ +/* Copy Image */ +float copyIm(float *A, float *B, int dimX, int dimY, int dimZ) +{ + int j; +#pragma omp parallel for shared(A, B) private(j) + for(j=0; j<dimX*dimY*dimZ; j++) B[j] = A[j]; + return *B; +}
\ No newline at end of file diff --git a/main_func/regularizers_CPU/SplitBregman_TV_core.h b/main_func/regularizers_CPU/SplitBregman_TV_core.h new file mode 100644 index 0000000..ed9112c --- /dev/null +++ b/main_func/regularizers_CPU/SplitBregman_TV_core.h @@ -0,0 +1,59 @@ +/* +This work is part of the Core Imaging Library developed by +Visual Analytics and Imaging System Group of the Science Technology +Facilities Council, STFC + +Copyright 2017 Daniil Kazanteev +Copyright 2017 Srikanth Nagella, Edoardo Pasca + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +*/ +#include <matrix.h> +#include <math.h> +#include <stdlib.h> +#include <memory.h> +#include <stdio.h> +#include "omp.h" + +/* C-OMP implementation of Split Bregman - TV denoising-regularization model (2D/3D) +* +* Input Parameters: +* 1. Noisy image/volume +* 2. lambda - regularization parameter +* 3. Number of iterations [OPTIONAL parameter] +* 4. eplsilon - tolerance constant [OPTIONAL parameter] +* 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter] +* +* Output: +* Filtered/regularized image +* +* Example: +* figure; +* Im = double(imread('lena_gray_256.tif'))/255; % loading image +* u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; +* u = SplitBregman_TV(single(u0), 10, 30, 1e-04); +* +* to compile with OMP support: mex SplitBregman_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" +* References: +* The Split Bregman Method for L1 Regularized Problems, by Tom Goldstein and Stanley Osher. +* D. Kazantsev, 2016* +*/ + +float copyIm(float *A, float *B, int dimX, int dimY, int dimZ); +float gauss_seidel2D(float *U, float *A, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda, float mu); +float updDxDy_shrinkAniso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda); +float updDxDy_shrinkIso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda); +float updBxBy2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY); + +float gauss_seidel3D(float *U, float *A, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda, float mu); +float updDxDyDz_shrinkAniso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda); +float updDxDyDz_shrinkIso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda); +float updBxByBz3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ); diff --git a/main_func/regularizers_CPU/TGV_PD.c b/main_func/regularizers_CPU/TGV_PD.c index 41f8615..8bce18a 100644 --- a/main_func/regularizers_CPU/TGV_PD.c +++ b/main_func/regularizers_CPU/TGV_PD.c @@ -1,10 +1,24 @@ +/* +This work is part of the Core Imaging Library developed by +Visual Analytics and Imaging System Group of the Science Technology +Facilities Council, STFC + +Copyright 2017 Daniil Kazanteev +Copyright 2017 Srikanth Nagella, Edoardo Pasca + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +*/ + +#include "TGV_PD_core.h" #include "mex.h" -#include <matrix.h> -#include <math.h> -#include <stdlib.h> -#include <memory.h> -#include <stdio.h> -#include "omp.h" /* C-OMP implementation of Primal-Dual denoising method for * Total Generilized Variation (TGV)-L2 model (2D case only) @@ -32,19 +46,6 @@ * 28.11.16/Harwell */ -/* 2D functions */ -float DualP_2D(float *U, float *V1, float *V2, float *P1, float *P2, int dimX, int dimY, int dimZ, float sigma); -float ProjP_2D(float *P1, float *P2, int dimX, int dimY, int dimZ, float alpha1); -float DualQ_2D(float *V1, float *V2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float sigma); -float ProjQ_2D(float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float alpha0); -float DivProjP_2D(float *U, float *A, float *P1, float *P2, int dimX, int dimY, int dimZ, float lambda, float tau); -float UpdV_2D(float *V1, float *V2, float *P1, float *P2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float tau); -/*3D functions*/ -float DualP_3D(float *U, float *V1, float *V2, float *V3, float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ, float sigma); - -float newU(float *U, float *U_old, int dimX, int dimY, int dimZ); -float copyIm(float *A, float *U, int dimX, int dimY, int dimZ); - void mexFunction( int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) @@ -183,171 +184,3 @@ void mexFunction( // } /*end of iterations*/ // } } - -/*Calculating dual variable P (using forward differences)*/ -float DualP_2D(float *U, float *V1, float *V2, float *P1, float *P2, int dimX, int dimY, int dimZ, float sigma) -{ - int i,j; -#pragma omp parallel for shared(U,V1,V2,P1,P2) private(i,j) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - /* symmetric boundary conditions (Neuman) */ - if (i == dimX-1) P1[i*dimY + (j)] = P1[i*dimY + (j)] + sigma*((U[(i-1)*dimY + (j)] - U[i*dimY + (j)]) - V1[i*dimY + (j)]); - else P1[i*dimY + (j)] = P1[i*dimY + (j)] + sigma*((U[(i + 1)*dimY + (j)] - U[i*dimY + (j)]) - V1[i*dimY + (j)]); - if (j == dimY-1) P2[i*dimY + (j)] = P2[i*dimY + (j)] + sigma*((U[(i)*dimY + (j-1)] - U[i*dimY + (j)]) - V2[i*dimY + (j)]); - else P2[i*dimY + (j)] = P2[i*dimY + (j)] + sigma*((U[(i)*dimY + (j+1)] - U[i*dimY + (j)]) - V2[i*dimY + (j)]); - }} - return 1; -} -/*Projection onto convex set for P*/ -float ProjP_2D(float *P1, float *P2, int dimX, int dimY, int dimZ, float alpha1) -{ - float grad_magn; - int i,j; -#pragma omp parallel for shared(P1,P2) private(i,j,grad_magn) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - grad_magn = sqrt(pow(P1[i*dimY + (j)],2) + pow(P2[i*dimY + (j)],2)); - grad_magn = grad_magn/alpha1; - if (grad_magn > 1.0) { - P1[i*dimY + (j)] = P1[i*dimY + (j)]/grad_magn; - P2[i*dimY + (j)] = P2[i*dimY + (j)]/grad_magn; - } - }} - return 1; -} -/*Calculating dual variable Q (using forward differences)*/ -float DualQ_2D(float *V1, float *V2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float sigma) -{ - int i,j; - float q1, q2, q11, q22; -#pragma omp parallel for shared(Q1,Q2,Q3,V1,V2) private(i,j,q1,q2,q11,q22) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - /* symmetric boundary conditions (Neuman) */ - if (i == dimX-1) - { q1 = (V1[(i-1)*dimY + (j)] - V1[i*dimY + (j)]); - q11 = (V2[(i-1)*dimY + (j)] - V2[i*dimY + (j)]); - } - else { - q1 = (V1[(i+1)*dimY + (j)] - V1[i*dimY + (j)]); - q11 = (V2[(i+1)*dimY + (j)] - V2[i*dimY + (j)]); - } - if (j == dimY-1) { - q2 = (V2[(i)*dimY + (j-1)] - V2[i*dimY + (j)]); - q22 = (V1[(i)*dimY + (j-1)] - V1[i*dimY + (j)]); - } - else { - q2 = (V2[(i)*dimY + (j+1)] - V2[i*dimY + (j)]); - q22 = (V1[(i)*dimY + (j+1)] - V1[i*dimY + (j)]); - } - Q1[i*dimY + (j)] = Q1[i*dimY + (j)] + sigma*(q1); - Q2[i*dimY + (j)] = Q2[i*dimY + (j)] + sigma*(q2); - Q3[i*dimY + (j)] = Q3[i*dimY + (j)] + sigma*(0.5f*(q11 + q22)); - }} - return 1; -} - -float ProjQ_2D(float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float alpha0) -{ - float grad_magn; - int i,j; -#pragma omp parallel for shared(Q1,Q2,Q3) private(i,j,grad_magn) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - grad_magn = sqrt(pow(Q1[i*dimY + (j)],2) + pow(Q2[i*dimY + (j)],2) + 2*pow(Q3[i*dimY + (j)],2)); - grad_magn = grad_magn/alpha0; - if (grad_magn > 1.0) { - Q1[i*dimY + (j)] = Q1[i*dimY + (j)]/grad_magn; - Q2[i*dimY + (j)] = Q2[i*dimY + (j)]/grad_magn; - Q3[i*dimY + (j)] = Q3[i*dimY + (j)]/grad_magn; - } - }} - return 1; -} -/* Divergence and projection for P*/ -float DivProjP_2D(float *U, float *A, float *P1, float *P2, int dimX, int dimY, int dimZ, float lambda, float tau) -{ - int i,j; - float P_v1, P_v2, div; -#pragma omp parallel for shared(U,A,P1,P2) private(i,j,P_v1,P_v2,div) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - if (i == 0) P_v1 = (P1[i*dimY + (j)]); - else P_v1 = (P1[i*dimY + (j)] - P1[(i-1)*dimY + (j)]); - if (j == 0) P_v2 = (P2[i*dimY + (j)]); - else P_v2 = (P2[i*dimY + (j)] - P2[(i)*dimY + (j-1)]); - div = P_v1 + P_v2; - U[i*dimY + (j)] = (lambda*(U[i*dimY + (j)] + tau*div) + tau*A[i*dimY + (j)])/(lambda + tau); - }} - return *U; -} -/*get updated solution U*/ -float newU(float *U, float *U_old, int dimX, int dimY, int dimZ) -{ - int i; -#pragma omp parallel for shared(U,U_old) private(i) - for(i=0; i<dimX*dimY*dimZ; i++) U[i] = 2*U[i] - U_old[i]; - return *U; -} - -/*get update for V*/ -float UpdV_2D(float *V1, float *V2, float *P1, float *P2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float tau) -{ - int i,j; - float q1, q11, q2, q22, div1, div2; -#pragma omp parallel for shared(V1,V2,P1,P2,Q1,Q2,Q3) private(i,j, q1, q11, q2, q22, div1, div2) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - /* symmetric boundary conditions (Neuman) */ - if (i == 0) { - q1 = (Q1[i*dimY + (j)]); - q11 = (Q3[i*dimY + (j)]); - } - else { - q1 = (Q1[i*dimY + (j)] - Q1[(i-1)*dimY + (j)]); - q11 = (Q3[i*dimY + (j)] - Q3[(i-1)*dimY + (j)]); - } - if (j == 0) { - q2 = (Q2[i*dimY + (j)]); - q22 = (Q3[i*dimY + (j)]); - } - else { - q2 = (Q2[i*dimY + (j)] - Q2[(i)*dimY + (j-1)]); - q22 = (Q3[i*dimY + (j)] - Q3[(i)*dimY + (j-1)]); - } - div1 = q1 + q22; - div2 = q2 + q11; - V1[i*dimY + (j)] = V1[i*dimY + (j)] + tau*(P1[i*dimY + (j)] + div1); - V2[i*dimY + (j)] = V2[i*dimY + (j)] + tau*(P2[i*dimY + (j)] + div2); - }} - return 