summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorDaniil Kazantsev <dkazanc@hotmail.com>2018-01-24 17:39:38 +0000
committerEdoardo Pasca <edo.paskino@gmail.com>2018-01-25 11:21:12 +0000
commit723a2d3fbe9a7a8c145b5f5ef481dcd4a3799383 (patch)
treeb4351067e39021973b7f155a04cd967289ac9ddc
parent9ff389298a1dc4d94222cfcc6e9c6c945401af03 (diff)
downloadregularization-723a2d3fbe9a7a8c145b5f5ef481dcd4a3799383.tar.gz
regularization-723a2d3fbe9a7a8c145b5f5ef481dcd4a3799383.tar.bz2
regularization-723a2d3fbe9a7a8c145b5f5ef481dcd4a3799383.tar.xz
regularization-723a2d3fbe9a7a8c145b5f5ef481dcd4a3799383.zip
all Matlab related stuff have been moved to wrappers
-rw-r--r--Core/regularizers_CPU/PatchBased_Regul.c140
-rw-r--r--Core/regularizers_GPU/Diffus_HO/Diff4thHajiaboli_GPU.cpp114
-rw-r--r--Core/regularizers_GPU/NL_Regul/NLM_GPU.cpp171
-rw-r--r--Wrappers/Matlab/compile_mex.m11
-rw-r--r--Wrappers/Matlab/demos/Demo_Phantom3D_Cone.m (renamed from demos/Demo_Phantom3D_Cone.m)0
-rw-r--r--Wrappers/Matlab/demos/Demo_Phantom3D_Parallel.m (renamed from demos/Demo_Phantom3D_Parallel.m)0
-rw-r--r--Wrappers/Matlab/demos/Demo_RealData3D_Parallel.m (renamed from demos/Demo_RealData3D_Parallel.m)0
-rw-r--r--Wrappers/Matlab/demos/exportDemoRD2Data.m (renamed from demos/exportDemoRD2Data.m)0
-rw-r--r--Wrappers/Matlab/mex_compile/compile_mex.m (renamed from main_func/compile_mex.m)0
-rw-r--r--Wrappers/Matlab/mex_compile/regularizers_CPU/FGP_TV.c (renamed from Core/regularizers_CPU/FGP_TV.c)0
-rw-r--r--Wrappers/Matlab/mex_compile/regularizers_CPU/FGP_TV_core.c (renamed from main_func/regularizers_CPU/FGP_TV_core.c)0
-rw-r--r--Wrappers/Matlab/mex_compile/regularizers_CPU/FGP_TV_core.h (renamed from main_func/regularizers_CPU/FGP_TV_core.h)0
-rw-r--r--Wrappers/Matlab/mex_compile/regularizers_CPU/LLT_model.c (renamed from Core/regularizers_CPU/LLT_model.c)0
-rw-r--r--Wrappers/Matlab/mex_compile/regularizers_CPU/LLT_model_core.c (renamed from main_func/regularizers_CPU/LLT_model_core.c)0
-rw-r--r--Wrappers/Matlab/mex_compile/regularizers_CPU/LLT_model_core.h (renamed from main_func/regularizers_CPU/LLT_model_core.h)0
-rw-r--r--Wrappers/Matlab/mex_compile/regularizers_CPU/PatchBased_Regul.c (renamed from main_func/regularizers_CPU/PatchBased_Regul.c)0
-rw-r--r--Wrappers/Matlab/mex_compile/regularizers_CPU/PatchBased_Regul_core.c (renamed from main_func/regularizers_CPU/PatchBased_Regul_core.c)0
-rw-r--r--Wrappers/Matlab/mex_compile/regularizers_CPU/PatchBased_Regul_core.h (renamed from main_func/regularizers_CPU/PatchBased_Regul_core.h)0
-rw-r--r--Wrappers/Matlab/mex_compile/regularizers_CPU/SplitBregman_TV.c (renamed from Core/regularizers_CPU/SplitBregman_TV.c)0
-rw-r--r--Wrappers/Matlab/mex_compile/regularizers_CPU/SplitBregman_TV_core.c (renamed from main_func/regularizers_CPU/SplitBregman_TV_core.c)0
-rw-r--r--Wrappers/Matlab/mex_compile/regularizers_CPU/SplitBregman_TV_core.h (renamed from main_func/regularizers_CPU/SplitBregman_TV_core.h)0
-rw-r--r--Wrappers/Matlab/mex_compile/regularizers_CPU/TGV_PD.c (renamed from Core/regularizers_CPU/TGV_PD.c)0
-rw-r--r--Wrappers/Matlab/mex_compile/regularizers_CPU/TGV_PD_core.c (renamed from main_func/regularizers_CPU/TGV_PD_core.c)0
-rw-r--r--Wrappers/Matlab/mex_compile/regularizers_CPU/TGV_PD_core.h (renamed from main_func/regularizers_CPU/TGV_PD_core.h)0
-rw-r--r--Wrappers/Matlab/mex_compile/regularizers_CPU/utils.c (renamed from main_func/regularizers_CPU/utils.c)0
-rw-r--r--Wrappers/Matlab/mex_compile/regularizers_CPU/utils.h (renamed from main_func/regularizers_CPU/utils.h)0
-rw-r--r--Wrappers/Matlab/mex_compile/regularizers_GPU/Diffus_HO/Diff4thHajiaboli_GPU.cpp (renamed from main_func/regularizers_GPU/Diffus_HO/Diff4thHajiaboli_GPU.cpp)0
-rw-r--r--Wrappers/Matlab/mex_compile/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.cu (renamed from main_func/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.cu)0
-rw-r--r--Wrappers/Matlab/mex_compile/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.h (renamed from main_func/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.h)0
-rw-r--r--Wrappers/Matlab/mex_compile/regularizers_GPU/NL_Regul/NLM_GPU.cpp (renamed from main_func/regularizers_GPU/NL_Regul/NLM_GPU.cpp)0
-rw-r--r--Wrappers/Matlab/mex_compile/regularizers_GPU/NL_Regul/NLM_GPU_kernel.cu (renamed from main_func/regularizers_GPU/NL_Regul/NLM_GPU_kernel.cu)0
-rw-r--r--Wrappers/Matlab/mex_compile/regularizers_GPU/NL_Regul/NLM_GPU_kernel.h (renamed from main_func/regularizers_GPU/NL_Regul/NLM_GPU_kernel.h)0
-rw-r--r--Wrappers/Matlab/supp/RMSE.m (renamed from supp/RMSE.m)0
-rw-r--r--Wrappers/Matlab/supp/my_red_yellowMAP.mat (renamed from supp/my_red_yellowMAP.mat)bin1761 -> 1761 bytes
-rw-r--r--Wrappers/Matlab/supp/sino_add_artifacts.m (renamed from supp/sino_add_artifacts.m)0
-rw-r--r--Wrappers/Matlab/supp/studentst.m (renamed from Wrappers/Matlab/studentst.m)0
-rw-r--r--Wrappers/Matlab/supp/zing_rings_add.m (renamed from supp/zing_rings_add.m)0
-rw-r--r--demos/DendrData.h5bin72598872 -> 0 bytes
-rw-r--r--main_func/FISTA_REC.m704
-rw-r--r--main_func/regularizers_CPU/FGP_TV.c216
-rw-r--r--main_func/regularizers_CPU/LLT_model.c169
-rw-r--r--main_func/regularizers_CPU/SplitBregman_TV.c179
-rw-r--r--main_func/regularizers_CPU/TGV_PD.c144
-rw-r--r--main_func/studentst.m47
-rw-r--r--src/Python/conda-recipe/meta.yaml4
45 files changed, 2 insertions, 1897 deletions
diff --git a/Core/regularizers_CPU/PatchBased_Regul.c b/Core/regularizers_CPU/PatchBased_Regul.c
deleted file mode 100644
index 5d89b0c..0000000
--- a/Core/regularizers_CPU/PatchBased_Regul.c
+++ /dev/null
@@ -1,140 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include "mex.h"
-#include "matrix.h"
-#include "PatchBased_Regul_core.h"
-
-
-/* C-OMP implementation of patch-based (PB) regularization (2D and 3D cases).
