diff options
author | vagrant <vagrant@localhost.localdomain> | 2019-02-28 15:00:39 +0000 |
---|---|---|
committer | vagrant <vagrant@localhost.localdomain> | 2019-02-28 15:00:39 +0000 |
commit | 364a703de9f31b35d4301f3e913f519be9d3a14f (patch) | |
tree | a398909ff87b22745829657f3e62b0439a64ad77 | |
parent | 7bb99cfd904b23c041be273ffc2746296e6eb814 (diff) | |
parent | 4c728cf72345f7ab7967380cb536529fd9b1403d (diff) | |
download | regularization-364a703de9f31b35d4301f3e913f519be9d3a14f.tar.gz regularization-364a703de9f31b35d4301f3e913f519be9d3a14f.tar.bz2 regularization-364a703de9f31b35d4301f3e913f519be9d3a14f.tar.xz regularization-364a703de9f31b35d4301f3e913f519be9d3a14f.zip |
Merge remote-tracking branch 'remotes/origin/master' into newdirstructure
-rw-r--r-- | Wrappers/Python/demos/SoftwareX_supp/Demo_RealData_Recon_SX.py | 231 | ||||
-rw-r--r-- | Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_ParOptimis_SX.py | 161 | ||||
-rw-r--r-- | Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_Recon_SX.py | 309 | ||||
-rw-r--r-- | Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_SX.py | 117 | ||||
-rw-r--r-- | Wrappers/Python/demos/SoftwareX_supp/Readme.md | 26 | ||||
-rw-r--r-- | Wrappers/Python/demos/SoftwareX_supp/optim_param/Optim_admm_rofllt.h5 | bin | 0 -> 2408 bytes | |||
-rw-r--r-- | Wrappers/Python/demos/SoftwareX_supp/optim_param/Optim_admm_sbtv.h5 | bin | 0 -> 2408 bytes | |||
-rw-r--r-- | Wrappers/Python/demos/SoftwareX_supp/optim_param/Optim_admm_tgv.h5 | bin | 0 -> 2408 bytes | |||
-rw-r--r-- | demos/demoMatlab_denoise.m | 104 | ||||
-rw-r--r-- | src/Core/regularisers_GPU/TGV_GPU_core.cu | 487 | ||||
-rw-r--r-- | src/Core/regularisers_GPU/TGV_GPU_core.h | 2 |
11 files changed, 1158 insertions, 279 deletions
diff --git a/Wrappers/Python/demos/SoftwareX_supp/Demo_RealData_Recon_SX.py b/Wrappers/Python/demos/SoftwareX_supp/Demo_RealData_Recon_SX.py new file mode 100644 index 0000000..01491d9 --- /dev/null +++ b/Wrappers/Python/demos/SoftwareX_supp/Demo_RealData_Recon_SX.py @@ -0,0 +1,231 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +This demo scripts support the following publication: +"CCPi-Regularisation Toolkit for computed tomographic image reconstruction with +proximal splitting algorithms" by Daniil Kazantsev, Edoardo Pasca, Martin J. Turner, + Philip J. Withers; Software X, 2019 +____________________________________________________________________________ +* Reads real tomographic data (stored at Zenodo) +--- https://doi.org/10.5281/zenodo.2578893 +* Reconstructs using TomoRec software +* Saves reconstructed images +____________________________________________________________________________ +>>>>> Dependencies: <<<<< +1. ASTRA toolbox: conda install -c astra-toolbox astra-toolbox +2. TomoRec: conda install -c dkazanc tomorec +or install from https://github.com/dkazanc/TomoRec +3. libtiff if one needs to save tiff images: + install pip install libtiff + +@author: Daniil Kazantsev, e:mail daniil.kazantsev@diamond.ac.uk +GPLv3 license (ASTRA toolbox) +""" +import numpy as np +import matplotlib.pyplot as plt +import h5py +from tomorec.supp.suppTools import normaliser +import time + +# load dendritic projection data +h5f = h5py.File('data/DendrData_3D.h5','r') +dataRaw = h5f['dataRaw'][:] +flats = h5f['flats'][:] +darks = h5f['darks'][:] +angles_rad = h5f['angles_rad'][:] +h5f.close() +#%% +# normalise the data [detectorsVert, Projections, detectorsHoriz] +data_norm = normaliser(dataRaw, flats, darks, log='log') +del dataRaw, darks, flats + +intens_max = 2.3 +plt.figure() +plt.subplot(131) +plt.imshow(data_norm[:,150,:],vmin=0, vmax=intens_max) +plt.title('2D Projection (analytical)') +plt.subplot(132) +plt.imshow(data_norm[300,:,:],vmin=0, vmax=intens_max) +plt.title('Sinogram view') +plt.subplot(133) +plt.imshow(data_norm[:,:,600],vmin=0, vmax=intens_max) +plt.title('Tangentogram view') +plt.show() + +detectorHoriz = np.size(data_norm,2) +det_y_crop = [i for i in range(0,detectorHoriz-22)] +N_size = 950 # reconstruction domain +time_label = int(time.time()) +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("%%%%%%%%%%%%Reconstructing with FBP method %%%%%%%%%%%%%%%%%") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +from tomorec.methodsDIR import RecToolsDIR + +RectoolsDIR = RecToolsDIR(DetectorsDimH = np.size(det_y_crop), # DetectorsDimH # detector dimension (horizontal) + DetectorsDimV = 100, # DetectorsDimV # detector dimension (vertical) for 3D case only + AnglesVec = angles_rad, # array of angles in radians + ObjSize = N_size, # a scalar to define reconstructed object dimensions + device='gpu') + +FBPrec = RectoolsDIR.FBP(data_norm[0:100,:,det_y_crop]) + +sliceSel = 50 +max_val = 0.003 +plt.figure() +plt.subplot(131) +plt.imshow(FBPrec[sliceSel,:,:],vmin=0, vmax=max_val, cmap="gray") +plt.title('FBP Reconstruction, axial view') + +plt.subplot(132) +plt.imshow(FBPrec[:,sliceSel,:],vmin=0, vmax=max_val, cmap="gray") +plt.title('FBP Reconstruction, coronal view') + +plt.subplot(133) +plt.imshow(FBPrec[:,:,sliceSel],vmin=0, vmax=max_val, cmap="gray") +plt.title('FBP Reconstruction, sagittal view') +plt.show() + +# saving to tiffs (16bit) +""" +from libtiff import TIFF +FBPrec += np.abs(np.min(FBPrec)) +multiplier = (int)(65535/(np.max(FBPrec))) + +# saving to tiffs (16bit) +for i in range(0,np.size(FBPrec,0)): + tiff = TIFF.open('Dendr_FBP'+'_'+str(i)+'.tiff', mode='w') + tiff.write_image(np.uint16(FBPrec[i,:,:]*multiplier)) + tiff.close() +""" +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("Reconstructing with ADMM method using TomoRec software") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +# initialise TomoRec ITERATIVE reconstruction class ONCE +from tomorec.methodsIR import RecToolsIR +RectoolsIR = RecToolsIR(DetectorsDimH = np.size(det_y_crop), # DetectorsDimH # detector dimension (horizontal) + DetectorsDimV = 100, # DetectorsDimV # detector dimension (vertical) for 3D case only + AnglesVec = angles_rad, # array of angles in radians + ObjSize = N_size, # a scalar to define reconstructed object dimensions + datafidelity='LS',# data fidelity, choose LS, PWLS (wip), GH (wip), Student (wip) + nonnegativity='ENABLE', # enable nonnegativity constraint (set to 'ENABLE') + OS_number = None, # the number of subsets, NONE/(or > 1) ~ classical / ordered subsets + tolerance = 1e-08, # tolerance to stop outer iterations earlier + device='gpu') +#%% +print ("Reconstructing with ADMM method using SB-TV penalty") +RecADMM_reg_sbtv = RectoolsIR.ADMM(data_norm[0:100,:,det_y_crop], + rho_const = 2000.0, \ + iterationsADMM = 15, \ + regularisation = 'SB_TV', \ + regularisation_parameter = 0.00085,\ + regularisation_iterations = 50) + +sliceSel = 50 +max_val = 0.003 +plt.figure() +plt.subplot(131) +plt.imshow(RecADMM_reg_sbtv[sliceSel,:,:],vmin=0, vmax=max_val, cmap="gray") +plt.title('3D ADMM-SB-TV Reconstruction, axial view') + +plt.subplot(132) +plt.imshow(RecADMM_reg_sbtv[:,sliceSel,:],vmin=0, vmax=max_val, cmap="gray") +plt.title('3D ADMM-SB-TV Reconstruction, coronal view') + +plt.subplot(133) +plt.imshow(RecADMM_reg_sbtv[:,:,sliceSel],vmin=0, vmax=max_val, cmap="gray") +plt.title('3D ADMM-SB-TV Reconstruction, sagittal view') +plt.show() + + +# saving to tiffs (16bit) +""" +from libtiff import TIFF +multiplier = (int)(65535/(np.max(RecADMM_reg_sbtv))) +for i in range(0,np.size(RecADMM_reg_sbtv,0)): + tiff = TIFF.open('Dendr_ADMM_SBTV'+'_'+str(i)+'.tiff', mode='w') + tiff.write_image(np.uint16(RecADMM_reg_sbtv[i,:,:]*multiplier)) + tiff.close() +""" +# Saving recpnstructed data with a unique time label +np.save('Dendr_ADMM_SBTV'+str(time_label)+'.npy', RecADMM_reg_sbtv) +del RecADMM_reg_sbtv +#%% +print ("Reconstructing with ADMM method using ROF-LLT penalty") +RecADMM_reg_rofllt = RectoolsIR.ADMM(data_norm[0:100,:,det_y_crop], + rho_const = 2000.0, \ + iterationsADMM = 15, \ + regularisation = 'LLT_ROF', \ + regularisation_parameter = 0.0009,\ + regularisation_parameter2 = 0.0007,\ + time_marching_parameter = 0.001,\ + regularisation_iterations = 550) + +sliceSel = 50 +max_val = 0.003 +plt.figure() +plt.subplot(131) +plt.imshow(RecADMM_reg_rofllt[sliceSel,:,:],vmin=0, vmax=max_val) +plt.title('3D ADMM-ROFLLT Reconstruction, axial view') + +plt.subplot(132) +plt.imshow(RecADMM_reg_rofllt[:,sliceSel,:],vmin=0, vmax=max_val) +plt.title('3D ADMM-ROFLLT Reconstruction, coronal view') + +plt.subplot(133) +plt.imshow(RecADMM_reg_rofllt[:,:,sliceSel],vmin=0, vmax=max_val) +plt.title('3D ADMM-ROFLLT Reconstruction, sagittal view') +plt.show() + +# saving to tiffs (16bit) +""" +from libtiff import TIFF +multiplier = (int)(65535/(np.max(RecADMM_reg_rofllt))) +for i in range(0,np.size(RecADMM_reg_rofllt,0)): + tiff = TIFF.open('Dendr_ADMM_ROFLLT'+'_'+str(i)+'.tiff', mode='w') + tiff.write_image(np.uint16(RecADMM_reg_rofllt[i,:,:]*multiplier)) + tiff.close() +""" + +# Saving recpnstructed data with a unique time label +np.save('Dendr_ADMM_ROFLLT'+str(time_label)+'.npy', RecADMM_reg_rofllt) +del RecADMM_reg_rofllt +#%% +print ("Reconstructing with ADMM method using TGV penalty") +RecADMM_reg_tgv = RectoolsIR.ADMM(data_norm[0:100,:,det_y_crop], + rho_const = 2000.0, \ + iterationsADMM = 15, \ + regularisation = 'TGV', \ + regularisation_parameter = 0.01,\ + regularisation_iterations = 500) + +sliceSel = 50 +max_val = 0.003 +plt.figure() +plt.subplot(131) +plt.imshow(RecADMM_reg_tgv[sliceSel,:,:],vmin=0, vmax=max_val) +plt.title('3D ADMM-TGV Reconstruction, axial view') + +plt.subplot(132) +plt.imshow(RecADMM_reg_tgv[:,sliceSel,:],vmin=0, vmax=max_val) +plt.title('3D ADMM-TGV Reconstruction, coronal view') + +plt.subplot(133) +plt.imshow(RecADMM_reg_tgv[:,:,sliceSel],vmin=0, vmax=max_val) +plt.title('3D ADMM-TGV Reconstruction, sagittal view') +plt.show() + +# saving to tiffs (16bit) +""" +from libtiff import TIFF +multiplier = (int)(65535/(np.max(RecADMM_reg_tgv))) +for i in range(0,np.size(RecADMM_reg_tgv,0)): + tiff = TIFF.open('Dendr_ADMM_TGV'+'_'+str(i)+'.tiff', mode='w') + tiff.write_image(np.uint16(RecADMM_reg_tgv[i,:,:]*multiplier)) + tiff.close() +""" +# Saving recpnstructed data with a unique time label +np.save('Dendr_ADMM_TGV'+str(time_label)+'.npy', RecADMM_reg_tgv) +del RecADMM_reg_tgv +#%%