1; -} -/* Copy Image */ -float copyIm(float *A, float *U, int dimX, int dimY, int dimZ) -{ - int j; -#pragma omp parallel for shared(A, U) private(j) - for(j=0; j<dimX*dimY*dimZ; j++) U[j] = A[j]; - return *U; -} -/*********************3D *********************/ - -/*Calculating dual variable P (using forward differences)*/ -float DualP_3D(float *U, float *V1, float *V2, float *V3, float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ, float sigma) -{ - int i,j,k; -#pragma omp parallel for shared(U,V1,V2,V3,P1,P2,P3) private(i,j,k) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - for(k=0; k<dimZ; k++) { - /* symmetric boundary conditions (Neuman) */ - if (i == dimX-1) P1[dimX*dimY*k + i*dimY + (j)] = P1[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*k + (i-1)*dimY + (j)] - U[dimX*dimY*k + i*dimY + (j)]) - V1[dimX*dimY*k + i*dimY + (j)]); - else P1[dimX*dimY*k + i*dimY + (j)] = P1[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*k + (i + 1)*dimY + (j)] - U[dimX*dimY*k + i*dimY + (j)]) - V1[dimX*dimY*k + i*dimY + (j)]); - if (j == dimY-1) P2[dimX*dimY*k + i*dimY + (j)] = P2[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*k + (i)*dimY + (j-1)] - U[dimX*dimY*k + i*dimY + (j)]) - V2[dimX*dimY*k + i*dimY + (j)]); - else P2[dimX*dimY*k + i*dimY + (j)] = P2[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*k + (i)*dimY + (j+1)] - U[dimX*dimY*k + i*dimY + (j)]) - V2[dimX*dimY*k + i*dimY + (j)]); - if (k == dimZ-1) P3[dimX*dimY*k + i*dimY + (j)] = P3[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*(k-1) + (i)*dimY + (j)] - U[dimX*dimY*k + i*dimY + (j)]) - V3[dimX*dimY*k + i*dimY + (j)]); - else P3[dimX*dimY*k + i*dimY + (j)] = P3[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*(k+1) + (i)*dimY + (j)] - U[dimX*dimY*k + i*dimY + (j)]) - V3[dimX*dimY*k + i*dimY + (j)]); - }}} - return 1; -}
\ No newline at end of file diff --git a/main_func/regularizers_CPU/TGV_PD_core.c b/main_func/regularizers_CPU/TGV_PD_core.c new file mode 100644 index 0000000..4c0427c --- /dev/null +++ b/main_func/regularizers_CPU/TGV_PD_core.c @@ -0,0 +1,217 @@ +/* +This work is part of the Core Imaging Library developed by +Visual Analytics and Imaging System Group of the Science Technology +Facilities Council, STFC + +Copyright 2017 Daniil Kazanteev +Copyright 2017 Srikanth Nagella, Edoardo Pasca + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +*/ + +#include "TGV_PD_core.h" + +/* C-OMP implementation of Primal-Dual denoising method for + * Total Generilized Variation (TGV)-L2 model (2D case only) + * + * Input Parameters: + * 1. Noisy image/volume (2D) + * 2. lambda - regularization parameter + * 3. parameter to control first-order term (alpha1) + * 4. parameter to control the second-order term (alpha0) + * 5. Number of CP iterations + * + * Output: + * Filtered/regularized image + * + * Example: + * figure; + * Im = double(imread('lena_gray_256.tif'))/255; % loading image + * u0 = Im + .03*randn(size(Im)); % adding noise + * tic; u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); toc; + * + * to compile with OMP support: mex TGV_PD.