- * This method finds self-similar patches in data and performs one fixed point iteration to mimimize the PB penalty function
- *
- * References: 1. Yang Z. & Jacob M. "Nonlocal Regularization of Inverse Problems"
- * 2. Kazantsev D. et al. "4D-CT reconstruction with unified spatial-temporal patch-based regularization"
- *
- * Input Parameters:
- * 1. Image (2D or 3D) [required]
- * 2. ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window) [optional]
- * 3. ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window) [optional]
- * 4. h - parameter for the PB penalty function [optional]
- * 5. lambda - regularization parameter [optional]
-
- * Output:
- * 1. regularized (denoised) Image (N x N)/volume (N x N x N)
- *
- * 2D denoising example in Matlab:
- Im = double(imread('lena_gray_256.tif'))/255; % loading image
- u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
- ImDen = PatchBased_Regul(single(u0), 3, 1, 0.08, 0.05);
- *
- * Matlab + C/mex compilers needed
- * to compile with OMP support: mex PatchBased_Regul.c CFLAGS="\$CFLAGS -fopenmp -Wall" LDFLAGS="\$LDFLAGS -fopenmp"
- *
- * D. Kazantsev *
- * 02/07/2014
- * Harwell, UK
- */
-
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-{
- int N, M, Z, numdims, SearchW, SimilW, SearchW_real, padXY, newsizeX, newsizeY, newsizeZ, switchpad_crop;
- const int *dims;
- float *A, *B=NULL, *Ap=NULL, *Bp=NULL, h, lambda;
-
- numdims = mxGetNumberOfDimensions(prhs[0]);
- dims = mxGetDimensions(prhs[0]);
-
- N = dims[0];
- M = dims[1];
- Z = dims[2];
-
- if ((numdims < 2) || (numdims > 3)) {mexErrMsgTxt("The input is 2D image or 3D volume");}
- if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input in single precision is required"); }
-
- if(nrhs != 5) mexErrMsgTxt("Five inputs reqired: Image(2D,3D), SearchW, SimilW, Threshold, Regularization parameter");
-
- /*Handling inputs*/
- A = (float *) mxGetData(prhs[0]); /* the image/volume to regularize/filter */
- SearchW_real = 3; /*default value*/
- SimilW = 1; /*default value*/
- h = 0.1;
- lambda = 0.1;
-
- if ((nrhs == 2) || (nrhs == 3) || (nrhs == 4) || (nrhs == 5)) SearchW_real = (int) mxGetScalar(prhs[1]); /* the searching window ratio */
- if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5)) SimilW = (int) mxGetScalar(prhs[2]); /* the similarity window ratio */
- if ((nrhs == 4) || (nrhs == 5)) h = (float) mxGetScalar(prhs[3]); /* parameter for the PB filtering function */
- if ((nrhs == 5)) lambda = (float) mxGetScalar(prhs[4]); /* regularization parameter */
-
-
- if (h <= 0) mexErrMsgTxt("Parmeter for the PB penalty function should be > 0");
- if (lambda <= 0) mexErrMsgTxt(" Regularization parmeter should be > 0");
-
- SearchW = SearchW_real + 2*SimilW;
-
- /* SearchW_full = 2*SearchW + 1; */ /* the full searching window size */
- /* SimilW_full = 2*SimilW + 1; */ /* the full similarity window size */
-
- padXY = SearchW + 2*SimilW; /* padding sizes */
- newsizeX = N + 2*(padXY); /* the X size of the padded array */
- newsizeY = M + 2*(padXY); /* the Y size of the padded array */
- newsizeZ = Z + 2*(padXY); /* the Z size of the padded array */
- int N_dims[] = {newsizeX, newsizeY, newsizeZ};
-
- /******************************2D case ****************************/
- if (numdims == 2) {
- /*Handling output*/
- B = (float*)mxGetData(plhs[0] = mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL));
- /*allocating memory for the padded arrays */
- Ap = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL));
- Bp = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL));
- /**************************************************************************/
- /*Perform padding of image A to the size of [newsizeX * newsizeY] */
- switchpad_crop = 0; /*padding*/
- pad_crop(A, Ap, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop);
-
- /* Do PB regularization with the padded array */
- PB_FUNC2D(Ap, Bp, newsizeY, newsizeX, padXY, SearchW, SimilW, (float)h, (float)lambda);
-
- switchpad_crop = 1; /*cropping*/
- pad_crop(Bp, B, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop);
- }
- else
- {
- /******************************3D case ****************************/
- /*Handling output*/
- B = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dims, mxSINGLE_CLASS, mxREAL));
- /*allocating memory for the padded arrays */
- Ap = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
- Bp = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
- /**************************************************************************/
-
- /*Perform padding of image A to the size of [newsizeX * newsizeY * newsizeZ] */
- switchpad_crop = 0; /*padding*/
- pad_crop(A, Ap, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop);
-
- /* Do PB regularization with the padded array */
- PB_FUNC3D(Ap, Bp, newsizeY, newsizeX, newsizeZ, padXY, SearchW, SimilW, (float)h, (float)lambda);
-
- switchpad_crop = 1; /*cropping*/
- pad_crop(Bp, B, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop);
- } /*end else ndims*/
-}
diff --git a/Core/regularizers_GPU/Diffus_HO/Diff4thHajiaboli_GPU.cpp b/Core/regularizers_GPU/Diffus_HO/Diff4thHajiaboli_GPU.cpp
deleted file mode 100644
index e5b1ee0..0000000
--- a/Core/regularizers_GPU/Diffus_HO/Diff4thHajiaboli_GPU.cpp