\ No newline at end of file diff --git a/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_ParOptimis_SX.py b/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_ParOptimis_SX.py new file mode 100644 index 0000000..59ffc0e --- /dev/null +++ b/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_ParOptimis_SX.py @@ -0,0 +1,161 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +This demo scripts support the following publication: +"CCPi-Regularisation Toolkit for computed tomographic image reconstruction with +proximal splitting algorithms" by Daniil Kazantsev, Edoardo Pasca, Martin J. Turner, + Philip J. Withers; Software X, 2019 +____________________________________________________________________________ +* Reads data which is previosly generated by TomoPhantom software (Zenodo link) +--- https://doi.org/10.5281/zenodo.2578893 +* Optimises for the regularisation parameters which later used in the script: +Demo_SimulData_Recon_SX.py +____________________________________________________________________________ +>>>>> Dependencies: <<<<< +>>>>> Dependencies: <<<<< +1. ASTRA toolbox: conda install -c astra-toolbox astra-toolbox +2. TomoRec: conda install -c dkazanc tomorec +or install from https://github.com/dkazanc/TomoRec + +@author: Daniil Kazantsev, e:mail daniil.kazantsev@diamond.ac.uk +GPLv3 license (ASTRA toolbox) +""" +#import timeit +import matplotlib.pyplot as plt +import numpy as np +import h5py +from ccpi.supp.qualitymetrics import QualityTools + +# loading the data +h5f = h5py.File('data/TomoSim_data1550671417.h5','r') +phantom = h5f['phantom'][:] +projdata_norm = h5f['projdata_norm'][:] +proj_angles = h5f['proj_angles'][:] +h5f.close() + +[Vert_det, AnglesNum, Horiz_det] = np.shape(projdata_norm) +N_size = Vert_det + +sliceSel = 128 +#plt.gray() +plt.figure() +plt.subplot(131) +plt.imshow(phantom[sliceSel,:,:],vmin=0, vmax=1) +plt.title('3D Phantom, axial view') + +plt.subplot(132) +plt.imshow(phantom[:,sliceSel,:],vmin=0, vmax=1) +plt.title('3D Phantom, coronal view') + +plt.subplot(133) +plt.imshow(phantom[:,:,sliceSel],vmin=0, vmax=1) +plt.title('3D Phantom, sagittal view') +plt.show() + +intens_max = 240 +plt.figure() +plt.subplot(131) +plt.imshow(projdata_norm[:,sliceSel,:],vmin=0, vmax=intens_max) +plt.title('2D Projection (erroneous)') +plt.subplot(132) +plt.imshow(projdata_norm[sliceSel,:,:],vmin=0, vmax=intens_max) +plt.title('Sinogram view') +plt.subplot(133) +plt.imshow(projdata_norm[:,:,sliceSel],vmin=0, vmax=intens_max) +plt.title('Tangentogram view') +plt.show() +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("Reconstructing with ADMM method using TomoRec software") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +# initialise TomoRec ITERATIVE reconstruction class ONCE +from tomorec.methodsIR import RecToolsIR +RectoolsIR = RecToolsIR(DetectorsDimH = Horiz_det, # DetectorsDimH # detector dimension (horizontal) + DetectorsDimV = Vert_det, # DetectorsDimV # detector dimension (vertical) for 3D case only + AnglesVec = proj_angles, # array of angles in radians + ObjSize = N_size, # a scalar to define reconstructed object dimensions + datafidelity='LS',# data fidelity, choose LS, PWLS (wip), GH (wip), Student (wip) + nonnegativity='ENABLE', # enable nonnegativity constraint (set to 'ENABLE') + OS_number = None, # the number of subsets, NONE/(or > 1) ~ classical / ordered subsets + tolerance = 1e-08, # tolerance to stop outer iterations earlier + device='gpu') +#%% +param_space = 30 +reg_param_sb_vec = np.linspace(0.03,0.15,param_space,dtype='float32') # a vector of parameters +erros_vec_sbtv = np.zeros((param_space)) # a vector of errors + +print ("Reconstructing with ADMM method using SB-TV penalty") +for i in range(0,param_space): + RecADMM_reg_sbtv = RectoolsIR.ADMM(projdata_norm, + rho_const = 2000.0, \ + iterationsADMM = 15, \ + regularisation = 'SB_TV', \ + regularisation_parameter = reg_param_sb_vec[i],\ + regularisation_iterations = 50) + # calculate errors + Qtools = QualityTools(phantom, RecADMM_reg_sbtv) + erros_vec_sbtv[i] = Qtools.rmse() + print("RMSE for regularisation parameter {} for ADMM-SB-TV is {}".format(reg_param_sb_vec[i],erros_vec_sbtv[i])) + +plt.figure() +plt.plot(erros_vec_sbtv) + +# Saving generated data with a unique time label +h5f = h5py.File('Optim_admm_sbtv.h5', 'w') +h5f.create_dataset('reg_param_sb_vec', data=reg_param_sb_vec) +h5f.create_dataset('erros_vec_sbtv', data=erros_vec_sbtv) +h5f.close() +#%% +param_space = 30 +reg_param_rofllt_vec = np.linspace(0.03,0.15,param_space,dtype='float32') # a vector of parameters +erros_vec_rofllt = np.zeros((param_space)) # a vector of errors + +print ("Reconstructing with ADMM method using ROF-LLT penalty") +for i in range(0,param_space): + RecADMM_reg_rofllt = RectoolsIR.ADMM(projdata_norm, + rho_const = 2000.0, \ + iterationsADMM = 15, \ + regularisation = 'LLT_ROF', \ + regularisation_parameter = reg_param_rofllt_vec[i],\ + regularisation_parameter2 = 0.005,\ + regularisation_iterations = 600) + # calculate errors + Qtools = QualityTools(phantom, RecADMM_reg_rofllt) + erros_vec_rofllt[i] = Qtools.rmse() + print("RMSE for regularisation parameter {} for ADMM-ROF-LLT is {}".format(reg_param_rofllt_vec[i],erros_vec_rofllt[i])) + +plt.figure() +plt.plot(erros_vec_rofllt) + +# Saving generated data with a unique time label +h5f = h5py.File('Optim_admm_rofllt.h5', 'w') +h5f.create_dataset('reg_param_rofllt_vec', data=reg_param_rofllt_vec) +h5f.create_dataset('erros_vec_rofllt', data=erros_vec_rofllt) +h5f.close() +#%% +param_space = 30 +reg_param_tgv_vec = np.linspace(0.03,0.15,param_space,dtype='float32') # a vector of parameters +erros_vec_tgv = np.zeros((param_space)) # a vector of errors + +print ("Reconstructing with ADMM method using TGV penalty") +for i in range(0,param_space): + RecADMM_reg_tgv = RectoolsIR.ADMM(projdata_norm, + rho_const = 2000.0, \ + iterationsADMM = 15, \ + regularisation = 'TGV', \ + regularisation_parameter = reg_param_tgv_vec[i],\ + regularisation_iterations = 600) + # calculate errors + Qtools = QualityTools(phantom, RecADMM_reg_tgv) + erros_vec_tgv[i] = Qtools.rmse() + print("RMSE for regularisation parameter {} for ADMM-TGV is {}".format(reg_param_tgv_vec[i],erros_vec_tgv[i])) + +plt.figure() +plt.plot(erros_vec_tgv) + +# Saving generated data with a unique time label +h5f = h5py.File('Optim_admm_tgv.h5', 'w') +h5f.create_dataset('reg_param_tgv_vec', data=reg_param_tgv_vec) +h5f.create_dataset('erros_vec_tgv', data=erros_vec_tgv) +h5f.close() +#%%
\ No newline at end of file diff --git a/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_Recon_SX.py b/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_Recon_SX.py new file mode 100644 index 0000000..93b0cef --- /dev/null +++ b/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_Recon_SX.py @@ -0,0 +1,309 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +This demo scripts support the following publication: +"CCPi-Regularisation Toolkit for computed tomographic image reconstruction with +proximal splitting algorithms" by Daniil Kazantsev, Edoardo Pasca, Martin J. Turner, + Philip J. Withers; Software X, 2019 +____________________________________________________________________________ +* Reads data which is previously generated by TomoPhantom software (Zenodo link) +--- https://doi.org/10.5281/zenodo.2578893 +* Reconstruct using optimised regularisation parameters (see Demo_SimulData_ParOptimis_SX.py) +____________________________________________________________________________ +>>>>> Dependencies: <<<<< +1. ASTRA toolbox: conda install -c astra-toolbox astra-toolbox +2. TomoRec: conda install -c dkazanc tomorec +or install from https://github.com/dkazanc/TomoRec + +@author: Daniil Kazantsev, e:mail daniil.kazantsev@diamond.ac.uk +GPLv3 license (ASTRA toolbox) +""" +#import timeit +import matplotlib.pyplot as plt +import matplotlib.gridspec as gridspec +import numpy as np +import h5py +from ccpi.supp.qualitymetrics import QualityTools +from scipy.signal import gaussian + +# loading the data +h5f = h5py.File('data/TomoSim_data1550671417.h5','r') +phantom = h5f['phantom'][:] +projdata_norm = h5f['projdata_norm'][:] +proj_angles = h5f['proj_angles'][:] +h5f.close() + +[Vert_det, AnglesNum, Horiz_det] = np.shape(projdata_norm) +N_size = Vert_det + +# loading optmisation parameters (the result of running Demo_SimulData_ParOptimis_SX) +h5f = h5py.File('optim_param/Optim_admm_sbtv.h5','r') +reg_param_sb_vec = h5f['reg_param_sb_vec'][:] +erros_vec_sbtv = h5f['erros_vec_sbtv'][:] +h5f.close() + +h5f = h5py.File('optim_param/Optim_admm_rofllt.h5','r') +reg_param_rofllt_vec = h5f['reg_param_rofllt_vec'][:] +erros_vec_rofllt = h5f['erros_vec_rofllt'][:] +h5f.close() + +h5f = h5py.File('optim_param/Optim_admm_tgv.h5','r') +reg_param_tgv_vec = h5f['reg_param_tgv_vec'][:] +erros_vec_tgv = h5f['erros_vec_tgv'][:] +h5f.close() + +index_minSBTV = min(xrange(len(erros_vec_sbtv)), key=erros_vec_sbtv.__getitem__) +index_minROFLLT = min(xrange(len(erros_vec_rofllt)), key=erros_vec_rofllt.__getitem__) +index_minTGV = min(xrange(len(erros_vec_tgv)), key=erros_vec_tgv.