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" + * References: + * K. Bredies "Total Generalized Variation" + * + * 28.11.16/Harwell + */ + + + + +/*Calculating dual variable P (using forward differences)*/ +float DualP_2D(float *U, float *V1, float *V2, float *P1, float *P2, int dimX, int dimY, int dimZ, float sigma) +{ + int i,j; +#pragma omp parallel for shared(U,V1,V2,P1,P2) private(i,j) + for(i=0; i<dimX; i++) { + for(j=0; j<dimY; j++) { + /* symmetric boundary conditions (Neuman) */ + if (i == dimX-1) P1[i*dimY + (j)] = P1[i*dimY + (j)] + sigma*((U[(i-1)*dimY + (j)] - U[i*dimY + (j)]) - V1[i*dimY + (j)]); + else P1[i*dimY + (j)] = P1[i*dimY + (j)] + sigma*((U[(i + 1)*dimY + (j)] - U[i*dimY + (j)]) - V1[i*dimY + (j)]); + if (j == dimY-1) P2[i*dimY + (j)] = P2[i*dimY + (j)] + sigma*((U[(i)*dimY + (j-1)] - U[i*dimY + (j)]) - V2[i*dimY + (j)]); + else P2[i*dimY + (j)] = P2[i*dimY + (j)] + sigma*((U[(i)*dimY + (j+1)] - U[i*dimY + (j)]) - V2[i*dimY + (j)]); + }} + return 1; +} +/*Projection onto convex set for P*/ +float ProjP_2D(float *P1, float *P2, int dimX, int dimY, int dimZ, float alpha1) +{ + float grad_magn; + int i,j; +#pragma omp parallel for shared(P1,P2) private(i,j,grad_magn) + for(i=0; i<dimX; i++) { + for(j=0; j<dimY; j++) { + grad_magn = sqrt(pow(P1[i*dimY + (j)],2) + pow(P2[i*dimY + (j)],2)); + grad_magn = grad_magn/alpha1; + if (grad_magn > 1.0) { + P1[i*dimY + (j)] = P1[i*dimY + (j)]/grad_magn; + P2[i*dimY + (j)] = P2[i*dimY + (j)]/grad_magn; + } + }} + return 1; +} +/*Calculating dual variable Q (using forward differences)*/ +float DualQ_2D(float *V1, float *V2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float sigma) +{ + int i,j; + float q1, q2, q11, q22; +#pragma omp parallel for shared(Q1,Q2,Q3,V1,V2) private(i,j,q1,q2,q11,q22) + for(i=0; i<dimX; i++) { + for(j=0; j<dimY; j++) { + /* symmetric boundary conditions (Neuman) */ + if (i == dimX-1) + { q1 = (V1[(i-1)*dimY + (j)] - V1[i*dimY + (j)]); + q11 = (V2[(i-1)*dimY + (j)] - V2[i*dimY + (j)]); + } + else { + q1 = (V1[(i+1)*dimY + (j)] - V1[i*dimY + (j)]); + q11 = (V2[(i+1)*dimY + (j)] - V2[i*dimY + (j)]); + } + if (j == dimY-1) { + q2 = (V2[(i)*dimY + (j-1)] - V2[i*dimY + (j)]); + q22 = (V1[(i)*dimY + (j-1)] - V1[i*dimY + (j)]); + } + else { + q2 = (V2[(i)*dimY + (j+1)] - V2[i*dimY + (j)]); + q22 = (V1[(i)*dimY + (j+1)] - V1[i*dimY + (j)]); + } + Q1[i*dimY + (j)] = Q1[i*dimY + (j)] + sigma*(q1); + Q2[i*dimY + (j)] = Q2[i*dimY + (j)] + sigma*(q2); + Q3[i*dimY + (j)] = Q3[i*dimY + (j)] + sigma*(0.5f*(q11 + q22)); + }} + return 1; +} + +float ProjQ_2D(float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float alpha0) +{ + float grad_magn; + int i,j; +#pragma omp parallel for shared(Q1,Q2,Q3) private(i,j,grad_magn) + for(i=0; i<dimX; i++) { + for(j=0; j<dimY; j++) { + grad_magn = sqrt(pow(Q1[i*dimY + (j)],2) + pow(Q2[i*dimY + (j)],2) + 2*pow(Q3[i*dimY + (j)],2)); + grad_magn = grad_magn/alpha0; + if (grad_magn > 1.0) { + Q1[i*dimY + (j)] = Q1[i*dimY + (j)]/grad_magn; + Q2[i*dimY + (j)] = Q2[i*dimY + (j)]/grad_magn; + Q3[i*dimY + (j)] = Q3[i*dimY + (j)]/grad_magn; + } + }} + return 1; +} +/* Divergence and projection for P*/ +float DivProjP_2D(float *U, float *A, float *P1, float *P2, int dimX, int dimY, int dimZ, float lambda, float tau) +{ + int i,j; + float P_v1, P_v2, div; +#pragma omp parallel for shared(U,A,P1,P2) private(i,j,P_v1,P_v2,div) + for(i=0; i<dimX; i++) { + for(j=0; j<dimY; j++) { + if (i == 0) P_v1 = (P1[i*dimY + (j)]); + else P_v1 = (P1[i*dimY + (j)] - P1[(i-1)*dimY + (j)]); + if (j == 0) P_v2 = (P2[i*dimY + (j)]); + else P_v2 = (P2[i*dimY + (j)] - P2[(i)*dimY + (j-1)]); + div = P_v1 + P_v2; + U[i*dimY + (j)] = (lambda*(U[i*dimY + (j)] + tau*div) + tau*A[i*dimY + (j)])/(lambda + tau); + }} + return *U; +} +/*get updated solution U*/ +float newU(float *U, float *U_old, int dimX, int dimY, int dimZ) +{ + int i; +#pragma omp parallel for shared(U,U_old) private(i) + for(i=0; i<dimX*dimY*dimZ; i++) U[i] = 2*U[i] - U_old[i]; + return *U; +} + +/*get update for V*/ +float UpdV_2D(float *V1, float *V2, float *P1, float *P2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float tau) +{ + int i,j; + float q1, q11, q2, q22, div1, div2; +#pragma omp parallel for shared(V1,V2,P1,P2,Q1,Q2,Q3) private(i,j, q1, q11, q2, q22, div1, div2) + for(i=0; i<dimX; i++) { + for(j=0; j<dimY; j++) { + /* symmetric boundary conditions (Neuman) */ + if (i == 0) { + q1 = (Q1[i*dimY + (j)]); + q11 = (Q3[i*dimY + (j)]); + } + else { + q1 = (Q1[i*dimY + (j)] - Q1[(i-1)*dimY + (j)]); + q11 = (Q3[i*dimY + (j)] - Q3[(i-1)*dimY + (j)]); + } + if (j == 0) { + q2 = (Q2[i*dimY + (j)]); + q22 = (Q3[i*dimY + (j)]); + } + else { + q2 = (Q2[i*dimY + (j)] - Q2[(i)*dimY + (j-1)]); + q22 = (Q3[i*dimY + (j)] - Q3[(i)*dimY + (j-1)]); + } + div1 = q1 + q22; + div2 = q2 + q11; + V1[i*dimY + (j)] = V1[i*dimY + (j)] + tau*(P1[i*dimY + (j)] + div1); + V2[i*dimY + (j)] = V2[i*dimY + (j)] + tau*(P2[i*dimY + (j)] + div2); + }} + return 1; +} +/* Copy Image */ +float copyIm(float *A, float *U, int dimX, int dimY, int dimZ) +{ + int j; +#pragma omp parallel for shared(A, U) private(j) + for(j=0; j<dimX*dimY*dimZ; j++) U[j] = A[j]; + return *U; +} +/*********************3D *********************/ + +/*Calculating dual variable P (using forward differences)*/ +float DualP_3D(float *U, float *V1, float *V2, float *V3, float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ, float sigma) +{ + int i,j,k; +#pragma omp parallel for shared(U,V1,V2,V3,P1,P2,P3) private(i,j,k) + for(i=0; i<dimX; i++) { + for(j=0; j<dimY; j++) { + for(k=0; k<dimZ; k++) { + /* symmetric boundary conditions (Neuman) */ + if (i == dimX-1) P1[dimX*dimY*k + i*dimY + (j)] = P1[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*k + (i-1)*dimY + (j)] - U[dimX*dimY*k + i*dimY + (j)]) - V1[dimX*dimY*k + i*dimY + (j)]); + else P1[dimX*dimY*k + i*dimY + (j)] = P1[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*k + (i + 1)*dimY + (j)] - U[dimX*dimY*k + i*dimY + (j)]) - V1[dimX*dimY*k + i*dimY + (j)]); + if (j == dimY-1) P2[dimX*dimY*k + i*dimY + (j)] = P2[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*k + (i)*dimY + (j-1)] - U[dimX*dimY*k + i*dimY + (j)]) - V2[dimX*dimY*k + i*dimY + (j)]); + else P2[dimX*dimY*k + i*dimY + (j)] = P2[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*k + (i)*dimY + (j+1)] - U[dimX*dimY*k + i*dimY + (j)]) - V2[dimX*dimY*k + i*dimY + (j)]); + if (k == dimZ-1) P3[dimX*dimY*k + i*dimY + (j)] = P3[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*(k-1) + (i)*dimY + (j)] - U[dimX*dimY*k + i*dimY + (j)]) - V3[dimX*dimY*k + i*dimY + (j)]); + else P3[dimX*dimY*k + i*dimY + (j)] = P3[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*(k+1) + (i)*dimY + (j)] - U[dimX*dimY*k + i*dimY + (j)]) - V3[dimX*dimY*k + i*dimY + (j)]); + }}} + return 1; +}
\ No newline at end of file diff --git a/main_func/regularizers_CPU/TGV_PD_core.h b/main_func/regularizers_CPU/TGV_PD_core.h new file mode 100644 index 0000000..e25ae68 --- /dev/null +++ b/main_func/regularizers_CPU/TGV_PD_core.h @@ -0,0 +1,64 @@ +/* +This work is part of the Core Imaging Library developed by +Visual Analytics and Imaging System Group of the Science Technology +Facilities Council, STFC + +Copyright 2017 Daniil Kazanteev +Copyright 2017 Srikanth Nagella, Edoardo Pasca + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +*/ + +#include <matrix.h> +#include <math.h> +#include <stdlib.h> +#include <memory.h> +#include <stdio.h> +#include "omp.h" + +/* C-OMP implementation of Primal-Dual denoising method for +* Total Generilized Variation (TGV)-L2 model (2D case only) +* +* Input Parameters: +* 1. Noisy image/volume (2D) +* 2. lambda - regularization parameter +* 3. parameter to control first-order term (alpha1) +* 4. parameter to control the second-order term (alpha0) +* 5. Number of CP iterations +* +* Output: +* Filtered/regularized image +* +* Example: +* figure; +* Im = double(imread('lena_gray_256.tif'))/255; % loading image +* u0 = Im + .03*randn(size(Im)); % adding noise +* tic; u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); toc; +* +* to compile with OMP support: mex TGV_PD.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" +* References: +* K. Bredies "Total Generalized Variation" +* +* 28.11.16/Harwell +*/ + +/* 2D functions */ +float DualP_2D(float *U, float *V1, float *V2, float *P1, float *P2, int dimX, int dimY, int dimZ, float sigma); +float ProjP_2D(float *P1, float *P2, int dimX, int dimY, int dimZ, float alpha1); +float DualQ_2D(float *V1, float *V2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float sigma); +float ProjQ_2D(float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float alpha0); +float DivProjP_2D(float *U, float *A, float *P1, float *P2, int dimX, int dimY, int dimZ, float lambda, float tau); +float UpdV_2D(float *V1, float *V2, float *P1, float *P2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float tau); +/*3D functions*/ +float DualP_3D(float *U, float *V1, float *V2, float *V3, float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ, float sigma); + +float newU(float *U, float *U_old, int dimX, int dimY, int dimZ); +float copyIm(float *A, float *U, int dimX, int dimY, int dimZ); |