diff options
| author | Daniil Kazantsev <dkazanc@hotmail.com> | 2019-03-12 22:14:27 +0000 | 
|---|---|---|
| committer | Daniil Kazantsev <dkazanc@hotmail.com> | 2019-03-12 22:14:27 +0000 | 
| commit | 1ac06b5ce11b247930489b7aa3afa59215e43c91 (patch) | |
| tree | 8a5dc7649b2fdeda67c8df9ff2ea2880596d9e67 | |
| parent | 420e71a0dcb42e91e1aa93306c2e2f688b309620 (diff) | |
| download | regularization-1ac06b5ce11b247930489b7aa3afa59215e43c91.tar.gz regularization-1ac06b5ce11b247930489b7aa3afa59215e43c91.tar.bz2 regularization-1ac06b5ce11b247930489b7aa3afa59215e43c91.tar.xz regularization-1ac06b5ce11b247930489b7aa3afa59215e43c91.zip  | |
readme updates and demos
| -rw-r--r-- | Readme.md | 31 | ||||
| -rwxr-xr-x[-rw-r--r--] | build/run.sh | 23 | ||||
| -rw-r--r-- | demos/SoftwareX_supp/Demo_RealData_Recon_SX.py | 18 | ||||
| -rw-r--r-- | demos/demoMatlab_3Ddenoise.m | 16 | ||||
| -rwxr-xr-x | run.sh | 26 | ||||
| -rw-r--r-- | src/Matlab/mex_compile/compileGPU_mex.m | 5 | ||||
| -rw-r--r-- | src/Matlab/mex_compile/regularisers_CPU/PatchSelect.c | 4 | 
7 files changed, 53 insertions, 70 deletions
@@ -1,12 +1,11 @@  # CCPi-Regularisation Toolkit (CCPi-RGL) - -  | Master | Development | Anaconda binaries |  |--------|-------------|-------------------|  | [](https://anvil.softeng-support.ac.uk/jenkins/job/CILsingle/job/CCPi-Regularisation-Toolkit/) | [](https://anvil.softeng-support.ac.uk/jenkins/job/CILsingle/job/CCPi-Regularisation-Toolkit-dev/) |   [ ](https://anaconda.org/ccpi/ccpi-regulariser) | -**Iterative image reconstruction (IIR) methods normally require regularisation to stabilise the convergence and make the reconstruction problem (inverse problem) more well-posed. The CCPi-RGL software provides 2D/3D and multi-channel regularisation strategies to ensure better performance of IIR methods. The regularisation modules are well-suited to use with [splitting algorithms](https://en.wikipedia.org/wiki/Augmented_Lagrangian_method#Alternating_direction_method_of_multipliers), such as, [ADMM](https://github.com/dkazanc/ADMM-tomo) and [FISTA](https://github.com/dkazanc/FISTA-tomo). Furthermore, the toolkit can be used for simpler inversion tasks, such as, image denoising, inpaiting, deconvolution etc. The core modules are written in C-OMP and CUDA languages and wrappers for Matlab and Python are provided.**  +**Iterative image reconstruction (IIR) methods frequently require regularisation to ensure convergence and make inverse problem well-posed. The CCPi-RGL toolkit provides a set of 2D/3D regularisation strategies to guarantee a better performance of IIR methods (higher SNR and resolution). The regularisation modules for scalar and vectorial datasets are based on the [proximal operator](https://en.wikipedia.org/wiki/Proximal_operator) framework and can be used with [proximal splitting algorithms](https://en.wikipedia.org/wiki/Proximal_gradient_method), such as PDHG, Douglas-Rachford, ADMM, FISTA and [others](https://arxiv.org/abs/0912.3522). While the main target for CCPi-RGL is [tomographic image reconstruction](https://github.com/dkazanc/TomoRec), the toolkit can be used for image denoising and inpaiting problems. The core modules are written in C-OMP and CUDA languages and wrappers for Matlab and Python are provided.