__getitem__) +# assign optimal regularisation parameters: +optimReg_sbtv = reg_param_sb_vec[index_minSBTV] +optimReg_rofllt = reg_param_rofllt_vec[index_minROFLLT] +optimReg_tgv = reg_param_tgv_vec[index_minTGV] +#%% +# plot loaded data +sliceSel = 128 +#plt.figure() +fig, (ax1, ax2) = plt.subplots(figsize=(15, 5), ncols=2) +plt.rcParams.update({'xtick.labelsize': 'x-small'}) +plt.rcParams.update({'ytick.labelsize':'x-small'}) +plt.subplot(121) +one = plt.imshow(phantom[sliceSel,:,:],vmin=0, vmax=1, interpolation='none', cmap="PuOr") +fig.colorbar(one, ax=ax1) +plt.title('3D Phantom, axial (X-Y) view') +plt.subplot(122) +two = plt.imshow(phantom[:,sliceSel,:],vmin=0, vmax=1,interpolation='none', cmap="PuOr") +fig.colorbar(two, ax=ax2) +plt.title('3D Phantom, coronal (Y-Z) view') +""" +plt.subplot(133) +plt.imshow(phantom[:,:,sliceSel],vmin=0, vmax=1, cmap="PuOr") +plt.title('3D Phantom, sagittal view') + +""" +plt.show() +#%% +intens_max = 220 +plt.figure() +plt.rcParams.update({'xtick.labelsize': 'x-small'}) +plt.rcParams.update({'ytick.labelsize':'x-small'}) +plt.subplot(131) +plt.imshow(projdata_norm[:,sliceSel,:],vmin=0, vmax=intens_max, cmap="PuOr") +plt.xlabel('X-detector', fontsize=16) +plt.ylabel('Z-detector', fontsize=16) +plt.title('2D Projection (X-Z) view', fontsize=19) +plt.subplot(132) +plt.imshow(projdata_norm[sliceSel,:,:],vmin=0, vmax=intens_max, cmap="PuOr") +plt.xlabel('X-detector', fontsize=16) +plt.ylabel('Projection angle', fontsize=16) +plt.title('Sinogram (X-Y) view', fontsize=19) +plt.subplot(133) +plt.imshow(projdata_norm[:,:,sliceSel],vmin=0, vmax=intens_max, cmap="PuOr") +plt.xlabel('Projection angle', fontsize=16) +plt.ylabel('Z-detector', fontsize=16) +plt.title('Vertical (Y-Z) view', fontsize=19) +plt.show() +#plt.savefig('projdata.pdf', format='pdf', dpi=1200) +#%% +# initialise TomoRec DIRECT reconstruction class ONCE +from tomorec.methodsDIR import RecToolsDIR +RectoolsDIR = RecToolsDIR(DetectorsDimH = Horiz_det, # DetectorsDimH # detector dimension (horizontal) + DetectorsDimV = Vert_det, # DetectorsDimV # detector dimension (vertical) for 3D case only + AnglesVec = proj_angles, # array of angles in radians + ObjSize = N_size, # a scalar to define reconstructed object dimensions + device = 'gpu') +#%% +print ("Reconstruction using FBP from TomoRec") +recFBP= RectoolsDIR.FBP(projdata_norm) # FBP reconstruction +#%% +x0, y0 = 0, 127 # These are in _pixel_ coordinates!! +x1, y1 = 255, 127 + +sliceSel = int(0.5*N_size) +max_val = 1 +plt.figure(figsize = (20,5)) +gs1 = gridspec.GridSpec(1, 3) +gs1.update(wspace=0.1, hspace=0.05) # set the spacing between axes. +ax1 = plt.subplot(gs1[0]) +plt.imshow(recFBP[sliceSel,:,:],vmin=0, vmax=max_val, cmap="PuOr") +ax1.plot([x0, x1], [y0, y1], 'ko-', linestyle='--') +plt.colorbar(ax=ax1) +plt.title('FBP Reconstruction, axial (X-Y) view', fontsize=19) +ax1.set_aspect('equal') +ax3 = plt.subplot(gs1[1]) +plt.plot(phantom[sliceSel,sliceSel,0:N_size],color='k',linewidth=2) +plt.plot(recFBP[sliceSel,sliceSel,0:N_size],linestyle='--',color='g') +plt.title('Profile', fontsize=19) +ax2 = plt.subplot(gs1[2]) +plt.imshow(recFBP[:,sliceSel,:],vmin=0, vmax=max_val, cmap="PuOr") +plt.title('FBP Reconstruction, coronal (Y-Z) view', fontsize=19) +ax2.set_aspect('equal') +plt.show() +#plt.savefig('FBP_phantom.pdf', format='pdf', dpi=1600) + +# calculate errors +Qtools = QualityTools(phantom, recFBP) +RMSE_fbp = Qtools.rmse() +print("Root Mean Square Error for FBP is {}".format(RMSE_fbp)) + +# SSIM measure +Qtools = QualityTools(phantom[128,:,:]*255, recFBP[128,:,:]*235) +win = np.array([gaussian(11, 1.5)]) +win2d = win * (win.T) +ssim_fbp = Qtools.ssim(win2d) +print("Mean SSIM for FBP is {}".format(ssim_fbp[0])) +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("Reconstructing with ADMM method using TomoRec software") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +# initialise TomoRec ITERATIVE reconstruction class ONCE +from tomorec.methodsIR import RecToolsIR +RectoolsIR = RecToolsIR(DetectorsDimH = Horiz_det, # DetectorsDimH # detector dimension (horizontal) + DetectorsDimV = Vert_det, # DetectorsDimV # detector dimension (vertical) for 3D case only + AnglesVec = proj_angles, # array of angles in radians + ObjSize = N_size, # a scalar to define reconstructed object dimensions + datafidelity='LS',# data fidelity, choose LS, PWLS (wip), GH (wip), Student (wip) + nonnegativity='ENABLE', # enable nonnegativity constraint (set to 'ENABLE') + OS_number = None, # the number of subsets, NONE/(or > 1) ~ classical / ordered subsets + tolerance = 1e-08, # tolerance to stop outer iterations earlier + device='gpu') +#%% +print ("Reconstructing with ADMM method using SB-TV penalty") +RecADMM_reg_sbtv = RectoolsIR.ADMM(projdata_norm, + rho_const = 2000.0, \ + iterationsADMM = 25, \ + regularisation = 'SB_TV', \ + regularisation_parameter = optimReg_sbtv,\ + regularisation_iterations = 50) + +sliceSel = int(0.5*N_size) +max_val = 1 +plt.figure(figsize = (20,3)) +gs1 = gridspec.GridSpec(1, 4) +gs1.update(wspace=0.02, hspace=0.01) # set the spacing between axes. +ax1 = plt.subplot(gs1[0]) +plt.plot(reg_param_sb_vec, erros_vec_sbtv, color='k',linewidth=2) +plt.xlabel('Regularisation parameter', fontsize=16) +plt.ylabel('RMSE value', fontsize=16) +plt.title('Regularisation selection', fontsize=19) +ax2 = plt.subplot(gs1[1]) +plt.imshow(RecADMM_reg_sbtv[sliceSel,:,:],vmin=0, vmax=max_val, cmap="PuOr") +ax2.plot([x0, x1], [y0, y1], 'ko-', linestyle='--') +plt.title('ADMM-SBTV (X-Y) view', fontsize=19) +#ax2.set_aspect('equal') +ax3 = plt.subplot(gs1[2]) +plt.plot(phantom[sliceSel,sliceSel,0:N_size],color='k',linewidth=2) +plt.plot(RecADMM_reg_sbtv[sliceSel,sliceSel,0:N_size],linestyle='--',color='g') +plt.title('Profile', fontsize=19) +ax4 = plt.subplot(gs1[3]) +plt.imshow(RecADMM_reg_sbtv[:,sliceSel,:],vmin=0, vmax=max_val, cmap="PuOr") +plt.title('ADMM-SBTV (Y-Z) view', fontsize=19) +plt.colorbar(ax=ax4) +plt.show() +plt.savefig('SBTV_phantom.pdf', format='pdf', dpi=1600) + +# calculate errors +Qtools = QualityTools(phantom, RecADMM_reg_sbtv) +RMSE_admm_sbtv = Qtools.rmse() +print("Root Mean Square Error for ADMM-SB-TV is {}".format(RMSE_admm_sbtv)) + +# SSIM measure +Qtools = QualityTools(phantom[128,:,:]*255, RecADMM_reg_sbtv[128,:,:]*235) +win = np.array([gaussian(11, 1.5)]) +win2d = win * (win.T) +ssim_admm_sbtv = Qtools.ssim(win2d) +print("Mean SSIM ADMM-SBTV is {}".format(ssim_admm_sbtv[0])) +#%% +print ("Reconstructing with ADMM method using ROFLLT penalty") +RecADMM_reg_rofllt = RectoolsIR.ADMM(projdata_norm, + rho_const = 2000.0, \ + iterationsADMM = 25, \ + regularisation = 'LLT_ROF', \ + regularisation_parameter = optimReg_rofllt,\ + regularisation_parameter2 = 0.0085,\ + regularisation_iterations = 600) + +sliceSel = int(0.5*N_size) +max_val = 1 +plt.figure(figsize = (20,3)) +gs1 = gridspec.GridSpec(1, 4) +gs1.update(wspace=0.02, hspace=0.01) # set the spacing between axes. +ax1 = plt.subplot(gs1[0]) +plt.plot(reg_param_rofllt_vec, erros_vec_rofllt, color='k',linewidth=2) +plt.xlabel('Regularisation parameter', fontsize=16) +plt.ylabel('RMSE value', fontsize=16) +plt.title('Regularisation selection', fontsize=19) +ax2 = plt.subplot(gs1[1]) +plt.imshow(RecADMM_reg_rofllt[sliceSel,:,:],vmin=0, vmax=max_val, cmap="PuOr") +ax2.plot([x0, x1], [y0, y1], 'ko-', linestyle='--') +plt.title('ADMM-ROFLLT (X-Y) view', fontsize=19) +#ax2.set_aspect('equal') +ax3 = plt.subplot(gs1[2]) +plt.plot(phantom[sliceSel,sliceSel,0:N_size],color='k',linewidth=2) +plt.plot(RecADMM_reg_rofllt[sliceSel,sliceSel,0:N_size],linestyle='--',color='g') +plt.title('Profile', fontsize=19) +ax4 = plt.subplot(gs1[3]) +plt.imshow(RecADMM_reg_rofllt[:,sliceSel,:],vmin=0, vmax=max_val, cmap="PuOr") +plt.title('ADMM-ROFLLT (Y-Z) view', fontsize=19) +plt.colorbar(ax=ax4) +plt.show() +#plt.savefig('ROFLLT_phantom.pdf', format='pdf', dpi=1600) + +# calculate errors +Qtools = QualityTools(phantom, RecADMM_reg_rofllt) +RMSE_admm_rofllt = Qtools.rmse() +print("Root Mean Square Error for ADMM-ROF-LLT is {}".format(RMSE_admm_rofllt)) + +# SSIM measure +Qtools = QualityTools(phantom[128,:,:]*255, RecADMM_reg_rofllt[128,:,:]*235) +win = np.array([gaussian(11, 1.5)]) +win2d = win * (win.T) +ssim_admm_rifllt = Qtools.ssim(win2d) +print("Mean SSIM ADMM-ROFLLT is {}".format(ssim_admm_rifllt[0])) +#%% +print ("Reconstructing with ADMM method using TGV penalty") +RecADMM_reg_tgv = RectoolsIR.ADMM(projdata_norm, + rho_const = 2000.0, \ + iterationsADMM = 25, \ + regularisation = 'TGV', \ + regularisation_parameter = optimReg_tgv,\ + regularisation_iterations = 600) +#%% +sliceSel = int(0.5*N_size) +max_val = 1 +plt.figure(figsize = (20,3)) +gs1 = gridspec.GridSpec(1, 4) +gs1.update(wspace=0.02, hspace=0.01) # set the spacing between axes. +ax1 = plt.subplot(gs1[0]) +plt.plot(reg_param_tgv_vec, erros_vec_tgv, color='k',linewidth=2) +plt.xlabel('Regularisation parameter', fontsize=16) +plt.ylabel('RMSE value', fontsize=16) +plt.title('Regularisation selection', fontsize=19) +ax2 = plt.subplot(gs1[1]) +plt.imshow(RecADMM_reg_tgv[sliceSel,:,:],vmin=0, vmax=max_val, cmap="PuOr") +ax2.plot([x0, x1], [y0, y1], 'ko-', linestyle='--') +plt.title('ADMM-TGV (X-Y) view', fontsize=19) +#ax2.set_aspect('equal') +ax3 = plt.subplot(gs1[2]) +plt.plot(phantom[sliceSel,sliceSel,0:N_size],color='k',linewidth=2) +plt.plot(RecADMM_reg_tgv[sliceSel,sliceSel,0:N_size],linestyle='--',color='g') +plt.title('Profile', fontsize=19) +ax4 = plt.subplot(gs1[3]) +plt.imshow(RecADMM_reg_tgv[:,sliceSel,:],vmin=0, vmax=max_val, cmap="PuOr") +plt.title('ADMM-TGV (Y-Z) view', fontsize=19) +plt.colorbar(ax=ax4) +plt.show() +#plt.savefig('TGV_phantom.pdf', format='pdf', dpi=1600) + +# calculate errors +Qtools = QualityTools(phantom, RecADMM_reg_tgv) +RMSE_admm_tgv = Qtools.rmse() +print("Root Mean Square Error for ADMM-TGV is {}".format(RMSE_admm_tgv)) + +# SSIM measure +#Create a 2d gaussian for the window parameter +Qtools = QualityTools(phantom[128,:,:]*255, RecADMM_reg_tgv[128,:,:]*235) +win = np.array([gaussian(11, 1.5)]) +win2d = win * (win.T) +ssim_admm_tgv = Qtools.ssim(win2d) +print("Mean SSIM ADMM-TGV is {}".format(ssim_admm_tgv[0])) +#%%