+++ /dev/null
@@ -1,114 +0,0 @@
-#include "mex.h"
-#include <matrix.h>
-#include <math.h>
-#include <stdlib.h>
-#include <memory.h>
-#include <stdio.h>
-#include <iostream>
-#include "Diff4th_GPU_kernel.h"
-
-/*
- * 2D and 3D CUDA implementation of the 4th order PDE denoising model by Hajiaboli
- *
- * Reference :
- * "An anisotropic fourth-order diffusion filter for image noise removal" by M. Hajiaboli
- *
- * Example
- * figure;
- * Im = double(imread('lena_gray_256.tif'))/255; % loading image
- * u0 = Im + .05*randn(size(Im)); % adding noise
- * u = Diff4thHajiaboli_GPU(single(u0), 0.02, 150);
- * subplot (1,2,1); imshow(u0,[ ]); title('Noisy Image')
- * subplot (1,2,2); imshow(u,[ ]); title('Denoised Image')
- *
- *
- * Linux/Matlab compilation:
- * compile in terminal: nvcc -Xcompiler -fPIC -shared -o Diff4th_GPU_kernel.o Diff4th_GPU_kernel.cu
- * then compile in Matlab: mex -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart Diff4thHajiaboli_GPU.cpp Diff4th_GPU_kernel.o
- */
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-{
- int numdims, dimZ, size;
- float *A, *B, *A_L, *B_L;
- const int *dims;
-
- numdims = mxGetNumberOfDimensions(prhs[0]);
- dims = mxGetDimensions(prhs[0]);
-
- float sigma = (float)mxGetScalar(prhs[1]); /* edge-preserving parameter */
- float lambda = (float)mxGetScalar(prhs[2]); /* regularization parameter */
- int iter = (int)mxGetScalar(prhs[3]); /* iterations number */
-
- if (numdims == 2) {
-
- int N, M, Z, i, j;
- Z = 0; // for the 2D case
- float tau = 0.01; // time step is sufficiently small for an explicit methods
-
- /*Input data*/
- A = (float*)mxGetData(prhs[0]);
- N = dims[0] + 2;
- M = dims[1] + 2;
- A_L = (float*)mxGetData(mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL));
- B_L = (float*)mxGetData(mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL));
-
- /*Output data*/
- B = (float*)mxGetData(plhs[0] = mxCreateNumericMatrix(dims[0], dims[1], mxSINGLE_CLASS, mxREAL));
-
- // copy A to the bigger A_L with boundaries
- #pragma omp parallel for shared(A_L, A) private(i,j)
- for (i=0; i < N; i++) {
- for (j=0; j < M; j++) {
- if (((i > 0) && (i < N-1)) && ((j > 0) && (j < M-1))) A_L[i*M+j] = A[(i-1)*(dims[1])+(j-1)];
- }}
-
- // Running CUDA code here
- Diff4th_GPU_kernel(A_L, B_L, N, M, Z, (float)sigma, iter, (float)tau, lambda);
-
- // copy the processed B_L to a smaller B
- #pragma omp parallel for shared(B_L, B) private(i,j)
- for (i=0; i < N; i++) {
- for (j=0; j < M; j++) {
- if (((i > 0) && (i < N-1)) && ((j > 0) && (j < M-1))) B[(i-1)*(dims[1])+(j-1)] = B_L[i*M+j];
- }}
- }
- if (numdims == 3) {
- // 3D image denoising / regularization
- int N, M, Z, i, j, k;
- float tau = 0.0007; // Time Step is small for an explicit methods
- A = (float*)mxGetData(prhs[0]);
- N = dims[0] + 2;
- M = dims[1] + 2;
- Z = dims[2] + 2;
- int N_dims[] = {N, M, Z};
- A_L = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
- B_L = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
-
- /* output data */
- B = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dims, mxSINGLE_CLASS, mxREAL));
-
- // copy A to the bigger A_L with boundaries
- #pragma omp parallel for shared(A_L, A) private(i,j,k)
- for (i=0; i < N; i++) {
- for (j=0; j < M; j++) {
- for (k=0; k < Z; k++) {
- if (((i > 0) && (i < N-1)) && ((j > 0) && (j < M-1)) && ((k > 0) && (k < Z-1))) {
- A_L[(N*M)*(k)+(i)*M+(j)] = A[(dims[0]*dims[1])*(k-1)+(i-1)*dims[1]+(j-1)];
- }}}}
-
- // Running CUDA kernel here for diffusivity
- Diff4th_GPU_kernel(A_L, B_L, N, M, Z, (float)sigma, iter, (float)tau, lambda);
-
- // copy the processed B_L to a smaller B
- #pragma omp parallel for shared(B_L, B) private(i,j,k)
- for (i=0; i < N; i++) {
- for (j=0; j < M; j++) {
- for (k=0; k < Z; k++) {
- if (((i > 0) && (i < N-1)) && ((j > 0) && (j < M-1)) && ((k > 0) && (k < Z-1))) {
- B[(dims[0]*dims[1])*(k-1)+(i-1)*dims[1]+(j-1)] = B_L[(N*M)*(k)+(i)*M+(j)];
- }}}}
- }
-} \ No newline at end of file
diff --git a/Core/regularizers_GPU/NL_Regul/NLM_GPU.cpp b/Core/regularizers_GPU/NL_Regul/NLM_GPU.cpp
deleted file mode 100644
index 858b865..0000000
--- a/Core/regularizers_GPU/NL_Regul/NLM_GPU.cpp
+++ /dev/null
@@ -1,171 +0,0 @@
-#include "mex.h"
-#include <matrix.h>
-#include <math.h>
-#include <stdlib.h>
-#include <memory.h>
-#include <stdio.h>
-#include <iostream>
-#include "NLM_GPU_kernel.h"
-
-/* CUDA implementation of the patch-based (PB) regularization for 2D and 3D images/volumes
- * This method finds self-similar patches in data and performs one fixed point iteration to mimimize the PB penalty function
- *
- * References: 1. Yang Z. & Jacob M. "Nonlocal Regularization of Inverse Problems"
- * 2. Kazantsev D. at. all "4D-CT reconstruction with unified spatial-temporal patch-based regularization"
- *
- * Input Parameters (mandatory):
- * 1. Image/volume (2D/3D)
- * 2. ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window)
- * 3. ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window)
- * 4. h - parameter for the PB penalty function
- * 5. lambda - regularization parameter
-
- * Output:
- * 1. regularized (denoised) Image/volume (N x N x N)
- *
- * In matlab check what kind of GPU you have with "gpuDevice" command,
