summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorDaniil Kazantsev <dkazanc@hotmail.com>2018-04-03 22:23:56 +0100
committerDaniil Kazantsev <dkazanc@hotmail.com>2018-04-03 22:23:56 +0100
commite4bd8ffc01807967a3553bce96cc5d04e09325a9 (patch)
tree2d52e23ce9932d73c1d5e3e590389ac39005636d
parentda6f9166f87d1e4860fe4b4535df130da7438196 (diff)
downloadregularization-e4bd8ffc01807967a3553bce96cc5d04e09325a9.tar.gz
regularization-e4bd8ffc01807967a3553bce96cc5d04e09325a9.tar.bz2
regularization-e4bd8ffc01807967a3553bce96cc5d04e09325a9.tar.xz
regularization-e4bd8ffc01807967a3553bce96cc5d04e09325a9.zip
readme update3
-rw-r--r--Readme.md14
1 files changed, 7 insertions, 7 deletions
diff --git a/Readme.md b/Readme.md
index ef21ede..c5dba09 100644
--- a/Readme.md
+++ b/Readme.md
@@ -8,13 +8,13 @@ The core modules are written in C-OMP and CUDA languages and wrappers for Matlab
* MATLAB (www.mathworks.com/products/matlab/)
* Python (ver. 3.5); Cython
- * C/C++ compilers
- * nvcc compilers
+ * C compilers
+ * nvcc (CUDA SDK) compilers
## Package modules (regularisers):
- - 1. Rudin-Osher-Fatemi Total Variation (explicit PDE minimisation scheme) [2D/3D GPU/CPU] (1)
- - 2. Fast-Gradient-Projection Total Variation [2D/3D GPU/CPU] (2)
+1. * Rudin-Osher-Fatemi Total Variation (explicit PDE minimisation scheme) [2D/3D GPU/CPU] (1)
+2. * Fast-Gradient-Projection Total Variation [2D/3D GPU/CPU] (2)
### Installation:
@@ -25,9 +25,9 @@ The core modules are written in C-OMP and CUDA languages and wrappers for Matlab
#### Matlab
### References:
-- 1. Rudin, L.I., Osher, S. and Fatemi, E., 1992. Nonlinear total variation based noise removal algorithms. Physica D: nonlinear phenomena, 60(1-4), pp.259-268.
-- 2. Beck, A. and Teboulle, M., 2009. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Transactions on Image Processing, 18(11), pp.2419-2434.
-- 3. Lysaker, M., Lundervold, A. and Tai, X.C., 2003. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Transactions on image processing, 12(12), pp.1579-1590.
+1. * Rudin, L.I., Osher, S. and Fatemi, E., 1992. Nonlinear total variation based noise removal algorithms. Physica D: nonlinear phenomena, 60(1-4), pp.259-268.
+2. * Beck, A. and Teboulle, M., 2009. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Transactions on Image Processing, 18(11), pp.2419-2434.
+3. * Lysaker, M., Lundervold, A. and Tai, X.C., 2003. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Transactions on image processing, 12(12), pp.1579-1590.
### License:
[Apache License, Version 2.0](http://www.apache.org/licenses/LICENSE-2.0)