\ No newline at end of file diff --git a/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_SX.py b/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_SX.py new file mode 100644 index 0000000..cdf4325 --- /dev/null +++ b/Wrappers/Python/demos/SoftwareX_supp/Demo_SimulData_SX.py @@ -0,0 +1,117 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +This demo scripts support the following publication: +"CCPi-Regularisation Toolkit for computed tomographic image reconstruction with +proximal splitting algorithms" by Daniil Kazantsev, Edoardo Pasca, Martin J. Turner, + Philip J. Withers; Software X, 2019 +____________________________________________________________________________ +* Runs TomoPhantom software to simulate tomographic projection data with +some imaging errors and noise +* Saves the data into hdf file to be uploaded in reconstruction scripts +__________________________________________________________________________ + +>>>>> Dependencies: <<<<< +1. TomoPhantom software for phantom and data generation + +@author: Daniil Kazantsev, e:mail daniil.kazantsev@diamond.ac.uk +Apache 2.0 license +""" +import timeit +import os +import matplotlib.pyplot as plt +import numpy as np +import tomophantom +from tomophantom import TomoP3D +from tomophantom.supp.flatsgen import flats +from tomophantom.supp.normraw import normaliser_sim + +print ("Building 3D phantom using TomoPhantom software") +tic=timeit.default_timer() +model = 16 # select a model number from the library +N_size = 256 # Define phantom dimensions using a scalar value (cubic phantom) +path = os.path.dirname(tomophantom.__file__) +path_library3D = os.path.join(path, "Phantom3DLibrary.dat") +#This will generate a N_size x N_size x N_size phantom (3D) +phantom_tm = TomoP3D.Model(model, N_size, path_library3D) +toc=timeit.default_timer() +Run_time = toc - tic +print("Phantom has been built in {} seconds".format(Run_time)) + +sliceSel = int(0.5*N_size) +#plt.gray() +plt.figure() +plt.subplot(131) +plt.imshow(phantom_tm[sliceSel,:,:],vmin=0, vmax=1) +plt.title('3D Phantom, axial view') + +plt.subplot(132) +plt.imshow(phantom_tm[:,sliceSel,:],vmin=0, vmax=1) +plt.title('3D Phantom, coronal view') + +plt.subplot(133) +plt.imshow(phantom_tm[:,:,sliceSel],vmin=0, vmax=1) +plt.title('3D Phantom, sagittal view') +plt.show() + +# Projection geometry related parameters: +Horiz_det = int(np.sqrt(2)*N_size) # detector column count (horizontal) +Vert_det = N_size # detector row count (vertical) (no reason for it to be > N) +angles_num = int(0.35*np.pi*N_size); # angles number +angles = np.linspace(0.0,179.9,angles_num,dtype='float32') # in degrees +angles_rad = angles*(np.pi/180.0) +#%% +print ("Building 3D analytical projection data with TomoPhantom") +projData3D_analyt= TomoP3D.ModelSino(model, N_size, Horiz_det, Vert_det, angles, path_library3D) + +intens_max = N_size +sliceSel = int(0.5*N_size) +plt.figure() +plt.subplot(131) +plt.imshow(projData3D_analyt[:,sliceSel,:],vmin=0, vmax=intens_max) +plt.title('2D Projection (analytical)') +plt.subplot(132) +plt.imshow(projData3D_analyt[sliceSel,:,:],vmin=0, vmax=intens_max) +plt.title('Sinogram view') +plt.subplot(133) +plt.imshow(projData3D_analyt[:,:,sliceSel],vmin=0, vmax=intens_max) +plt.title('Tangentogram view') +plt.show() +#%% +print ("Simulate flat fields, add noise and normalise projections...") +flatsnum = 20 # generate 20 flat fields +flatsSIM = flats(Vert_det, Horiz_det, maxheight = 0.1, maxthickness = 3, sigma_noise = 0.2, sigmasmooth = 3, flatsnum=flatsnum) + +plt.figure() +plt.imshow(flatsSIM[0,:,:],vmin=0, vmax=1) +plt.title('A selected simulated flat-field') +#%% +# Apply normalisation of data and add noise +flux_intensity = 60000 # controls the level of noise +sigma_flats = 0.01 # contro the level of noise in flats (higher creates more ring artifacts) +projData3D_norm = normaliser_sim(projData3D_analyt, flatsSIM, sigma_flats, flux_intensity) + +intens_max = N_size +sliceSel = int(0.5*N_size) +plt.figure() +plt.subplot(131) +plt.imshow(projData3D_norm[:,sliceSel,:],vmin=0, vmax=intens_max) +plt.title('2D Projection (erroneous)') +plt.subplot(132) +plt.imshow(projData3D_norm[sliceSel,:,:],vmin=0, vmax=intens_max) +plt.title('Sinogram view') +plt.subplot(133) +plt.imshow(projData3D_norm[:,:,sliceSel],vmin=0, vmax=intens_max) +plt.title('Tangentogram view') +plt.show() +#%% +import h5py +import time +time_label = int(time.time()) +# Saving generated data with a unique time label +h5f = h5py.File('TomoSim_data'+str(time_label)+'.h5', 'w') +h5f.create_dataset('phantom', data=phantom_tm) +h5f.create_dataset('projdata_norm', data=projData3D_norm) +h5f.create_dataset('proj_angles', data=angles_rad) +h5f.close() +#%%
\ No newline at end of file diff --git a/Wrappers/Python/demos/SoftwareX_supp/Readme.md b/Wrappers/Python/demos/SoftwareX_supp/Readme.md new file mode 100644 index 0000000..54e83f1 --- /dev/null +++ b/Wrappers/Python/demos/SoftwareX_supp/Readme.md @@ -0,0 +1,26 @@ + +# SoftwareX publication [1] supporting files + +## Decription: +The scripts here support publication in SoftwareX journal [1] to ensure reproducibility of the research. The scripts linked with data shared at Zenodo. + +## Data: +Data is shared at Zenodo [here](https://doi.org/10.5281/zenodo.2578893) + +## Dependencies: +1. [ASTRA toolbox](https://github.com/astra-toolbox/astra-toolbox): `conda install -c astra-toolbox astra-toolbox` +2. [TomoRec](https://github.com/dkazanc/TomoRec): `conda install -c dkazanc tomorec` +3. [Tomophantom](https://github.com/dkazanc/TomoPhantom): `conda install tomophantom -c ccpi` + +## Files description: +- `Demo_SimulData_SX.py` - simulates 3D projection data using [Tomophantom](https://github.com/dkazanc/TomoPhantom) software. One can skip this module if the data is taken from [Zenodo](https://doi.org/10.5281/zenodo.2578893) +- `Demo_SimulData_ParOptimis_SX.py` - runs computationally extensive calculations for optimal regularisation parameters, the result are saved into directory `optim_param`. This script can be also skipped. +- `Demo_SimulData_Recon_SX.py` - using established regularisation parameters, one runs iterative reconstruction +- `Demo_RealData_Recon_SX.py` - runs real data reconstructions. Can be quite intense on memory so reduce the size of the reconstructed volume if needed. + +### References: +[1] "CCPi-Regularisation Toolkit for computed tomographic image reconstruction with proximal splitting algorithms" by Daniil Kazantsev, Edoardo Pasca, Martin J. Turner and Philip J. Withers; SoftwareX, 2019. + +### Acknowledgments: +CCPi-RGL software is a product of the [CCPi](https://www.ccpi.ac.uk/) group, STFC SCD software developers and Diamond Light Source (DLS). Any relevant questions/comments can be e-mailed to Daniil Kazantsev at dkazanc@hotmail.com + diff --git a/Wrappers/Python/demos/SoftwareX_supp/optim_param/Optim_admm_rofllt.h5 b/Wrappers/Python/demos/SoftwareX_supp/optim_param/Optim_admm_rofllt.h5 Binary files differnew file mode 100644 index 0000000..63bc4fd --- /dev/null +++ b/Wrappers/Python/demos/SoftwareX_supp/optim_param/Optim_admm_rofllt.h5 diff --git a/Wrappers/Python/demos/SoftwareX_supp/optim_param/Optim_admm_sbtv.h5 b/Wrappers/Python/demos/SoftwareX_supp/optim_param/Optim_admm_sbtv.h5 Binary files differnew file mode 100644 index 0000000..03c0c14 --- /dev/null +++ b/Wrappers/Python/demos/SoftwareX_supp/optim_param/Optim_admm_sbtv.h5 diff --git a/Wrappers/Python/demos/SoftwareX_supp/optim_param/Optim_admm_tgv.h5 b/Wrappers/Python/demos/SoftwareX_supp/optim_param/Optim_admm_tgv.h5 Binary files differnew file mode 100644 index 0000000..056d915 --- /dev/null +++ b/Wrappers/Python/demos/SoftwareX_supp/optim_param/Optim_admm_tgv.h5 diff --git a/demos/demoMatlab_denoise.m b/demos/demoMatlab_denoise.m index 5135129..5e92ee1 100644 --- a/demos/demoMatlab_denoise.m +++ b/demos/demoMatlab_denoise.m @@ -13,87 +13,119 @@ Im = double(imread('lena_gray_512.tif'))/255; % loading image u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; figure; imshow(u0, [0 1]); title('Noisy image'); -lambda_reg = 0.03; % regularsation parameter for all methods %% fprintf('Denoise using the ROF-TV model (CPU) \n'); +lambda_reg = 0.017; % regularsation parameter for all methods tau_rof = 0.0025; % time-marching constant -iter_rof = 750; % number of ROF iterations +iter_rof = 1200; % number of ROF iterations tic; u_rof = ROF_TV(single(u0), lambda_reg, iter_rof, tau_rof); toc; energyfunc_val_rof = TV_energy(single(u_rof),single(u0),lambda_reg, 1); % get energy function value rmseROF = (RMSE(u_rof(:),Im(:))); fprintf('%s %f \n', 'RMSE error for ROF-TV is:', rmseROF); +[ssimval] = ssim(u_rof*255,single(Im)*255); +fprintf('%s %f \n', 'MSSIM error for ROF-TV is:', ssimval); figure; imshow(u_rof, [0 1]); title('ROF-TV denoised image (CPU)'); %% % fprintf('Denoise using the ROF-TV model (GPU) \n'); % tau_rof = 0.0025; % time-marching constant -% iter_rof = 750; % number of ROF iterations +% iter_rof = 1200; % number of ROF iterations % tic; u_rofG = ROF_TV_GPU(single(u0), lambda_reg, iter_rof, tau_rof); toc; % figure; imshow(u_rofG, [0 1]); title('ROF-TV denoised