- * then set your ComputeCapability, here I use -arch compute_35
- *
- * Quick 2D denoising example in Matlab:
- Im = double(imread('lena_gray_256.tif'))/255; % loading image
- u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
- ImDen = NLM_GPU(single(u0), 3, 2, 0.15, 1);
-
- * Linux/Matlab compilation:
- * compile in terminal: nvcc -Xcompiler -fPIC -shared -o NLM_GPU_kernel.o NLM_GPU_kernel.cu
- * then compile in Matlab: mex -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart NLM_GPU.cpp NLM_GPU_kernel.o
- *
- * D. Kazantsev
- * 2014-17
- * Harwell/Manchester UK
- */
-
-float pad_crop(float *A, float *Ap, int OldSizeX, int OldSizeY, int OldSizeZ, int NewSizeX, int NewSizeY, int NewSizeZ, int padXY, int switchpad_crop);
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-{
- int N, M, Z, i_n, j_n, k_n, numdims, SearchW, SimilW, SearchW_real, padXY, newsizeX, newsizeY, newsizeZ, switchpad_crop, count, SearchW_full, SimilW_full;
- const int *dims;
- float *A, *B=NULL, *Ap=NULL, *Bp=NULL, *Eucl_Vec, h, h2, lambda, val, denh2;
-
- numdims = mxGetNumberOfDimensions(prhs[0]);
- dims = mxGetDimensions(prhs[0]);
-
- N = dims[0];
- M = dims[1];
- Z = dims[2];
-
- if ((numdims < 2) || (numdims > 3)) {mexErrMsgTxt("The input should be 2D image or 3D volume");}
- if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input in single precision is required"); }
-
- if(nrhs != 5) mexErrMsgTxt("Five inputs reqired: Image(2D,3D), SearchW, SimilW, Threshold, Regularization parameter");
-
- /*Handling inputs*/
- A = (float *) mxGetData(prhs[0]); /* the image to regularize/filter */
- SearchW_real = (int) mxGetScalar(prhs[1]); /* the searching window ratio */
- SimilW = (int) mxGetScalar(prhs[2]); /* the similarity window ratio */
- h = (float) mxGetScalar(prhs[3]); /* parameter for the PB filtering function */
- lambda = (float) mxGetScalar(prhs[4]);
-
- if (h <= 0) mexErrMsgTxt("Parmeter for the PB penalty function should be > 0");
-
- SearchW = SearchW_real + 2*SimilW;
-
- SearchW_full = 2*SearchW + 1; /* the full searching window size */
- SimilW_full = 2*SimilW + 1; /* the full similarity window size */
- h2 = h*h;
-
- padXY = SearchW + 2*SimilW; /* padding sizes */
- newsizeX = N + 2*(padXY); /* the X size of the padded array */
- newsizeY = M + 2*(padXY); /* the Y size of the padded array */
- newsizeZ = Z + 2*(padXY); /* the Z size of the padded array */
- int N_dims[] = {newsizeX, newsizeY, newsizeZ};
-
- /******************************2D case ****************************/
- if (numdims == 2) {
- /*Handling output*/
- B = (float*)mxGetData(plhs[0] = mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL));
- /*allocating memory for the padded arrays */
- Ap = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL));
- Bp = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL));
- Eucl_Vec = (float*)mxGetData(mxCreateNumericMatrix(SimilW_full*SimilW_full, 1, mxSINGLE_CLASS, mxREAL));
-
- /*Gaussian kernel */
- count = 0;
- for(i_n=-SimilW; i_n<=SimilW; i_n++) {
- for(j_n=-SimilW; j_n<=SimilW; j_n++) {
- val = (float)(i_n*i_n + j_n*j_n)/(2*SimilW*SimilW);
- Eucl_Vec[count] = exp(-val);
- count = count + 1;
- }} /*main neighb loop */
-
- /**************************************************************************/
- /*Perform padding of image A to the size of [newsizeX * newsizeY] */
- switchpad_crop = 0; /*padding*/
- pad_crop(A, Ap, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop);
-
- /* Do PB regularization with the padded array */
- NLM_GPU_kernel(Ap, Bp, Eucl_Vec, newsizeY, newsizeX, 0, numdims, SearchW, SimilW, SearchW_real, (float)h2, (float)lambda);
-
- switchpad_crop = 1; /*cropping*/
- pad_crop(Bp, B, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop);
- }
- else
- {
- /******************************3D case ****************************/
- /*Handling output*/
- B = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dims, mxSINGLE_CLASS, mxREAL));
- /*allocating memory for the padded arrays */
- Ap = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
- Bp = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
- Eucl_Vec = (float*)mxGetData(mxCreateNumericMatrix(SimilW_full*SimilW_full*SimilW_full, 1, mxSINGLE_CLASS, mxREAL));
-
- /*Gaussian kernel */
- count = 0;
- for(i_n=-SimilW; i_n<=SimilW; i_n++) {
- for(j_n=-SimilW; j_n<=SimilW; j_n++) {
- for(k_n=-SimilW; k_n<=SimilW; k_n++) {
- val = (float)(i_n*i_n + j_n*j_n + k_n*k_n)/(2*SimilW*SimilW*SimilW);
- Eucl_Vec[count] = exp(-val);
- count = count + 1;
- }}} /*main neighb loop */
- /**************************************************************************/
- /*Perform padding of image A to the size of [newsizeX * newsizeY * newsizeZ] */
- switchpad_crop = 0; /*padding*/
- pad_crop(A, Ap, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop);
-
- /* Do PB regularization with the padded array */
- NLM_GPU_kernel(Ap, Bp, Eucl_Vec, newsizeY, newsizeX, newsizeZ, numdims, SearchW, SimilW, SearchW_real, (float)h2, (float)lambda);
-
- switchpad_crop = 1; /*cropping*/
- pad_crop(Bp, B, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop);
- } /*end else ndims*/
-}
-
-float pad_crop(float *A, float *Ap, int OldSizeX, int OldSizeY, int OldSizeZ, int NewSizeX, int NewSizeY, int NewSizeZ, int padXY, int switchpad_crop)