**  +  <div align="center">    <img src="demos/images/probl.png" height="225"><br>   @@ -20,7 +19,7 @@    <img src="demos/images/TV_vs_NLTV.jpg" height="300"><br>    </div> -## Prerequisites:  +## Prerequisites:   * [MATLAB](www.mathworks.com/products/matlab/) OR   * Python (tested ver. 3.5/2.7); Cython @@ -29,7 +28,7 @@  ## Package modules: -### Single-channel (denoising): +### Single-channel (scalar):  1. Rudin-Osher-Fatemi (ROF) Total Variation (explicit PDE minimisation scheme) **2D/3D CPU/GPU** (Ref. *1*)  2. Fast-Gradient-Projection (FGP) Total Variation **2D/3D CPU/GPU** (Ref. *2*)  3. Split-Bregman (SB) Total Variation **2D/3D CPU/GPU** (Ref. *5*) @@ -39,7 +38,7 @@  7. A joint ROF-LLT (Lysaker-Lundervold-Tai) model for higher-order regularisation **2D/3D CPU/GPU** (Ref. *10,11*)  8. Nonlocal Total Variation regularisation (GS fixed point iteration) **2D CPU/GPU** (Ref. *12*) -### Multi-channel (denoising): +### Multi-channel (vectorial):  1. Fast-Gradient-Projection (FGP) Directional Total Variation **2D/3D CPU/GPU** (Ref. *3,4,2*)  2. Total Nuclear Variation (TNV) penalty **2D+channels CPU** (Ref. *7*) @@ -68,10 +67,10 @@ build/jenkins-build.sh  this will install `conda build` environment and compiles C/C++ and Python wrappers and performs basic tests for environment with python 3.6 and numpy 1.12.  ### CMake -If you want to build directly using cmake, install CMake (v.>=3) to configure it. Additionally you will need a C compiler, `make` (on linux) and CUDA SDK where available. The toolkit may be used directly from C/C++ as it is compiled as a shared library (check-out the include files in `Core` for this)  -1. Clone this repository to a directory, i.e. `CCPi-Regularisation-Toolkit`,  -2. create a build directory.  -3. Issue `cmake` to configure (or `cmake-gui`, or `ccmake`, or `cmake3`). Use additional flags to fine tune the configuration.  +If you want to build directly using cmake, install CMake (v.>=3) to configure it. Additionally you will need a C compiler, `make` (on linux) and CUDA SDK where available. The toolkit may be used directly from C/C++ as it is compiled as a shared library (check-out the include files in `Core` for this) +1. Clone this repository to a directory, i.e. `CCPi-Regularisation-Toolkit`, +2. create a build directory. +3. Issue `cmake` to configure (or `cmake-gui`, or `ccmake`, or `cmake3`). Use additional flags to fine tune the configuration.  Flags used during configuration @@ -119,7 +118,7 @@ conda install ccpi-regulariser -c ccpi -c conda-forge  #### Python build -If passed `CONDA_BUILD=ON` the software will be installed by issuing `python setup.py install` which will install in the system python (or whichever other python it's been picked up by CMake at configuration time.)  +If passed `CONDA_BUILD=ON` the software will be installed by issuing `python setup.py install` which will install in the system python (or whichever other python it's been picked up by CMake at configuration time.)  If passed `CONDA_BUILD=OFF` the software will be installed in the directory pointed by `${PYTHON_DEST_DIR}` which defaults to `${CMAKE_INSTALL_PREFIX}/python`. Therefore this directory should be added to the `PYTHONPATH`.  If Python is not picked by CMake you can provide the additional flag to CMake `-DPYTHON_EXECUTABLE=/path/to/python/executable`. @@ -128,12 +127,12 @@ If Python is not picked by CMake you can provide the additional flag to CMake `-  Matlab wrapper will install in the `${MATLAB_DEST_DIR}` directory, which defaults to `${CMAKE_INSTALL_PREFIX}/matlab` -If Matlab is not picked by CMake, you could add `-DMatlab_ROOT_DIR=<Matlab directory>`.  +If Matlab is not picked by CMake, you could add `-DMatlab_ROOT_DIR=<Matlab directory>`.  #### Linux  Because you've installed the modules in `<your favourite install directory>` you need to instruct Matlab to look in those directories: -```bash  +```bash  PATH="/path/to/mex/:$PATH" LD_LIBRARY_PATH="/path/to/library:$LD_LIBRARY_PATH" matlab  ``` @@ -147,8 +146,8 @@ addpath(/path/to/library);  #### Legacy Matlab installation (partly supported, please use Cmake)  ``` -	 -	cd /Wrappers/Matlab/mex_compile + +	cd src/Matlab/mex_compile  	compileCPU_mex.m % to compile CPU modules  	compileGPU_mex.m % to compile GPU modules (see instructions in the file)  ``` @@ -179,7 +178,7 @@ addpath(/path/to/library);  12. [Abderrahim E., Lezoray O. and Bougleux S. 2008. Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing." IEEE Trans. Image Processing 17(7), pp. 1047-1060.](https://ieeexplore.ieee.org/document/4526700)  ### References to Software: -* If software is used, please refer to [11], however, the supporting publication is in progress.  +* If software is used, please refer to [11], however, the supporting publication is in progress.  ### Applications: diff --git a/build/run.sh b/build/run.sh index d450299..f2869e5 100644..100755 --- a/build/run.sh +++ b/build/run.sh @@ -5,20 +5,23 @@ rm -r build_proj  # pip install cython  mkdir build_proj  cd build_proj/ -make clean +#make clean  export CIL_VERSION=19.03  # install Python modules without CUDA  cmake ../ -DBUILD_PYTHON_WRAPPER=ON -DBUILD_MATLAB_WRAPPER=OFF -DBUILD_CUDA=OFF -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=./install  # install Python modules with CUDA  # cmake ../ -DBUILD_PYTHON_WRAPPER=ON -DBUILD_MATLAB_WRAPPER=OFF -DBUILD_CUDA=ON -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=./install +# install Matlab modules without CUDA +#cmake ../ -DBUILD_PYTHON_WRAPPER=OFF -DMatlab_ROOT_DIR=/dls_sw/apps/matlab/r2014a/ -DBUILD_MATLAB_WRAPPER=ON -DBUILD_CUDA=OFF -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=./install  # install Matlab modules with CUDA -# cmake ../ -DBUILD_PYTHON_WRAPPER=OFF -DMatlab_ROOT_DIR=/dls_sw/apps/matlab/r2014a/ -DBUILD_MATLAB_WRAPPER=ON -DBUILD_CUDA=ON -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=./install -make install -#### Python +#cmake ../ -DBUILD_PYTHON_WRAPPER=OFF -DMatlab_ROOT_DIR=/dls_sw/apps/matlab/r2014a/ -DBUILD_MATLAB_WRAPPER=ON -DBUILD_CUDA=ON -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=./install +############### Python(linux)###############   #cp install/lib/libcilreg.so install/python/ccpi/filters -cd install/python -export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:../lib -spyder -##### one can also run Matlab in Linux as: -#PATH="/path/to/mex/:$PATH" LD_LIBRARY_PATH="/path/to/library:$LD_LIBRARY_PATH" matlab -#PATH="/home/kjy41806/Documents/SOFT/CCPi-Regularisation-Toolkit/build/install/matlab/:$PATH" LD_LIBRARY_PATH="/home/kjy41806/Documents/SOFT/CCPi-Regularisation-Toolkit/build/install/lib:$LD_LIBRARY_PATH" matlab +# cd install/python +# export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:../lib +# spyder +############### Matlab(linux)############### +### export LD_PRELOAD=/home/algol/anaconda3/lib/libstdc++.so.6  # if there is libstdc error in matlab +# PATH="/path/to/mex/:$PATH" LD_LIBRARY_PATH="/path/to/library:$LD_LIBRARY_PATH" matlab +# PATH="/home/kjy41806/Documents/SOFT/CCPi-Regularisation-Toolkit/build_proj/install/matlab/:$PATH" LD_LIBRARY_PATH="/home/kjy41806/Documents/SOFT/CCPi-Regularisation-Toolkit/build_proj/install/lib:$LD_LIBRARY_PATH" matlab +# PATH="/home/algol/Documents/DEV/CCPi-Regularisation-Toolkit/build_proj/install/matlab/:$PATH" LD_LIBRARY_PATH="/home/algol/Documents/DEV/CCPi-Regularisation-Toolkit/build_proj/install/lib:$LD_LIBRARY_PATH" /home/algol/SOFT/MATLAB9/bin/matlab diff --git a/demos/SoftwareX_supp/Demo_RealData_Recon_SX.py b/demos/SoftwareX_supp/Demo_RealData_Recon_SX.py index ca8f1d2..5991989 100644 --- a/demos/SoftwareX_supp/Demo_RealData_Recon_SX.py +++ b/demos/SoftwareX_supp/Demo_RealData_Recon_SX.py @@ -1,15 +1,15 @@  #!/usr/bin/env python3  # -*- coding: utf-8 -*-  """ -This demo scripts support the following publication:  -"CCPi-Regularisation Toolkit for computed tomographic image reconstruction with  +This demo scripts support the following publication: +"CCPi-Regularisation Toolkit for computed tomographic image reconstruction with  proximal splitting algorithms" by Daniil Kazantsev, Edoardo Pasca, Martin J. Turner,   Philip J. Withers; Software X, 2019  ____________________________________________________________________________  * Reads real tomographic data (stored at Zenodo)  --- https://doi.org/10.5281/zenodo.2578893  * Reconstructs using TomoRec software -* Saves reconstructed images  +* Saves reconstructed images  ____________________________________________________________________________  >>>>> Dependencies: <<<<<  1. ASTRA toolbox: conda install -c astra-toolbox astra-toolbox @@ -40,7 +40,7 @@ data_norm = normaliser(dataRaw, flats, darks, log='log')  del dataRaw, darks, flats  intens_max = 2.3 -plt.figure()  +plt.figure()  plt.subplot(131)  plt.imshow(data_norm[:,150,:],vmin=0, vmax=intens_max)  plt.title('2D Projection (analytical)') @@ -72,7 +72,7 @@ FBPrec = RectoolsDIR.FBP(data_norm[0:100,:,det_y_crop])  sliceSel = 50  max_val = 0.003 -plt.figure()  +plt.figure()  plt.subplot(131)  plt.imshow(FBPrec[sliceSel,:,:],vmin=0, vmax=max_val, cmap="gray")  plt.title('FBP Reconstruction, axial view') @@ -108,7 +108,7 @@ RectoolsIR = RecToolsIR(DetectorsDimH =  np.size(det_y_crop),  # DetectorsDimH #                      DetectorsDimV = 100,  # DetectorsDimV # detector dimension (vertical) for 3D case only                      AnglesVec = angles_rad, # array of angles in radians                      ObjSize = N_size, # a scalar to define reconstructed object dimensions -                    datafidelity='LS',# data fidelity, choose LS, PWLS (wip), GH (wip), Student (wip) +                    datafidelity='LS',# data fidelity, choose LS, PWLS, GH (wip), Students t (wip)                      nonnegativity='ENABLE', # enable nonnegativity constraint (set to 'ENABLE')                      OS_number = None, # the number of subsets, NONE/(or > 1) ~ classical / ordered subsets                      tolerance = 0.0, # tolerance to stop inner (regularisation) iterations earlier @@ -124,7 +124,7 @@ RecADMM_reg_sbtv = RectoolsIR.ADMM(data_norm[0:100,:,det_y_crop],  sliceSel = 50  max_val = 0.003 -plt.figure()  +plt.figure()  plt.subplot(131)  plt.imshow(RecADMM_reg_sbtv[sliceSel,:,:],vmin=0, vmax=max_val, cmap="gray")  plt.title('3D ADMM-SB-TV Reconstruction, axial view') @@ -164,7 +164,7 @@ RecADMM_reg_rofllt = RectoolsIR.ADMM(data_norm[0:100,:,det_y_crop],  sliceSel = 50  max_val = 0.003 -plt.figure()  +plt.figure()  plt.subplot(131)  plt.imshow(RecADMM_reg_rofllt[sliceSel,:,:],vmin=0, vmax=max_val)  plt.title('3D ADMM-ROFLLT Reconstruction, axial view') @@ -202,7 +202,7 @@ RecADMM_reg_tgv = RectoolsIR.ADMM(data_norm[0:100,:,det_y_crop],  sliceSel = 50  max_val = 0.003 -plt.figure()  +plt.figure()  plt.subplot(131)  plt.imshow(RecADMM_reg_tgv[sliceSel,:,:],vmin=0, vmax=max_val)  plt.title('3D ADMM-TGV Reconstruction, axial view') diff --git a/demos/demoMatlab_3Ddenoise.m b/demos/demoMatlab_3Ddenoise.m index ec0fd88..6b21e86 100644 --- a/demos/demoMatlab_3Ddenoise.m +++ b/demos/demoMatlab_3Ddenoise.m @@ -18,9 +18,10 @@ Ideal3D(:,:,i) = Im;  end  vol3D(vol3D < 0) = 0;  figure; imshow(vol3D(:,:,7), [0 1]); title('Noisy image'); -lambda_reg = 0.03; % regularsation parameter for all methods +  %%  fprintf('Denoise a volume using the ROF-TV model (CPU) \n'); +lambda_reg = 0.03; % regularsation parameter for all methods  tau_rof = 0.0025; % time-marching constant   iter_rof = 300; % number of ROF iterations  epsil_tol =  0.0; % tolerance @@ -31,14 +32,17 @@ fprintf('%s %f \n', 'RMSE error for ROF is:', rmse_rof);  figure; imshow(u_rof(:,:,7), [0 1]); title('ROF-TV denoised volume (CPU)');  %%  % fprintf('Denoise a volume using the ROF-TV model (GPU) \n'); +% lambda_reg = 0.03; % regularsation parameter for all methods  % tau_rof = 0.0025; % time-marching constant   % iter_rof = 300; % number of ROF iterations -% tic; u_rofG = ROF_TV_GPU(single(vol3D), lambda_reg, iter_rof, tau_rof); toc; +% epsil_tol =  0.0; % tolerance +% tic; u_rofG = ROF_TV_GPU(single(vol3D), lambda_reg, iter_rof, tau_rof, epsil_tol); toc;  % rmse_rofG = (RMSE(Ideal3D(:),u_rofG(:)));  % fprintf('%s %f \n', 'RMSE error for ROF is:', rmse_rofG);  % figure; imshow(u_rofG(:,:,7), [0 1]); title('ROF-TV denoised volume (GPU)');  %%  fprintf('Denoise a volume using the FGP-TV model (CPU) \n'); +lambda_reg = 0.03; % regularsation parameter for all methods  iter_fgp = 300; % number of FGP iterations  epsil_tol =  0.0; % tolerance  tic; [u_fgp,infovec] = FGP_TV(single(vol3D), lambda_reg, iter_fgp, epsil_tol); toc;  @@ -47,9 +51,10 @@ rmse_fgp = (RMSE(Ideal3D(:),u_fgp(:)));  fprintf('%s %f \n', 'RMSE error for FGP-TV is:', rmse_fgp);  figure; imshow(u_fgp(:,:,7), [0 1]); title('FGP-TV denoised volume (CPU)');  %% -% fprintf('Denoise a volume using the FGP-TV model (GPU) \n'); +fprintf('Denoise a volume using the FGP-TV model (GPU) \n'); +% lambda_reg = 0.03; % regularsation parameter for all methods  % iter_fgp = 300; % number of FGP iterations -% epsil_tol =  1.0e-05; % tolerance +% epsil_tol =  0.0; % tolerance  % tic; u_fgpG = FGP_TV_GPU(single(vol3D), lambda_reg, iter_fgp, epsil_tol); toc;   % rmse_fgpG = (RMSE(Ideal3D(:),u_fgpG(:)));  % fprintf('%s %f \n', 'RMSE error for FGP-TV is:', rmse_fgpG); @@ -66,7 +71,7 @@ figure; imshow(u_sb(:,:,7), [0 1]); title('SB-TV denoised volume (CPU)');  %%  % fprintf('Denoise a volume using the SB-TV model (GPU) \n');  % iter_sb = 150; % number of SB iterations -% epsil_tol =  1.0e-05; % tolerance +% epsil_tol =  0.0; % tolerance  % tic; u_sbG = SB_TV_GPU(single(vol3D), lambda_reg, iter_sb, epsil_tol); toc;   % rmse_sbG = (RMSE(Ideal3D(:),u_sbG(:)));  % fprintf('%s %f \n', 'RMSE error for SB-TV is:', rmse_sbG); @@ -88,6 +93,7 @@ figure; imshow(u_rof_llt(:,:,7), [0 1]); title('ROF-LLT denoised volume (CPU)');  % lambda_LLT = lambda_reg*0.35; % LLT regularisation parameter  % iter_LLT = 300; % iterations   % tau_rof_llt = 0.0025; % time-marching constant  +% epsil_tol =  0.0; % tolerance  % tic; u_rof_llt_g = LLT_ROF_GPU(single(vol3D), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt, epsil_tol); toc;   % rmse_rof_llt = (RMSE(Ideal3D(:),u_rof_llt_g(:)));  % fprintf('%s %f \n', 'RMSE error for ROF-LLT is:', rmse_rof_llt); @@ -1,26 +0,0 @@ -#!