image (GPU)'); %% fprintf('Denoise using the FGP-TV model (CPU) \n'); -iter_fgp = 1300; % number of FGP iterations -epsil_tol = 1.0e-06; % tolerance +lambda_reg = 0.033; +iter_fgp = 300; % number of FGP iterations +epsil_tol = 1.0e-09; % tolerance tic; u_fgp = FGP_TV(single(u0), lambda_reg, iter_fgp, epsil_tol); toc; energyfunc_val_fgp = TV_energy(single(u_fgp),single(u0),lambda_reg, 1); % get energy function value rmseFGP = (RMSE(u_fgp(:),Im(:))); fprintf('%s %f \n', 'RMSE error for FGP-TV is:', rmseFGP); +[ssimval] = ssim(u_fgp*255,single(Im)*255); +fprintf('%s %f \n', 'MSSIM error for FGP-TV is:', ssimval); figure; imshow(u_fgp, [0 1]); title('FGP-TV denoised image (CPU)'); - %% % fprintf('Denoise using the FGP-TV model (GPU) \n'); -% iter_fgp = 1300; % number of FGP iterations -% epsil_tol = 1.0e-06; % tolerance +% iter_fgp = 300; % number of FGP iterations +% epsil_tol = 1.0e-09; % tolerance % tic; u_fgpG = FGP_TV_GPU(single(u0), lambda_reg, iter_fgp, epsil_tol); toc; % figure; imshow(u_fgpG, [0 1]); title('FGP-TV denoised image (GPU)'); %% fprintf('Denoise using the SB-TV model (CPU) \n'); -iter_sb = 150; % number of SB iterations -epsil_tol = 1.0e-06; % tolerance +iter_sb = 80; % number of SB iterations +epsil_tol = 1.0e-08; % tolerance tic; u_sb = SB_TV(single(u0), lambda_reg, iter_sb, epsil_tol); toc; energyfunc_val_sb = TV_energy(single(u_sb),single(u0),lambda_reg, 1); % get energy function value rmseSB = (RMSE(u_sb(:),Im(:))); fprintf('%s %f \n', 'RMSE error for SB-TV is:', rmseSB); +[ssimval] = ssim(u_sb*255,single(Im)*255); +fprintf('%s %f \n', 'MSSIM error for SB-TV is:', ssimval); figure; imshow(u_sb, [0 1]); title('SB-TV denoised image (CPU)'); %% % fprintf('Denoise using the SB-TV model (GPU) \n'); -% iter_sb = 150; % number of SB iterations +% iter_sb = 80; % number of SB iterations % epsil_tol = 1.0e-06; % tolerance % tic; u_sbG = SB_TV_GPU(single(u0), lambda_reg, iter_sb, epsil_tol); toc; % figure; imshow(u_sbG, [0 1]); title('SB-TV denoised image (GPU)'); %% +fprintf('Denoise using Nonlinear-Diffusion model (CPU) \n'); +iter_diff = 450; % number of diffusion iterations +lambda_regDiff = 0.025; % regularisation for the diffusivity +sigmaPar = 0.015; % edge-preserving parameter +tau_param = 0.02; % time-marching constant +tic; u_diff = NonlDiff(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc; +rmseDiffus = (RMSE(u_diff(:),Im(:))); +fprintf('%s %f \n', 'RMSE error for Nonlinear Diffusion is:', rmseDiffus); +[ssimval] = ssim(u_diff*255,single(Im)*255); +fprintf('%s %f \n', 'MSSIM error for NDF is:', ssimval); +figure; imshow(u_diff, [0 1]); title('Diffusion denoised image (CPU)'); +%% +% fprintf('Denoise using Nonlinear-Diffusion model (GPU) \n'); +% iter_diff = 450; % number of diffusion iterations +% lambda_regDiff = 0.025; % regularisation for the diffusivity +% sigmaPar = 0.015; % edge-preserving parameter +% tau_param = 0.025; % time-marching constant +% tic; u_diff_g = NonlDiff_GPU(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc; +% figure; imshow(u_diff_g, [0 1]); title('Diffusion denoised image (GPU)'); +%% fprintf('Denoise using the TGV model (CPU) \n'); -lambda_TGV = 0.045; % regularisation parameter +lambda_TGV = 0.034; % regularisation parameter alpha1 = 1.0; % parameter to control the first-order term -alpha0 = 2.0; % parameter to control the second-order term -iter_TGV = 1500; % number of Primal-Dual iterations for TGV +alpha0 = 1.0; % parameter to control the second-order term +iter_TGV = 500; % number of Primal-Dual iterations for TGV tic; u_tgv = TGV(single(u0), lambda_TGV, alpha1, alpha0, iter_TGV); toc; rmseTGV = (RMSE(u_tgv(:),Im(:))); fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV); +[ssimval] = ssim(u_tgv*255,single(Im)*255); +fprintf('%s %f \n', 'MSSIM error for TGV is:', ssimval); figure; imshow(u_tgv, [0 1]); title('TGV denoised image (CPU)'); - +%% % fprintf('Denoise using the TGV model (GPU) \n'); -% lambda_TGV = 0.045; % regularisation parameter +% lambda_TGV = 0.034; % regularisation parameter % alpha1 = 1.0; % parameter to control the first-order term -% alpha0 = 2.0; % parameter to control the second-order term -% iter_TGV = 1500; % number of Primal-Dual iterations for TGV +% alpha0 = 1.0; % parameter to control the second-order term +% iter_TGV = 500; % number of Primal-Dual iterations for TGV % tic; u_tgv_gpu = TGV_GPU(single(u0), lambda_TGV, alpha1, alpha0, iter_TGV); toc; % rmseTGV_gpu = (RMSE(u_tgv_gpu(:),Im(:))); % fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV_gpu); +% [ssimval] = ssim(u_tgv_gpu*255,single(Im)*255); +% fprintf('%s %f \n', 'MSSIM error for TGV is:', ssimval); % figure; imshow(u_tgv_gpu, [0 1]); title('TGV denoised image (GPU)'); %% fprintf('Denoise using the ROF-LLT model (CPU) \n'); -lambda_ROF = lambda_reg; % ROF regularisation parameter -lambda_LLT = lambda_reg*0.45; % LLT regularisation parameter -iter_LLT = 1; % iterations +lambda_ROF = 0.016; % ROF regularisation parameter +lambda_LLT = lambda_reg*0.25; % LLT regularisation parameter +iter_LLT = 500; % iterations tau_rof_llt = 0.0025; % time-marching constant tic; u_rof_llt = LLT_ROF(single(u0), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt); toc; rmseROFLLT = (RMSE(u_rof_llt(:),Im(:))); fprintf('%s %f \n', 'RMSE error for TGV is:', rmseROFLLT); +[ssimval] = ssim(u_rof_llt*255,single(Im)*255); +fprintf('%s %f \n', 'MSSIM error for ROFLLT is:', ssimval); figure; imshow(u_rof_llt, [0 1]); title('ROF-LLT denoised image (CPU)'); %% % fprintf('Denoise using the ROF-LLT model (GPU) \n'); -% lambda_ROF = lambda_reg; % ROF regularisation parameter -% lambda_LLT = lambda_reg*0.45; % LLT regularisation parameter +% lambda_ROF = 0.016; % ROF regularisation parameter +% lambda_LLT = lambda_reg*0.25; % LLT regularisation parameter % iter_LLT = 500; % iterations % tau_rof_llt = 0.0025; % time-marching constant % tic; u_rof_llt_g = LLT_ROF_GPU(single(u0), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt); toc; @@ -101,32 +133,16 @@ figure; imshow(u_rof_llt, [0 1]); title('ROF-LLT denoised image (CPU)'); % fprintf('%s %f \n', 'RMSE error for TGV is:', rmseROFLLT_g); % figure; imshow(u_rof_llt_g, [0 1]); title('ROF-LLT denoised image (GPU)'); %% -fprintf('Denoise using Nonlinear-Diffusion model (CPU) \n'); -iter_diff = 800; % number of diffusion iterations -lambda_regDiff = 0.025; % regularisation for the diffusivity -sigmaPar = 0.015; % edge-preserving parameter -tau_param = 0.025; % time-marching constant -tic; u_diff = NonlDiff(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc; -rmseDiffus = (RMSE(u_diff(:),Im(:))); -fprintf('%s %f \n', 'RMSE error for Nonlinear Diffusion is:', rmseDiffus); -figure; imshow(u_diff, [0 1]); title('Diffusion denoised image (CPU)'); -%% -% fprintf('Denoise using Nonlinear-Diffusion model (GPU) \n'); -% iter_diff = 800; % number of diffusion iterations -% lambda_regDiff = 0.025; % regularisation for the diffusivity -% sigmaPar = 0.015; % edge-preserving parameter -% tau_param = 0.025; % time-marching constant -% tic; u_diff_g = NonlDiff_GPU(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc; -% figure; imshow(u_diff_g, [0 1]); title('Diffusion denoised image (GPU)'); -%% fprintf('Denoise using Fourth-order anisotropic diffusion model (CPU) \n'); iter_diff = 800; % number of diffusion iterations lambda_regDiff = 3.5; % regularisation for the diffusivity -sigmaPar = 0.02; % edge-preserving parameter +sigmaPar = 0.021; % edge-preserving parameter tau_param = 0.0015; % time-marching constant tic; u_diff4 = Diffusion_4thO(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc; rmseDiffHO = (RMSE(u_diff4(:),Im(:))); fprintf('%s %f \n', 'RMSE error for Fourth-order anisotropic diffusion is:', rmseDiffHO); +[ssimval] = ssim(u_diff4*255,single(Im)*255); +fprintf('%s %f \n', 'MSSIM error for DIFF4th is:', ssimval); figure; imshow(u_diff4, [0 1]); title('Diffusion 4thO denoised image (CPU)'); %% % fprintf('Denoise using Fourth-order anisotropic diffusion model (GPU) \n'); @@ -146,10 +162,12 @@ tic; [H_i, H_j, Weights] = PatchSelect(single(u0), SearchingWindow, PatchWindow, %% fprintf('Denoise using Non-local Total Variation (CPU) \n'); iter_nltv = 3; % number of nltv iterations -lambda_nltv = 0.05; % regularisation parameter for nltv +lambda_nltv = 0.055; % regularisation parameter for nltv tic; u_nltv = Nonlocal_TV(single(u0), H_i, H_j, 0, Weights, lambda_nltv, iter_nltv); toc; rmse_nltv = (RMSE(u_nltv(:),Im(:))); fprintf('%s %f \n', 'RMSE error for Non-local Total Variation is:', rmse_nltv); +[ssimval] = ssim(u_nltv*255,single(Im)*255); +fprintf('%s %f \n', 'MSSIM error for NLTV is:', ssimval); figure; imagesc(u_nltv, [0 1]); colormap(gray); daspect([1 1 1]); title('Non-local Total Variation denoised image (CPU)'); %% %>>>>>>>>>>>>>> MULTI-CHANNEL priors <<<<<<<<<<<<<<< % diff --git a/src/Core/regularisers_GPU/TGV_GPU_core.cu b/src/Core/regularisers_GPU/TGV_GPU_core.cu index e4abf72..849219b 100644 --- a/src/Core/regularisers_GPU/TGV_GPU_core.cu +++ b/src/Core/regularisers_GPU/TGV_GPU_core.cu @@ -38,49 +38,49 @@ limitations under the License. * [1] K. Bredies "Total Generalized Variation" */ + +#define BLKXSIZE2D 16 +#define BLKYSIZE2D 16 + #define BLKXSIZE 8 #define BLKYSIZE 8 -#define BLKZSIZE 8 - -#define BLKXSIZE2D 8 -#define BLKYSIZE2D 8 -#define EPS 1.0e-7 -#define idivup(a, b) ( ((a)%(b) != 0) ? (a)/(b)+1 : (a)/(b) ) +#define BLKZSIZE 8 +#define idivup(a, b) ( ((a)%(b) != 0) ? (a)/(b)+1 : (a)/(b) ) /********************************************************************/ /***************************2D Functions*****************************/ /********************************************************************/ -__global__ void DualP_2D_kernel(float *U, float *V1, float *V2, float *P1, float *P2, int dimX, int dimY, float sigma) +__global__ void DualP_2D_kernel(float *U, float *V1, float *V2, float *P1, float *P2, long dimX, long dimY, float sigma) { - int num_total = dimX*dimY; - const int i = blockDim.x * blockIdx.x + threadIdx.x; - const int j = blockDim.y * blockIdx.y + threadIdx.y; + const long i = blockDim.x * blockIdx.x + threadIdx.x; + const long j = blockDim.y * blockIdx.y + threadIdx.y; - int index = i + dimX*j; + long index = i + (dimX)*j; - if (index < num_total) { + if ((i < dimX) && (j < dimY)) { /* symmetric boundary conditions (Neuman) */ if ((i >= 0) && (i < dimX-1)) P1[index] += sigma*((U[(i+1) + dimX*j] - U[index]) - V1[index]); - else P1[index] += sigma*(-V1[index]); + else if (i == dimX-1) P1[index] -= sigma*(V1[index]); + else P1[index] = 0.0f; if ((j >= 0) && (j < dimY-1)) P2[index] += sigma*((U[i + dimX*(j+1)] - U[index]) - V2[index]); - else P2[index] += sigma*(-V2[index]); + else if (j == dimY-1) P2[index] -= sigma*(V2[index]); + else P2[index] = 0.0f; } return; } -__global__ void ProjP_2D_kernel(float *P1, float *P2, int dimX, int dimY, float alpha1) +__global__ void ProjP_2D_kernel(float *P1, float *P2, long dimX, long dimY, float alpha1) { float grad_magn; - int num_total = dimX*dimY; - const int i = blockDim.x * blockIdx.x + threadIdx.x; - const int j = blockDim.y * blockIdx.y + threadIdx.y; + const long i = blockDim.x * blockIdx.x + threadIdx.x; + const long j = blockDim.y * blockIdx.y + threadIdx.y; - int index = i + dimX*j; + long index = i + (dimX)*j; - if (index < num_total) { - grad_magn = sqrtf(pow(P1[index],2) + pow(P2[index],2)); + if ((i < dimX) && (j < dimY)) { + grad_magn = sqrtf(powf(P1[index],2) + powf(P2[index],2)); grad_magn = grad_magn/alpha1; if (grad_magn > 1.0f) { P1[index] /= grad_magn; @@ -90,17 +90,15 @@ __global__ void ProjP_2D_kernel(float *P1, float *P2, int dimX, int dimY, float return; } -__global__ void DualQ_2D_kernel(float *V1, float *V2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, float sigma) +__global__ void DualQ_2D_kernel(float *V1, float *V2, float *Q1, float *Q2, float *Q3, long dimX, long dimY, float sigma) { float q1, q2, q11, q22; - int num_total = dimX*dimY; - - const int i = blockDim.x * blockIdx.x + threadIdx.x; - const int j = blockDim.y * blockIdx.y + threadIdx.y; + const long i = blockDim.x * blockIdx.x + threadIdx.x; + const long j = blockDim.y * blockIdx.y + threadIdx.y; - int index = i + dimX*j; + long index = i + (dimX)*j; - if (index < num_total) { + if ((i < dimX) && (j < dimY)) { q1 = 0.0f; q2 = 0.0f; q11 = 0.0f; q22 = 0.0f; if ((i >= 0) && (i < dimX-1)) { @@ -120,18 +118,16 @@ __global__ void DualQ_2D_kernel(float *V1, float *V2, float *Q1, float *Q2, floa return; } -__global__ void ProjQ_2D_kernel(float *Q1, float *Q2, float *Q3, int dimX, int dimY, float alpha0) +__global__ void ProjQ_2D_kernel(float *Q1, float *Q2, float *Q3, long dimX, long dimY, float alpha0) { float grad_magn; - int num_total = dimX*dimY; - - const int i = blockDim.x * blockIdx.x + threadIdx.x; - const int j = blockDim.y * blockIdx.y + threadIdx.y; + const long i = blockDim.x * blockIdx.x + threadIdx.x; + const long j = blockDim.y * blockIdx.y + threadIdx.y; - int index = i + dimX*j; + long index = i + (dimX)*j; - if (index < num_total) { - grad_magn = sqrt(pow(Q1[index],2) + pow(Q2[index],2) + 2*pow(Q3[index],2)); + if ((i < dimX) && (j < dimY)) { + grad_magn = sqrt(powf(Q1[index],2) + powf(Q2[index],2) + 2*powf(Q3[index],2)); grad_magn = grad_magn/alpha0; if (grad_magn > 1.0f) { Q1[index] /= grad_magn; @@ -142,26 +138,26 @@ __global__ void ProjQ_2D_kernel(float *Q1, float *Q2, float *Q3, int dimX, int d return; } -__global__ void DivProjP_2D_kernel(float *U, float *U0, float *P1, float *P2, int dimX, int dimY, float lambda, float tau) +__global__ void DivProjP_2D_kernel(float *U, float *U0, float *P1, float *P2, long dimX, long dimY, float lambda, float tau) { float P_v1, P_v2, div; - int num_total = dimX*dimY; - - const int i = blockDim.x * blockIdx.x + threadIdx.x; - const int j = blockDim.y * blockIdx.y + threadIdx.y; + const long i = blockDim.x * blockIdx.x + threadIdx.x; + const long j = blockDim.y * blockIdx.y + threadIdx.y; - int index = i + dimX*j; + long index = i + (dimX)*j; - if (index < num_total) { - P_v1 = 0.0f; P_v2 = 0.0f; - - if (i == 0) P_v1 = P1[index]; - if (i == dimX-1) P_v1 = -P1[(i-1) + dimX*j]; + if ((i < dimX) && (j < dimY)) { + if ((i > 0) && (i < dimX-1)) P_v1 = P1[index] - P1[(i-1) + dimX*j]; + else if (i == dimX-1) P_v1 = -P1[(i-1) + dimX*j]; + else if (i == 0) P_v1 = P1[index]; + else P_v1 = 0.0f; - if (j == 0) P_v2 = P2[index]; - if (j == dimY-1) P_v2 = -P2[i + dimX*(j-1)]; if ((j > 0) && (j < dimY-1)) P_v2 = P2[index] - P2[i + dimX*(j-1)]; + else if (j == dimY-1) P_v2 = -P2[i + dimX*(j-1)]; + else if (j == 0) P_v2 = P2[index]; + else P_v2 = 0.0f; + div = P_v1 + P_v2; U[index] = (lambda*(U[index] + tau*div) + tau*U0[index])/(lambda + tau); @@ -169,18 +165,19 @@ __global__ void DivProjP_2D_kernel(float *U, float *U0, float *P1, float *P2, in return; } -__global__ void UpdV_2D_kernel(float *V1, float *V2, float *P1, float *P2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, float tau) +__global__ void UpdV_2D_kernel(float *V1, float *V2, float *P1, float *P2, float *Q1, float *Q2, float *Q3, long dimX, long dimY, float tau) { float q1, q3_x, q2, q3_y, div1, div2; - int num_total = dimX*dimY; - int i1, j1; + long i1, j1; - const int i = blockDim.x * blockIdx.x + threadIdx.x; - const int j = blockDim.y * blockIdx.y + threadIdx.y; + const long i = blockDim.x * blockIdx.x + threadIdx.x; + const long j = blockDim.y * blockIdx.y + threadIdx.y; - int index = i + dimX*j; + long index = i + (dimX)*j; - if (index < num_total) { + if ((i < dimX) && (j < dimY)) { + + q1 = 0.0f; q3_x = 0.0f; q2 = 0.0f; q3_y = 0.0f; div1 = 0.0f; div2= 0.0f; i1 = (i-1) + dimX*j; j1 = (i) + dimX*(j-1); @@ -222,94 +219,95 @@ __global__ void UpdV_2D_kernel(float *V1, float *V2, float *P1, float *P2, float return; } -__global__ void copyIm_TGV_kernel(float *U, float *U_old, int N, int M, int num_total) +__global__ void copyIm_TGV_kernel(float *U, float *U_old, long dimX, long dimY) { - int xIndex = blockDim.x * blockIdx.x + threadIdx.x; - int yIndex = blockDim.y * blockIdx.y + threadIdx.y; - - int index = xIndex + N*yIndex; + const long i = blockDim.x * blockIdx.x + threadIdx.x; + const long j = blockDim.y * blockIdx.y + threadIdx.y; + + long index = i + (dimX)*j; - if (index < num_total) { + if ((i < dimX) && (j < dimY)) { U_old[index] = U[index]; } } -__global__ void copyIm_TGV_kernel_ar2(float *V1, float *V2, float *V1_old, float *V2_old, int N, int M, int num_total) +__global__ void copyIm_TGV_kernel_ar2(float *V1, float *V2, float *V1_old, float *V2_old, long dimX, long dimY) { - int xIndex = blockDim.x * blockIdx.x + threadIdx.x; - int yIndex = blockDim.y * blockIdx.y + threadIdx.y; - - int index = xIndex + N*yIndex; + const long i = blockDim.x * blockIdx.x + threadIdx.x; + const long j = blockDim.y * blockIdx.y + threadIdx.y; + + long index = i + (dimX)*j; - if (index < num_total) { + if ((i < dimX) && (j < dimY)) { V1_old[index] = V1[index]; V2_old[index] = V2[index]; } } -__global__ void newU_kernel(float *U, float *U_old, int N, int M, int num_total) +__global__ void newU_kernel(float *U, float *U_old, long dimX, long dimY) { - int xIndex = blockDim.x * blockIdx.x + threadIdx.x; - int yIndex = blockDim.y * blockIdx.y + threadIdx.y; - - int index = xIndex + N*yIndex; + const long i = blockDim.x * blockIdx.x + threadIdx.x; + const long j = blockDim.y * blockIdx.y + threadIdx.y; + + long index = i + (dimX)*j; - if (index < num_total) { + if ((i < dimX) && (j < dimY)) { U[index] = 2.0f*U[index] - U_old[index]; } } -__global__ void newU_kernel_ar2(float *V1, float *V2, float *V1_old, float *V2_old, int N, int M, int num_total) +__global__ void newU_kernel_ar2(float *V1, float *V2, float *V1_old, float *V2_old, long dimX, long dimY) { - int xIndex = blockDim.x * blockIdx.x + threadIdx.x; - int yIndex = blockDim.y * blockIdx.y + threadIdx.y; - - int index = xIndex + N*yIndex; + const long i = blockDim.x * blockIdx.x + threadIdx.x; + const long j = blockDim.y * blockIdx.y + threadIdx.y; + + long index = i + (dimX)*j; - if (index < num_total) { + if ((i < dimX) && (j < dimY)) { V1[index] = 2.0f*V1[index] - V1_old[index]; V2[index] = 2.0f*V2[index] - V2_old[index]; } } + /********************************************************************/ /***************************3D Functions*****************************/ /********************************************************************/ -__global__ void DualP_3D_kernel(float *U, float *V1, float *V2, float *V3, float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ, float sigma) +__global__ void DualP_3D_kernel(float *U, float *V1, float *V2, float *V3, float *P1, float *P2, float *P3, long dimX, long dimY, long dimZ, float sigma) { - int index; - const int i = blockDim.x * blockIdx.x + threadIdx.x; - const int j = blockDim.y * blockIdx.y + threadIdx.y; - const int k = blockDim.z * blockIdx.z + threadIdx.z; - - int num_total = dimX*dimY*dimZ; - - index = (dimX*dimY)*k + i*dimX+j; - if (index < num_total) { + long index; + const long i = blockDim.x * blockIdx.x + threadIdx.x; + const long j = blockDim.y * blockIdx.y + threadIdx.y; + const long k = blockDim.z * blockIdx.z + threadIdx.z; + + index = (dimX*dimY)*k + i*dimX+j; + + if ((i < dimX) && (j < dimY) && (k < dimZ)) { /* symmetric boundary conditions (Neuman) */ if ((i >= 0) && (i < dimX-1)) P1[index] += sigma*((U[(dimX*dimY)*k + (i+1)*dimX+j] - U[index]) - V1[index]); - else P1[index] += sigma*(-V1[index]); + else if (i == dimX-1) P1[index] -= sigma*(V1[index]); + else P1[index] = 0.0f; if ((j >= 0) && (j < dimY-1)) P2[index] += sigma*((U[(dimX*dimY)*k + i*dimX+(j+1)] - U[index]) - V2[index]); - else P2[index] += sigma*(-V2[index]); + else if (j == dimY-1) P2[index] -= sigma*(V2[index]); + else P2[index] = 0.0f; if ((k >= 0) && (k < dimZ-1)) P3[index] += sigma*((U[(dimX*dimY)*(k+1) + i*dimX+(j)] - U[index]) - V3[index]); - else P3[index] += sigma*(-V3[index]); - } + else if (k == dimZ-1) P3[index] -= sigma*(V3[index]); + else P3[index] = 0.0f; + } return; -} +} -__global__ void ProjP_3D_kernel(float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ, float alpha1) +__global__ void ProjP_3D_kernel(float *P1, float *P2, float *P3, long dimX, long dimY, long dimZ, float alpha1) { float grad_magn; - int index; - int num_total = dimX*dimY*dimZ; - - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; + long index; + const long i = blockDim.x * blockIdx.x + threadIdx.x; + const long j = blockDim.y * blockIdx.y + threadIdx.y; + const long k = blockDim.z * blockIdx.z + threadIdx.z; index = (dimX*dimY)*k + i*dimX+j; - if (index < num_total) { - grad_magn = (sqrtf(pow(P1[index],2) + pow(P2[index],2) + pow(P3[index],2)))/alpha1; + if ((i < dimX) && (j < dimY) && (k < dimZ)) { + grad_magn = (sqrtf(powf(P1[index],2) + powf(P2[index],2) + powf(P3[index],2)))/alpha1; if (grad_magn > 1.0f) { P1[index] /= grad_magn; P2[index] /= grad_magn; @@ -319,23 +317,22 @@ __global__ void ProjP_3D_kernel(float *P1, float *P2, float *P3, int dimX, int d return; } -__global__ void DualQ_3D_kernel(float *V1, float *V2, float *V3, float *Q1, float *Q2, float *Q3, float *Q4, float *Q5, float *Q6, int dimX, int dimY, int dimZ, float sigma) +__global__ void DualQ_3D_kernel(float *V1, float *V2, float *V3, float *Q1, float *Q2, float *Q3, float *Q4, float *Q5, float *Q6, long dimX, long dimY, long dimZ, float sigma) { - int index; - float q1, q2, q3, q11, q22, q33, q44, q55, q66; - int num_total = dimX*dimY*dimZ; - - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; + float q1, q2, q3, q11, q22, q33, q44, q55, q66; + long index; + + const long i = blockDim.x * blockIdx.x + threadIdx.x; + const long j = blockDim.y * blockIdx.y + threadIdx.y; + const long k = blockDim.z * blockIdx.z + threadIdx.z; index = (dimX*dimY)*k + i*dimX+j; - int i1 = (dimX*dimY)*k + (i+1)*dimX+j; - int j1 = (dimX*dimY)*k + (i)*dimX+(j+1); - int k1 = (dimX*dimY)*(k+1) + (i)*dimX+(j); + long i1 = (dimX*dimY)*k + (i+1)*dimX+j; + long j1 = (dimX*dimY)*k + (i)*dimX+(j+1); + long k1 = (dimX*dimY)*(k+1) + (i)*dimX+(j); - if (index < num_total) { + if ((i < dimX) && (j < dimY) && (k < dimZ)) { q1 = 0.0f; q11 = 0.0f; q33 = 0.0f; q2 = 0.0f; q22 = 0.0f; q55 = 0.0f; q3 = 0.0f; q44 = 0.0f; q66 = 0.0f; /* boundary conditions (Neuman) */ @@ -362,20 +359,18 @@ __global__ void DualQ_3D_kernel(float *V1, float *V2, float *V3, float *Q1, floa return; } -__global__ void ProjQ_3D_kernel(float *Q1, float *Q2, float *Q3, float *Q4, float *Q5, float *Q6, int dimX, int dimY, int dimZ, float alpha0) +__global__ void ProjQ_3D_kernel(float *Q1, float *Q2, float *Q3, float *Q4, float *Q5, float *Q6, long dimX, long dimY, long dimZ, float alpha0) { float grad_magn; - int index; - int num_total = dimX*dimY*dimZ; - - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; + long index; + const long i = blockDim.x * blockIdx.x + threadIdx.x; + const long j = blockDim.y * blockIdx.y + threadIdx.y; + const long k = blockDim.z * blockIdx.z + threadIdx.z; index = (dimX*dimY)*k + i*dimX+j; - if (index < num_total) { - grad_magn = sqrtf(pow(Q1[index],2) + pow(Q2[index],2) + pow(Q3[index],2) + 2.0f*pow(Q4[index],2) + 2.0f*pow(Q5[index],2) + 2.0f*pow(Q6[index],2)); + if ((i < dimX) && (j < dimY) && (k < dimZ)) { + grad_magn = sqrtf(powf(Q1[index],2) + powf(Q2[index],2) + powf(Q3[index],2) + 2.0f*powf(Q4[index],2) + 2.0f*powf(Q5[index],2) + 2.0f*powf(Q6[index],2)); grad_magn = grad_magn/alpha0; if (grad_magn > 1.0f) { Q1[index] /= grad_magn; @@ -388,60 +383,56 @@ __global__ void ProjQ_3D_kernel(float *Q1, float *Q2, float *Q3, float *Q4, floa } return; } -__global__ void DivProjP_3D_kernel(float *U, float *U0, float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ, float lambda, float tau) +__global__ void DivProjP_3D_kernel(float *U, float *U0, float *P1, float *P2, float *P3, long dimX, long dimY, long dimZ, float lambda, float tau) { float P_v1, P_v2, P_v3, div; - int index; - int num_total = dimX*dimY*dimZ; - - - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; + long index; + const long i = blockDim.x * blockIdx.x + threadIdx.x; + const long j = blockDim.y * blockIdx.y + threadIdx.y; + const long k = blockDim.z * blockIdx.z + threadIdx.z; index = (dimX*dimY)*k + i*dimX+j; - int i1 = (dimX*dimY)*k + (i-1)*dimX+j; - int j1 = (dimX*dimY)*k + (i)*dimX+(j-1); - int k1 = (dimX*dimY)*(k-1) + (i)*dimX+(j); - - if (index < num_total) { - P_v1 = 0.0f; P_v2 = 0.0f; P_v3 = 0.0f; + long i1 = (dimX*dimY)*k + (i-1)*dimX+j; + long j1 = (dimX*dimY)*k + (i)*dimX+(j-1); + long k1 = (dimX*dimY)*(k-1) + (i)*dimX+(j); - if (i == 0) P_v1 = P1[index]; - if (i == dimX-1) P_v1 = -P1[i1]; + if ((i < dimX) && (j < dimY) && (k < dimZ)) { + if ((i > 0) && (i < dimX-1)) P_v1 = P1[index] - P1[i1]; + else if (i == dimX-1) P_v1 = -P1[i1]; + else if (i == 0) P_v1 = P1[index]; + else P_v1 = 0.0f; - if (j == 0) P_v2 = P2[index]; - if (j == dimY-1) P_v2 = -P2[j1]; if ((j > 0) && (j < dimY-1)) P_v2 = P2[index] - P2[j1]; - - if (k == 0) P_v3 = P3[index]; - if (k == dimZ-1) P_v3 = -P3[k1]; - if ((k > 0) && (k < dimZ-1)) P_v3 = P3[index] - P3[k1]; - - + else if (j == dimY-1) P_v2 = -P2[j1]; + else if (j == 0) P_v2 = P2[index]; + else P_v2 = 0.0f; + + if ((k > 0) && (k < dimZ-1)) P_v3 = P3[index] - P3[k1]; + else if (k == dimZ-1) P_v3 = -P3[k1]; + else if (k == 0) P_v3 = P3[index]; + else P_v3 = 0.0f; + div = P_v1 + P_v2 + P_v3; U[index] = (lambda*(U[index] + tau*div) + tau*U0[index])/(lambda + tau); } return; } -__global__ void UpdV_3D_kernel(float *V1, float *V2, float *V3, float *P1, float *P2, float *P3, float *Q1, float *Q2, float *Q3, float *Q4, float *Q5, float *Q6, int dimX, int dimY, int dimZ, float tau) +__global__ void UpdV_3D_kernel(float *V1, float *V2, float *V3, float *P1, float *P2, float *P3, float *Q1, float *Q2, float *Q3, float *Q4, float *Q5, float *Q6, long dimX, long dimY, long dimZ, float tau) { float q1, q4x, q5x, q2, q4y, q6y, q6z, q5z, q3, div1, div2, div3; - int index; - int num_total = dimX*dimY*dimZ; - - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; + long index; + const long i = blockDim.x * blockIdx.x + threadIdx.x; + const long j = blockDim.y * blockIdx.y + threadIdx.y; + const long k = blockDim.z * blockIdx.z + threadIdx.z; index = (dimX*dimY)*k + i*dimX+j; - int i1 = (dimX*dimY)*k + (i-1)*dimX+j; - int j1 = (dimX*dimY)*k + (i)*dimX+(j-1); - int k1 = (dimX*dimY)*(k-1) + (i)*dimX+(j); + long i1 = (dimX*dimY)*k + (i-1)*dimX+j; + long j1 = (dimX*dimY)*k + (i)*dimX+(j-1); + long k1 = (dimX*dimY)*(k-1) + (i)*dimX+(j); /* Q1 - Q11, Q2 - Q22, Q3 - Q33, Q4 - Q21/Q12, Q5 - Q31/Q13, Q6 - Q32/Q23*/ - if (index < num_total) { + if ((i < dimX) && (j < dimY) && (k < dimZ)) { /* boundary conditions (Neuman) */ if ((i > 0) && (i < dimX-1)) { @@ -507,64 +498,60 @@ __global__ void UpdV_3D_kernel(float *V1, float *V2, float *V3, float *P1, float return; } -__global__ void copyIm_TGV_kernel3D(float *U, float *U_old, int dimX, int dimY, int dimZ, int num_total) +__global__ void copyIm_TGV_kernel3D(float *U, float *U_old, long dimX, long dimY, long dimZ) { - int index; - - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; + long index; + const long i = blockDim.x * blockIdx.x + threadIdx.x; + const long j = blockDim.y * blockIdx.y + threadIdx.y; + const long k = blockDim.z * blockIdx.z + threadIdx.z; index = (dimX*dimY)*k + j*dimX+i; - if (index < num_total) { + if ((i < dimX) && (j < dimY) && (k < dimZ)) { U_old[index] = U[index]; } } -__global__ void copyIm_TGV_kernel3D_ar3(float *V1, float *V2, float *V3, float *V1_old, float *V2_old, float *V3_old, int dimX, int dimY, int dimZ, int num_total) +__global__ void copyIm_TGV_kernel3D_ar3(float *V1, float *V2, float *V3, float *V1_old, float *V2_old, float *V3_old, long dimX, long dimY, long dimZ) { - int index; - - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; + long index; + const long i = blockDim.x * blockIdx.x + threadIdx.x; + const long j = blockDim.y * blockIdx.y + threadIdx.y; + const long k = blockDim.z * blockIdx.z + threadIdx.z; index = (dimX*dimY)*k + j*dimX+i; - if (index < num_total) { + if ((i < dimX) && (j < dimY) && (k < dimZ)) { V1_old[index] = V1[index]; V2_old[index] = V2[index]; V3_old[index] = V3[index]; } } -__global__ void newU_kernel3D(float *U, float *U_old, int dimX, int dimY, int dimZ, int num_total) +__global__ void newU_kernel3D(float *U, float *U_old, int dimX, int dimY, int dimZ) { - int index; - - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; + long index; + const long i = blockDim.x * blockIdx.x + threadIdx.x; + const long j = blockDim.y * blockIdx.y + threadIdx.y; + const long k = blockDim.z * blockIdx.z + threadIdx.z; index = (dimX*dimY)*k + j*dimX+i; - if (index < num_total) { + if ((i < dimX) && (j < dimY) && (k < dimZ)) { U[index] = 2.0f*U[index] - U_old[index]; } } -__global__ void newU_kernel3D_ar3(float *V1, float *V2, float *V3, float *V1_old, float *V2_old, float *V3_old, int dimX, int dimY, int dimZ, int num_total) +__global__ void newU_kernel3D_ar3(float *V1, float *V2, float *V3, float *V1_old, float *V2_old, float *V3_old, long dimX, long dimY, long dimZ) { - int index; - - int i = blockDim.x * blockIdx.x + threadIdx.x; - int j = blockDim.y * blockIdx.y + threadIdx.y; - int k = blockDim.z * blockIdx.z + threadIdx.z; + long index; + const long i = blockDim.x * blockIdx.x + threadIdx.x; + const long j = blockDim.y * blockIdx.y + threadIdx.y; + const long k = blockDim.z * blockIdx.z + threadIdx.z; index = (dimX*dimY)*k + j*dimX+i; - if (index < num_total) { + if ((i < dimX) && (j < dimY) && (k < dimZ)) { V1[index] = 2.0f*V1[index] - V1_old[index]; V2[index] = 2.0f*V2[index] - V2_old[index]; V3[index] = 2.0f*V3[index] - V3_old[index]; @@ -576,14 +563,20 @@ __global__ void newU_kernel3D_ar3(float *V1, float *V2, float *V3, float *V1_old /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ extern "C" int TGV_GPU_main(float *U0, float *U, float lambda, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY, int dimZ) { - int dimTotal, dev = 0; - CHECK(cudaSetDevice(dev)); - - dimTotal = dimX*dimY*dimZ; + + int deviceCount = -1; // number of devices + cudaGetDeviceCount(&deviceCount); + if (deviceCount == 0) { + fprintf(stderr, "No CUDA devices found\n"); + return -1; + } + + long dimTotal = (long)(dimX*dimY*dimZ); + float *U_old, *d_U0, *d_U, *P1, *P2, *Q1, *Q2, *Q3, *V1, *V1_old, *V2, *V2_old, tau, sigma; - tau = pow(L2,-0.5); - sigma = pow(L2,-0.5); + tau = powf(L2,-0.5f); + sigma = tau; CHECK(cudaMalloc((void**)&d_U0,dimTotal*sizeof(float))); CHECK(cudaMalloc((void**)&d_U,dimTotal*sizeof(float))); @@ -611,41 +604,51 @@ extern "C" int TGV_GPU_main(float *U0, float *U, float lambda, float alpha1, flo if (dimZ == 1) { /*2D case */ - dim3 dimBlock(BLKXSIZE2D,BLKYSIZE2D); - dim3 dimGrid(idivup(dimX,BLKXSIZE2D), idivup(dimY,BLKYSIZE2D)); + dim3 dimBlock(BLKXSIZE2D,BLKYSIZE2D); + dim3 dimGrid(idivup(dimX,BLKXSIZE2D), idivup(dimY,BLKYSIZE2D)); for(int n=0; n < iterationsNumb; n++) { /* Calculate Dual Variable P */ - DualP_2D_kernel<<<dimGrid,dimBlock>>>(d_U, V1, V2, P1, P2, dimX, dimY, sigma); - CHECK(cudaDeviceSynchronize()); + DualP_2D_kernel<<<dimGrid,dimBlock>>>(d_U, V1, V2, P1, P2, (long)(dimX), (long)(dimY), sigma); + checkCudaErrors( cudaDeviceSynchronize() ); + checkCudaErrors(cudaPeekAtLastError() ); /*Projection onto convex set for P*/ - ProjP_2D_kernel<<<dimGrid,dimBlock>>>(P1, P2, dimX, dimY, alpha1); - CHECK(cudaDeviceSynchronize()); + ProjP_2D_kernel<<<dimGrid,dimBlock>>>(P1, P2, (long)(dimX), (long)(dimY), alpha1); + checkCudaErrors( cudaDeviceSynchronize() ); + checkCudaErrors(cudaPeekAtLastError() ); /* Calculate Dual Variable Q */ - DualQ_2D_kernel<<<dimGrid,dimBlock>>>(V1, V2, Q1, Q2, Q3, dimX, dimY, sigma); - CHECK(cudaDeviceSynchronize()); + DualQ_2D_kernel<<<dimGrid,dimBlock>>>(V1, V2, Q1, Q2, Q3, (long)(dimX), (long)(dimY), sigma); + checkCudaErrors( cudaDeviceSynchronize() ); + checkCudaErrors(cudaPeekAtLastError() ); /*Projection onto convex set for Q*/ - ProjQ_2D_kernel<<<dimGrid,dimBlock>>>(Q1, Q2, Q3, dimX, dimY, alpha0); - CHECK(cudaDeviceSynchronize()); + ProjQ_2D_kernel<<<dimGrid,dimBlock>>>(Q1, Q2, Q3, (long)(dimX), (long)(dimY), alpha0); + checkCudaErrors( cudaDeviceSynchronize() ); + checkCudaErrors(cudaPeekAtLastError() ); /*saving U into U_old*/ - copyIm_TGV_kernel<<<dimGrid,dimBlock>>>(d_U, U_old, dimX, dimY, dimTotal); - CHECK(cudaDeviceSynchronize()); + copyIm_TGV_kernel<<<dimGrid,dimBlock>>>(d_U, U_old, (long)(dimX), (long)(dimY)); + checkCudaErrors( cudaDeviceSynchronize() ); + checkCudaErrors(cudaPeekAtLastError() ); /*adjoint operation -> divergence and projection of P*/ - DivProjP_2D_kernel<<<dimGrid,dimBlock>>>(d_U, d_U0, P1, P2, dimX, dimY, lambda, tau); - CHECK(cudaDeviceSynchronize()); + DivProjP_2D_kernel<<<dimGrid,dimBlock>>>(d_U, d_U0, P1, P2, (long)(dimX), (long)(dimY), lambda, tau); + checkCudaErrors( cudaDeviceSynchronize() ); + checkCudaErrors(cudaPeekAtLastError() ); /*get updated solution U*/ - newU_kernel<<<dimGrid,dimBlock>>>(d_U, U_old, dimX, dimY, dimTotal); - CHECK(cudaDeviceSynchronize()); + newU_kernel<<<dimGrid,dimBlock>>>(d_U, U_old, (long)(dimX), (long)(dimY)); + checkCudaErrors( cudaDeviceSynchronize() ); + checkCudaErrors(cudaPeekAtLastError() ); /*saving V into V_old*/ - copyIm_TGV_kernel_ar2<<<dimGrid,dimBlock>>>(V1, V2, V1_old, V2_old, dimX, dimY, dimTotal); - CHECK(cudaDeviceSynchronize()); + copyIm_TGV_kernel_ar2<<<dimGrid,dimBlock>>>(V1, V2, V1_old, V2_old, (long)(dimX), (long)(dimY)); + checkCudaErrors( cudaDeviceSynchronize() ); + checkCudaErrors(cudaPeekAtLastError() ); /* upd V*/ - UpdV_2D_kernel<<<dimGrid,dimBlock>>>(V1, V2, P1, P2, Q1, Q2, Q3, dimX, dimY, tau); - CHECK(cudaDeviceSynchronize()); + UpdV_2D_kernel<<<dimGrid,dimBlock>>>(V1, V2, P1, P2, Q1, Q2, Q3, (long)(dimX), (long)(dimY), tau); + checkCudaErrors( cudaDeviceSynchronize() ); + checkCudaErrors(cudaPeekAtLastError() ); /*get new V*/ - newU_kernel_ar2<<<dimGrid,dimBlock>>>(V1, V2, V1_old, V2_old, dimX, dimY, dimTotal); - CHECK(cudaDeviceSynchronize()); + newU_kernel_ar2<<<dimGrid,dimBlock>>>(V1, V2, V1_old, V2_old, (long)(dimX), (long)(dimY)); + checkCudaErrors( cudaDeviceSynchronize() ); + checkCudaErrors(cudaPeekAtLastError() ); } } else { @@ -671,35 +674,45 @@ extern "C" int TGV_GPU_main(float *U0, float *U, float lambda, float alpha1, flo for(int n=0; n < iterationsNumb; n++) { /* Calculate Dual Variable P */ - DualP_3D_kernel<<<dimGrid,dimBlock>>>(d_U, V1, V2, V3, P1, P2, P3, dimX, dimY, dimZ, sigma); - CHECK(cudaDeviceSynchronize()); + DualP_3D_kernel<<<dimGrid,dimBlock>>>(d_U, V1, V2, V3, P1, P2, P3, (long)(dimX), (long)(dimY), (long)(dimZ), sigma); + checkCudaErrors( cudaDeviceSynchronize() ); + checkCudaErrors(cudaPeekAtLastError() ); /*Projection onto convex set for P*/ - ProjP_3D_kernel<<<dimGrid,dimBlock>>>(P1, P2, P3, dimX, dimY, dimZ, alpha1); - CHECK(cudaDeviceSynchronize()); + ProjP_3D_kernel<<<dimGrid,dimBlock>>>(P1, P2, P3, (long)(dimX), (long)(dimY), (long)(dimZ), alpha1); + checkCudaErrors( cudaDeviceSynchronize() ); + checkCudaErrors(cudaPeekAtLastError() ); /* Calculate Dual Variable Q */ - DualQ_3D_kernel<<<dimGrid,dimBlock>>>(V1, V2, V3, Q1, Q2, Q3, Q4, Q5, Q6, dimX, dimY, dimZ, sigma); - CHECK(cudaDeviceSynchronize()); + DualQ_3D_kernel<<<dimGrid,dimBlock>>>(V1, V2, V3, Q1, Q2, Q3, Q4, Q5, Q6, (long)(dimX), (long)(dimY), (long)(dimZ), sigma); + checkCudaErrors( cudaDeviceSynchronize() ); + checkCudaErrors(cudaPeekAtLastError() ); /*Projection onto convex set for Q*/ - ProjQ_3D_kernel<<<dimGrid,dimBlock>>>(Q1, Q2, Q3, Q4, Q5, Q6, dimX, dimY, dimZ, alpha0); - CHECK(cudaDeviceSynchronize()); + ProjQ_3D_kernel<<<dimGrid,dimBlock>>>(Q1, Q2, Q3, Q4, Q5, Q6, (long)(dimX), (long)(dimY), (long)(dimZ), alpha0); + checkCudaErrors( cudaDeviceSynchronize() ); + checkCudaErrors(cudaPeekAtLastError() ); /*saving U into U_old*/ - copyIm_TGV_kernel3D<<<dimGrid,dimBlock>>>(d_U, U_old, dimX, dimY, dimZ, dimTotal); - CHECK(cudaDeviceSynchronize()); + copyIm_TGV_kernel3D<<<dimGrid,dimBlock>>>(d_U, U_old, (long)(dimX), (long)(dimY), (long)(dimZ)); + checkCudaErrors( cudaDeviceSynchronize() ); + checkCudaErrors(cudaPeekAtLastError() ); /*adjoint operation -> divergence and projection of P*/ - DivProjP_3D_kernel<<<dimGrid,dimBlock>>>(d_U, d_U0, P1, P2, P3, dimX, dimY, dimZ, lambda, tau); - CHECK(cudaDeviceSynchronize()); + DivProjP_3D_kernel<<<dimGrid,dimBlock>>>(d_U, d_U0, P1, P2, P3, (long)(dimX), (long)(dimY), (long)(dimZ), lambda, tau); + checkCudaErrors( cudaDeviceSynchronize() ); + checkCudaErrors(cudaPeekAtLastError() ); /*get updated solution U*/ - newU_kernel3D<<<dimGrid,dimBlock>>>(d_U, U_old, dimX, dimY, dimZ, dimTotal); - CHECK(cudaDeviceSynchronize()); + newU_kernel3D<<<dimGrid,dimBlock>>>(d_U, U_old, (long)(dimX), (long)(dimY), (long)(dimZ)); + checkCudaErrors( cudaDeviceSynchronize() ); + checkCudaErrors(cudaPeekAtLastError() ); /*saving V into V_old*/ - copyIm_TGV_kernel3D_ar3<<<dimGrid,dimBlock>>>(V1, V2, V3, V1_old, V2_old, V3_old, dimX, dimY, dimZ, dimTotal); - CHECK(cudaDeviceSynchronize()); + copyIm_TGV_kernel3D_ar3<<<dimGrid,dimBlock>>>(V1, V2, V3, V1_old, V2_old, V3_old, (long)(dimX), (long)(dimY), (long)(dimZ)); + checkCudaErrors( cudaDeviceSynchronize() ); + checkCudaErrors(cudaPeekAtLastError() ); /* upd V*/ - UpdV_3D_kernel<<<dimGrid,dimBlock>>>(V1, V2, V3, P1, P2, P3, Q1, Q2, Q3, Q4, Q5, Q6, dimX, dimY, dimZ, tau); - CHECK(cudaDeviceSynchronize()); + UpdV_3D_kernel<<<dimGrid,dimBlock>>>(V1, V2, V3, P1, P2, P3, Q1, Q2, Q3, Q4, Q5, Q6, (long)(dimX), (long)(dimY), (long)(dimZ), tau); + checkCudaErrors( cudaDeviceSynchronize() ); + checkCudaErrors(cudaPeekAtLastError() ); /*get new V*/ - newU_kernel3D_ar3<<<dimGrid,dimBlock>>>(V1, V2, V3, V1_old, V2_old, V3_old, dimX, dimY, dimZ, dimTotal); - CHECK(cudaDeviceSynchronize()); + newU_kernel3D_ar3<<<dimGrid,dimBlock>>>(V1, V2, V3, V1_old, V2_old, V3_old, (long)(dimX), (long)(dimY), (long)(dimZ)); + checkCudaErrors( cudaDeviceSynchronize() ); + checkCudaErrors(cudaPeekAtLastError() ); } CHECK(cudaFree(Q4)); @@ -724,5 +737,7 @@ extern "C" int TGV_GPU_main(float *U0, float *U, float lambda, float alpha1, flo CHECK(cudaFree(V2)); CHECK(cudaFree(V1_old)); CHECK(cudaFree(V2_old)); + + cudaDeviceReset(); return 0; } diff --git a/src/Core/regularisers_GPU/TGV_GPU_core.h b/src/Core/regularisers_GPU/TGV_GPU_core.h index 9f73d1c..e8f9c6e 100644 --- a/src/Core/regularisers_GPU/TGV_GPU_core.h +++ b/src/Core/regularisers_GPU/TGV_GPU_core.h @@ -1,6 +1,8 @@ #ifndef __TGV_GPU_H__ #define __TGV_GPU_H__ + #include "CCPiDefines.h" +#include <memory.h> #include <stdio.h> extern "C" CCPI_EXPORT int TGV_GPU_main(float *U0, float *U, float lambda, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY, int dimZ); |