-{
- /* padding-cropping function */
- int i,j,k;
- if (NewSizeZ > 1) {
- for (i=0; i < NewSizeX; i++) {
- for (j=0; j < NewSizeY; j++) {
- for (k=0; k < NewSizeZ; k++) {
- if (((i >= padXY) && (i < NewSizeX-padXY)) && ((j >= padXY) && (j < NewSizeY-padXY)) && ((k >= padXY) && (k < NewSizeZ-padXY))) {
- if (switchpad_crop == 0) Ap[NewSizeX*NewSizeY*k + i*NewSizeY+j] = A[OldSizeX*OldSizeY*(k - padXY) + (i-padXY)*(OldSizeY)+(j-padXY)];
- else Ap[OldSizeX*OldSizeY*(k - padXY) + (i-padXY)*(OldSizeY)+(j-padXY)] = A[NewSizeX*NewSizeY*k + i*NewSizeY+j];
- }
- }}}
- }
- else {
- for (i=0; i < NewSizeX; i++) {
- for (j=0; j < NewSizeY; j++) {
- if (((i >= padXY) && (i < NewSizeX-padXY)) && ((j >= padXY) && (j < NewSizeY-padXY))) {
- if (switchpad_crop == 0) Ap[i*NewSizeY+j] = A[(i-padXY)*(OldSizeY)+(j-padXY)];
- else Ap[(i-padXY)*(OldSizeY)+(j-padXY)] = A[i*NewSizeY+j];
- }
- }}
- }
- return *Ap;
-} \ No newline at end of file
diff --git a/Wrappers/Matlab/compile_mex.m b/Wrappers/Matlab/compile_mex.m
deleted file mode 100644
index 66c05da..0000000
--- a/Wrappers/Matlab/compile_mex.m
+++ /dev/null
@@ -1,11 +0,0 @@
-% compile mex's in Matlab once
-cd regularizers_CPU/
-
-mex LLT_model.c LLT_model_core.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
-mex FGP_TV.c FGP_TV_core.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
-mex SplitBregman_TV.c SplitBregman_TV_core.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
-mex TGV_PD.c TGV_PD_core.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
-mex PatchBased_Regul.c PatchBased_Regul_core.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
-
-cd ../../
-cd demos
diff --git a/demos/Demo_Phantom3D_Cone.m b/Wrappers/Matlab/demos/Demo_Phantom3D_Cone.m
index a8f2c92..a8f2c92 100644
--- a/demos/Demo_Phantom3D_Cone.m
+++ b/Wrappers/Matlab/demos/Demo_Phantom3D_Cone.m
diff --git a/demos/Demo_Phantom3D_Parallel.m b/Wrappers/Matlab/demos/Demo_Phantom3D_Parallel.m
index 4219bd1..4219bd1 100644
--- a/demos/Demo_Phantom3D_Parallel.m
+++ b/Wrappers/Matlab/demos/Demo_Phantom3D_Parallel.m
diff --git a/demos/Demo_RealData3D_Parallel.m b/Wrappers/Matlab/demos/Demo_RealData3D_Parallel.m
index f82e0b0..f82e0b0 100644
--- a/demos/Demo_RealData3D_Parallel.m
+++ b/Wrappers/Matlab/demos/Demo_RealData3D_Parallel.m
diff --git a/demos/exportDemoRD2Data.m b/Wrappers/Matlab/demos/exportDemoRD2Data.m
index 028353b..028353b 100644
--- a/demos/exportDemoRD2Data.m
+++ b/Wrappers/Matlab/demos/exportDemoRD2Data.m
diff --git a/main_func/compile_mex.m b/Wrappers/Matlab/mex_compile/compile_mex.m
index 1353859..1353859 100644
--- a/main_func/compile_mex.m
+++ b/Wrappers/Matlab/mex_compile/compile_mex.m
diff --git a/Core/regularizers_CPU/FGP_TV.c b/Wrappers/Matlab/mex_compile/regularizers_CPU/FGP_TV.c
index 30cea1a..30cea1a 100644
--- a/Core/regularizers_CPU/FGP_TV.c
+++ b/Wrappers/Matlab/mex_compile/regularizers_CPU/FGP_TV.c
diff --git a/main_func/regularizers_CPU/FGP_TV_core.c b/Wrappers/Matlab/mex_compile/regularizers_CPU/FGP_TV_core.c
index 03cd445..03cd445 100644
--- a/main_func/regularizers_CPU/FGP_TV_core.c
+++ b/Wrappers/Matlab/mex_compile/regularizers_CPU/FGP_TV_core.c
diff --git a/main_func/regularizers_CPU/FGP_TV_core.h b/Wrappers/Matlab/mex_compile/regularizers_CPU/FGP_TV_core.h
index 6430bf2..6430bf2 100644
--- a/main_func/regularizers_CPU/FGP_TV_core.h
+++ b/Wrappers/Matlab/mex_compile/regularizers_CPU/FGP_TV_core.h
diff --git a/Core/regularizers_CPU/LLT_model.c b/Wrappers/Matlab/mex_compile/regularizers_CPU/LLT_model.c
index 0b07b47..0b07b47 100644
--- a/Core/regularizers_CPU/LLT_model.c
+++ b/Wrappers/Matlab/mex_compile/regularizers_CPU/LLT_model.c
diff --git a/main_func/regularizers_CPU/LLT_model_core.c b/Wrappers/Matlab/mex_compile/regularizers_CPU/LLT_model_core.c
index 3a853d2..3a853d2 100644
--- a/main_func/regularizers_CPU/LLT_model_core.c
+++ b/Wrappers/Matlab/mex_compile/regularizers_CPU/LLT_model_core.c
diff --git a/main_func/regularizers_CPU/LLT_model_core.h b/Wrappers/Matlab/mex_compile/regularizers_CPU/LLT_model_core.h
index 13fce5a..13fce5a 100644
--- a/main_func/regularizers_CPU/LLT_model_core.h
+++ b/Wrappers/Matlab/mex_compile/regularizers_CPU/LLT_model_core.h
diff --git a/main_func/regularizers_CPU/PatchBased_Regul.c b/Wrappers/Matlab/mex_compile/regularizers_CPU/PatchBased_Regul.c
index 9c925df..9c925df 100644
--- a/main_func/regularizers_CPU/PatchBased_Regul.c
+++ b/Wrappers/Matlab/mex_compile/regularizers_CPU/PatchBased_Regul.c
diff --git a/main_func/regularizers_CPU/PatchBased_Regul_core.c b/Wrappers/Matlab/mex_compile/regularizers_CPU/PatchBased_Regul_core.c
index acfb464..acfb464 100644
--- a/main_func/regularizers_CPU/PatchBased_Regul_core.c
+++ b/Wrappers/Matlab/mex_compile/regularizers_CPU/PatchBased_Regul_core.c
diff --git a/main_func/regularizers_CPU/PatchBased_Regul_core.h b/Wrappers/Matlab/mex_compile/regularizers_CPU/PatchBased_Regul_core.h
index d4a8a46..d4a8a46 100644
--- a/main_func/regularizers_CPU/PatchBased_Regul_core.h
+++ b/Wrappers/Matlab/mex_compile/regularizers_CPU/PatchBased_Regul_core.h
diff --git a/Core/regularizers_CPU/SplitBregman_TV.c b/Wrappers/Matlab/mex_compile/regularizers_CPU/SplitBregman_TV.c
index 38f6a9d..38f6a9d 100644
--- a/Core/regularizers_CPU/SplitBregman_TV.c