/bin/bash   -echo "Building CCPi-regularisation Toolkit using CMake"   -rm -r build_proj -# Requires Cython, install it first:  -# pip install cython -mkdir build_proj -cd build_proj/ -#make clean -export CIL_VERSION=19.03 -# install Python modules without CUDA -# cmake ../ -DBUILD_PYTHON_WRAPPER=ON -DBUILD_MATLAB_WRAPPER=OFF -DBUILD_CUDA=OFF -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=./install -# install Python modules with CUDA -# cmake ../ -DBUILD_PYTHON_WRAPPER=ON -DBUILD_MATLAB_WRAPPER=OFF -DBUILD_CUDA=ON -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=./install -# install Matlab modules without CUDA -#cmake ../ -DBUILD_PYTHON_WRAPPER=OFF -DMatlab_ROOT_DIR=/dls_sw/apps/matlab/r2014a/ -DBUILD_MATLAB_WRAPPER=ON -DBUILD_CUDA=OFF -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=./install -# install Matlab modules with CUDA -cmake ../ -DBUILD_PYTHON_WRAPPER=OFF -DMatlab_ROOT_DIR=/dls_sw/apps/matlab/r2014a/ -DBUILD_MATLAB_WRAPPER=ON -DBUILD_CUDA=ON -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=./install -make install -#### Python -#cp install/lib/libcilreg.so install/python/ccpi/filters -# cd install/python -# export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:../lib -# spyder -##### Matlab (Linux) -#PATH="/path/to/mex/:$PATH" LD_LIBRARY_PATH="/path/to/library:$LD_LIBRARY_PATH" matlab -PATH="/home/kjy41806/Documents/SOFT/CCPi-Regularisation-Toolkit/build_proj/install/matlab/:$PATH" LD_LIBRARY_PATH="/home/kjy41806/Documents/SOFT/CCPi-Regularisation-Toolkit/build_proj/install/lib:$LD_LIBRARY_PATH" matlab diff --git a/src/Matlab/mex_compile/compileGPU_mex.m b/src/Matlab/mex_compile/compileGPU_mex.m index 3a7ac7c..7e15233 100644 --- a/src/Matlab/mex_compile/compileGPU_mex.m +++ b/src/Matlab/mex_compile/compileGPU_mex.m @@ -4,7 +4,7 @@  % In order to compile CUDA modules one needs to have nvcc-compiler  % installed (see CUDA SDK), check it under MATLAB with !nvcc --version -% In the code bellow we provide a full explicit path to nvcc compiler  +% In the code bellow we provide a full explicit path to nvcc compiler  % ! paths to matlab and CUDA sdk can be different, modify accordingly !  % Tested on Ubuntu 18.04/MATLAB 2016b/cuda10.0/gcc7.3 @@ -68,7 +68,8 @@ movefile('LLT_ROF_GPU.mex*',Pathmove);  delete TV_ROF_GPU_core* TV_FGP_GPU_core* TV_SB_GPU_core* dTV_FGP_GPU_core* NonlDiff_GPU_core* Diffus_4thO_GPU_core* TGV_GPU_core* LLT_ROF_GPU_core* CCPiDefines.h +delete PatchSelect_core* Nonlocal_TV_core* shared.h  fprintf('%s \n', 'All successfully compiled!');  pathA2 = sprintf(['..' fsep '..' fsep '..' fsep '..' fsep 'demos'], 1i); -cd(pathA2);
\ No newline at end of file +cd(pathA2); diff --git a/src/Matlab/mex_compile/regularisers_CPU/PatchSelect.c b/src/Matlab/mex_compile/regularisers_CPU/PatchSelect.c index d2f6670..1acab29 100644 --- a/src/Matlab/mex_compile/regularisers_CPU/PatchSelect.c +++ b/src/Matlab/mex_compile/regularisers_CPU/PatchSelect.c @@ -52,8 +52,8 @@ void mexFunction(  {      int number_of_dims,  SearchWindow, SimilarWin, NumNeighb;      mwSize dimX, dimY, dimZ; -    unsigned short *H_i=NULL, *H_j=NULL, *H_k=NULL; -    mwSize  *dim_array; +    const mwSize *dim_array; +    unsigned short *H_i=NULL, *H_j=NULL, *H_k=NULL;          float *A, *Weights = NULL, h;      mwSize dim_array2[3]; /* for 2D data */      mwSize dim_array3[4]; /* for 3D data */  | 