+++ b/Wrappers/Matlab/mex_compile/regularizers_CPU/SplitBregman_TV.c
diff --git a/main_func/regularizers_CPU/SplitBregman_TV_core.c b/Wrappers/Matlab/mex_compile/regularizers_CPU/SplitBregman_TV_core.c
index 4109a4b..4109a4b 100644
--- a/main_func/regularizers_CPU/SplitBregman_TV_core.c
+++ b/Wrappers/Matlab/mex_compile/regularizers_CPU/SplitBregman_TV_core.c
diff --git a/main_func/regularizers_CPU/SplitBregman_TV_core.h b/Wrappers/Matlab/mex_compile/regularizers_CPU/SplitBregman_TV_core.h
index 6ed3ff9..6ed3ff9 100644
--- a/main_func/regularizers_CPU/SplitBregman_TV_core.h
+++ b/Wrappers/Matlab/mex_compile/regularizers_CPU/SplitBregman_TV_core.h
diff --git a/Core/regularizers_CPU/TGV_PD.c b/Wrappers/Matlab/mex_compile/regularizers_CPU/TGV_PD.c
index c9cb440..c9cb440 100644
--- a/Core/regularizers_CPU/TGV_PD.c
+++ b/Wrappers/Matlab/mex_compile/regularizers_CPU/TGV_PD.c
diff --git a/main_func/regularizers_CPU/TGV_PD_core.c b/Wrappers/Matlab/mex_compile/regularizers_CPU/TGV_PD_core.c
index 4139d10..4139d10 100644
--- a/main_func/regularizers_CPU/TGV_PD_core.c
+++ b/Wrappers/Matlab/mex_compile/regularizers_CPU/TGV_PD_core.c
diff --git a/main_func/regularizers_CPU/TGV_PD_core.h b/Wrappers/Matlab/mex_compile/regularizers_CPU/TGV_PD_core.h
index d5378df..d5378df 100644
--- a/main_func/regularizers_CPU/TGV_PD_core.h
+++ b/Wrappers/Matlab/mex_compile/regularizers_CPU/TGV_PD_core.h
diff --git a/main_func/regularizers_CPU/utils.c b/Wrappers/Matlab/mex_compile/regularizers_CPU/utils.c
index 0e83d2c..0e83d2c 100644
--- a/main_func/regularizers_CPU/utils.c
+++ b/Wrappers/Matlab/mex_compile/regularizers_CPU/utils.c
diff --git a/main_func/regularizers_CPU/utils.h b/Wrappers/Matlab/mex_compile/regularizers_CPU/utils.h
index 53463a3..53463a3 100644
--- a/main_func/regularizers_CPU/utils.h
+++ b/Wrappers/Matlab/mex_compile/regularizers_CPU/utils.h
diff --git a/main_func/regularizers_GPU/Diffus_HO/Diff4thHajiaboli_GPU.cpp b/Wrappers/Matlab/mex_compile/regularizers_GPU/Diffus_HO/Diff4thHajiaboli_GPU.cpp
index 5a8c7c0..5a8c7c0 100644
--- a/main_func/regularizers_GPU/Diffus_HO/Diff4thHajiaboli_GPU.cpp
+++ b/Wrappers/Matlab/mex_compile/regularizers_GPU/Diffus_HO/Diff4thHajiaboli_GPU.cpp
diff --git a/main_func/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.cu b/Wrappers/Matlab/mex_compile/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.cu
index 178af00..178af00 100644
--- a/main_func/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.cu
+++ b/Wrappers/Matlab/mex_compile/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.cu
diff --git a/main_func/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.h b/Wrappers/Matlab/mex_compile/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.h
index cfbb45a..cfbb45a 100644
--- a/main_func/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.h
+++ b/Wrappers/Matlab/mex_compile/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.h
diff --git a/main_func/regularizers_GPU/NL_Regul/NLM_GPU.cpp b/Wrappers/Matlab/mex_compile/regularizers_GPU/NL_Regul/NLM_GPU.cpp
index ff0cc90..ff0cc90 100644
--- a/main_func/regularizers_GPU/NL_Regul/NLM_GPU.cpp
+++ b/Wrappers/Matlab/mex_compile/regularizers_GPU/NL_Regul/NLM_GPU.cpp
diff --git a/main_func/regularizers_GPU/NL_Regul/NLM_GPU_kernel.cu b/Wrappers/Matlab/mex_compile/regularizers_GPU/NL_Regul/NLM_GPU_kernel.cu
index 17da3a8..17da3a8 100644
--- a/main_func/regularizers_GPU/NL_Regul/NLM_GPU_kernel.cu
+++ b/Wrappers/Matlab/mex_compile/regularizers_GPU/NL_Regul/NLM_GPU_kernel.cu
diff --git a/main_func/regularizers_GPU/NL_Regul/NLM_GPU_kernel.h b/Wrappers/Matlab/mex_compile/regularizers_GPU/NL_Regul/NLM_GPU_kernel.h
index bc9d4a3..bc9d4a3 100644
--- a/main_func/regularizers_GPU/NL_Regul/NLM_GPU_kernel.h
+++ b/Wrappers/Matlab/mex_compile/regularizers_GPU/NL_Regul/NLM_GPU_kernel.h
diff --git a/supp/RMSE.m b/Wrappers/Matlab/supp/RMSE.m
index 002f776..002f776 100644
--- a/supp/RMSE.m
+++ b/Wrappers/Matlab/supp/RMSE.m
diff --git a/supp/my_red_yellowMAP.mat b/Wrappers/Matlab/supp/my_red_yellowMAP.mat
index c2a5b87..c2a5b87 100644
--- a/supp/my_red_yellowMAP.mat
+++ b/Wrappers/Matlab/supp/my_red_yellowMAP.mat
Binary files differ
diff --git a/supp/sino_add_artifacts.m b/Wrappers/Matlab/supp/sino_add_artifacts.m
index f601914..f601914 100644
--- a/supp/sino_add_artifacts.m
+++ b/Wrappers/Matlab/supp/sino_add_artifacts.m
diff --git a/Wrappers/Matlab/studentst.m b/Wrappers/Matlab/supp/studentst.m
index 99fed1e..99fed1e 100644
--- a/Wrappers/Matlab/studentst.m
+++ b/Wrappers/Matlab/supp/studentst.m
diff --git a/supp/zing_rings_add.m b/Wrappers/Matlab/supp/zing_rings_add.m
index d197b1f..d197b1f 100644
--- a/supp/zing_rings_add.m
+++ b/Wrappers/Matlab/supp/zing_rings_add.m
diff --git a/demos/DendrData.h5 b/demos/DendrData.h5
deleted file mode 100644
index f048268..0000000
--- a/demos/DendrData.h5
+++ /dev/null
Binary files differ
diff --git a/main_func/FISTA_REC.m b/main_func/FISTA_REC.m
deleted file mode 100644
index d717a03..0000000
--- a/main_func/FISTA_REC.m
+++ /dev/null
@@ -1,704 +0,0 @@
-function [X, output] = FISTA_REC(params)
-
-% <<<< FISTA-based reconstruction routine using ASTRA-toolbox >>>>
-% This code solves regularised PWLS problem using FISTA approach.
-% The code contains multiple regularisation penalties as well as it can be
-% accelerated by using ordered-subset version. Various projection
-% geometries supported.
-
-% DISCLAIMER
-% It is recommended to use ASTRA version 1.8 or later in order to avoid
-% crashing due to GPU memory overflow for big datasets
-
-% ___Input___:
-% params.[] file:
-%----------------General Parameters------------------------
-% - .proj_geom (geometry of the projector) [required]
-% - .vol_geom (geometry of the reconstructed object) [required]
-% - .sino (2D or 3D sinogram) [required]
-% - .iterFISTA (iterations for the main loop, default 40)
-% - .L_const (Lipschitz constant, default Power method) )
-% - .X_ideal (ideal image, if given)
-% - .weights (statisitcal weights for the PWLS model, size of the sinogram)
-% - .fidelity (use 'studentt' fidelity)
-% - .ROI (Region-of-interest, only if X_ideal is given)
-% - .initialize (a 'warm start' using SIRT method from ASTRA)
-%----------------Regularization choices------------------------
-% 1 .Regul_Lambda_FGPTV (FGP-TV regularization parameter)
-% 2 .Regul_Lambda_SBTV (SplitBregman-TV regularization parameter)
-% 3 .Regul_LambdaLLT (Higher order LLT regularization parameter)
-% 3.1 .Regul_tauLLT (time step parameter for LLT (HO) term)
-% 4 .Regul_LambdaPatchBased_CPU (Patch-based nonlocal regularization parameter)
-% 4.1 .Regul_PB_SearchW (ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window))
-% 4.2 .Regul_PB_SimilW (ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window))
-% 4.3 .Regul_PB_h (PB penalty function threshold)
-% 5 .Regul_LambdaPatchBased_GPU (Patch-based nonlocal regularization parameter)
-% 5.1 .Regul_PB_SearchW (ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window))
-% 5.2 .Regul_PB_SimilW (ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window))
-% 5.3 .Regul_PB_h (PB penalty function threshold)
-% 6 .Regul_LambdaDiffHO (Higher-Order Diffusion regularization parameter)
-% 6.1 .Regul_DiffHO_EdgePar (edge-preserving noise related parameter)
-% 7 .Regul_LambdaTGV (Total Generalized variation regularization parameter)
-% - .Regul_tol (tolerance to terminate regul iterations, default 1.0e-04)
-% - .Regul_Iterations (iterations for the selected penalty, default 25)
-% - .Regul_Dimension ('2D' or '3D' way to apply regularization, '3D' is the default)
-%----------------Ring removal------------------------
-% - .Ring_LambdaR_L1 (regularization parameter for L1-ring minimization, if lambdaR_L1 > 0 then switch on ring removal)
-% - .Ring_Alpha (larger values can accelerate convergence but check stability, default 1)
-%----------------Visualization parameters------------------------
-% - .show (visualize reconstruction 1/0, (0 default))
-% - .maxvalplot (maximum value to use for imshow[0 maxvalplot])
-% - .slice (for 3D volumes - slice number to imshow)
-% ___Output___:
-% 1. X - reconstructed image/volume
-% 2. output - a structure with
-% - .Resid_error - residual error (if X_ideal is given)
-% - .objective: value of the objective function
-% - .L_const: Lipshitz constant to avoid recalculations
-
-% References:
-% 1. "A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse
-% Problems" by A. Beck and M Teboulle
-% 2. "Ring artifacts correction in compressed sensing..." by P. Paleo
-% 3. "A novel tomographic reconstruction method based on the robust
-% Student's t function for suppressing data outliers" D. Kazantsev et.al.
-% D. Kazantsev, 2016-17
-
-% Dealing with input parameters
-if (isfield(params,'proj_geom') == 0)
- error('%s \n', 'Please provide ASTRA projection geometry - proj_geom');
-else
- proj_geom = params.proj_geom;
-end
-if (isfield(params,'vol_geom') == 0)
- error('%s \n', 'Please provide ASTRA object geometry - vol_geom');
-else
- vol_geom = params.vol_geom;
-end
-N = params.vol_geom.GridColCount;
-if (isfield(params,'sino'))
- sino = params.sino;
- [Detectors, anglesNumb, SlicesZ] = size(sino);
- fprintf('%s %i %s %i %s %i %s \n', 'Sinogram has a dimension of', Detectors, 'detectors;', anglesNumb, 'projections;', SlicesZ, 'vertical slices.');
-else
- error('%s \n', 'Please provide a sinogram');
-end
-if (isfield(params,'iterFISTA'))
- iterFISTA = params.iterFISTA;
-else
- iterFISTA = 40;
-end
-if (isfield(params,'weights'))
- weights = params.weights;
-else
- weights = ones(size(sino));
-end
-if (isfield(params,'fidelity'))
- studentt = 0;
- if (strcmp(params.fidelity,'studentt') == 1)
- studentt = 1;
- end
-else
- studentt = 0;
-end
-if (isfield(params,'L_const'))
- L_const = params.L_const;
-else
- % using Power method (PM) to establish L constant
- fprintf('%s %s %s \n', 'Calculating Lipshitz constant for',proj_geom.type, 'beam geometry...');
- if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec'))
- % for 2D geometry we can do just one selected slice
- niter = 15; % number of iteration for the PM
- x1 = rand(N,N,1);
- sqweight = sqrt(weights(:,:,1));
- [sino_id, y] = astra_create_sino_cuda(x1, proj_geom, vol_geom);
- y = sqweight.*y';
- astra_mex_data2d('delete', sino_id);
- for i = 1:niter
- [x1] = astra_create_backprojection_cuda((sqweight.*y)', proj_geom, vol_geom);
- s = norm(x1(:));
- x1 = x1./s;
- [sino_id, y] = astra_create_sino_cuda(x1, proj_geom, vol_geom);
- y = sqweight.*y';
- astra_mex_data2d('delete', sino_id);
- end
- elseif (strcmp(proj_geom.type,'cone') || strcmp(proj_geom.type,'parallel3d') || strcmp(proj_geom.type,'parallel3d_vec') || strcmp(proj_geom.type,'cone_vec'))
- % 3D geometry
- niter = 8; % number of iteration for PM
- x1 = rand(N,N,SlicesZ);
- sqweight = sqrt(weights);
- [sino_id, y] = astra_create_sino3d_cuda(x1, proj_geom, vol_geom);
- y = sqweight.*y;
- astra_mex_data3d('delete', sino_id);
-
- for i = 1:niter
- [id,x1] = astra_create_backprojection3d_cuda(sqweight.*y, proj_geom, vol_geom);
- s = norm(x1(:));
- x1 = x1/s;
- [sino_id, y] = astra_create_sino3d_cuda(x1, proj_geom, vol_geom);
- y = sqweight.*y;
- astra_mex_data3d('delete', sino_id);
- astra_mex_data3d('delete', id);
- end
- clear x1
- else
- error('%s \n', 'No suitable geometry has been found!');
- end
- L_const = s;
-end
-if (isfield(params,'X_ideal'))
- X_ideal = params.X_ideal;
-else
- X_ideal = 'none';
-end
-if (isfield(params,'ROI'))
- ROI = params.ROI;
-else
- ROI = find(X_ideal>=0.0);
-end
-if (isfield(params,'Regul_Lambda_FGPTV'))
- lambdaFGP_TV = params.Regul_Lambda_FGPTV;
-else
- lambdaFGP_TV = 0;
-end
-if (isfield(params,'Regul_Lambda_SBTV'))
- lambdaSB_TV = params.Regul_Lambda_SBTV;
-else
- lambdaSB_TV = 0;
-end
-if (isfield(params,'Regul_tol'))
- tol = params.Regul_tol;
-else
- tol = 1.0e-05;
-end
-if (isfield(params,'Regul_Iterations'))
- IterationsRegul = params.Regul_Iterations;
-else
- IterationsRegul = 45;
-end
-if (isfield(params,'Regul_LambdaLLT'))
- lambdaHO = params.Regul_LambdaLLT;
-else
- lambdaHO = 0;
-end
-if (isfield(params,'Regul_iterHO'))
- iterHO = params.Regul_iterHO;
-else
- iterHO = 50;
-end
-if (isfield(params,'Regul_tauLLT'))
- tauHO = params.Regul_tauLLT;
-else
- tauHO = 0.0001;
-end
-if (isfield(params,'Regul_LambdaPatchBased_CPU'))
- lambdaPB = params.Regul_LambdaPatchBased_CPU;
-else
- lambdaPB = 0;
-end
-if (isfield(params,'Regul_LambdaPatchBased_GPU'))
- lambdaPB_GPU = params.Regul_LambdaPatchBased_GPU;
-else
- lambdaPB_GPU = 0;
-end
-if (isfield(params,'Regul_PB_SearchW'))
- SearchW = params.Regul_PB_SearchW;
-else
- SearchW = 3; % default
-end
-if (isfield(params,'Regul_PB_SimilW'))
- SimilW = params.Regul_PB_SimilW;
-else
- SimilW = 1; % default
-end
-if (isfield(params,'Regul_PB_h'))
- h_PB = params.Regul_PB_h;
-else
- h_PB = 0.1; % default
-end
-if (isfield(params,'Regul_LambdaDiffHO'))
- LambdaDiff_HO = params.Regul_LambdaDiffHO;
-else
- LambdaDiff_HO = 0;
-end
-if (isfield(params,'Regul_DiffHO_EdgePar'))
- LambdaDiff_HO_EdgePar = params.Regul_DiffHO_EdgePar;
-else
- LambdaDiff_HO_EdgePar = 0.01;
-end
-if (isfield(params,'Regul_LambdaTGV'))
- LambdaTGV = params.Regul_LambdaTGV;
-else
- LambdaTGV = 0;
-end
-if (isfield(params,'Ring_LambdaR_L1'))
- lambdaR_L1 = params.Ring_LambdaR_L1;
-else
- lambdaR_L1 = 0;
-end
-if (isfield(params,'Ring_Alpha'))
- alpha_ring = params.Ring_Alpha; % higher values can accelerate ring removal procedure
-else
- alpha_ring = 1;
-end
-if (isfield(params,'Regul_Dimension'))
- Dimension = params.Regul_Dimension;
- if ((strcmp('2D', Dimension) ~= 1) && (strcmp('3D', Dimension) ~= 1))
- Dimension = '3D';
- end
-else
- Dimension = '3D';
-end
-if (isfield(params,'show'))
- show = params.show;
-else
- show = 0;
-end
-if (isfield(params,'maxvalplot'))
- maxvalplot = params.maxvalplot;
-else
- maxvalplot = 1;
-end
-if (isfield(params,'slice'))
- slice = params.slice;
-else
- slice = 1;
-end
-if (isfield(params,'initialize'))
- X = params.initialize;
- if ((size(X,1) ~= N) || (size(X,2) ~= N) || (size(X,3) ~= SlicesZ))
- error('%s \n', 'The initialized volume has different dimensions!');
- end
-else
- X = zeros(N,N,SlicesZ, 'single'); % storage for the solution
-end
-if (isfield(params,'subsets'))
- % Ordered Subsets reorganisation of data and angles
- subsets = params.subsets; % subsets number
- angles = proj_geom.ProjectionAngles;
- binEdges = linspace(min(angles),max(angles),subsets+1);
-
- % assign values to bins
- [binsDiscr,~] = histc(angles, [binEdges(1:end-1) Inf]);
-
- % get rearranged subset indices
- IndicesReorg = zeros(length(angles),1);
- counterM = 0;
- for ii = 1:max(binsDiscr(:))
- counter = 0;
- for jj = 1:subsets
- curr_index = ii+jj-1 + counter;
- if (binsDiscr(jj) >= ii)
- counterM = counterM + 1;
- IndicesReorg(counterM) = curr_index;
- end
- counter = (counter + binsDiscr(jj)) - 1;
- end
- end
-else
- subsets = 0; % Classical FISTA
-end
-
-%----------------Reconstruction part------------------------
-Resid_error = zeros(iterFISTA,1); % errors vector (if the ground truth is given)
-objective = zeros(iterFISTA,1); % objective function values vector
-
-
-if (subsets == 0)
- % Classical FISTA
- t = 1;
- X_t = X;
-
- r = zeros(Detectors,SlicesZ, 'single'); % 2D array (for 3D data) of sparse "ring" vectors
- r_x = r; % another ring variable
- residual = zeros(size(sino),'single');
-
- % Outer FISTA iterations loop
- for i = 1:iterFISTA
-
- X_old = X;
- t_old = t;
- r_old = r;
-
-
- if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec'))
- % if geometry is 2D use slice-by-slice projection-backprojection routine
- sino_updt = zeros(size(sino),'single');
- for kkk = 1:SlicesZ
- [sino_id, sinoT] = astra_create_sino_cuda(X_t(:,:,kkk), proj_geom, vol_geom);
- sino_updt(:,:,kkk) = sinoT';
- astra_mex_data2d('delete', sino_id);
- end
- else
- % for 3D geometry (watch the GPU memory overflow in earlier ASTRA versions < 1.8)
- [sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom);
- astra_mex_data3d('delete', sino_id);
- end
-
- if (lambdaR_L1 > 0)
- % the ring removal part (Group-Huber fidelity)
- for kkk = 1:anglesNumb
- residual(:,kkk,:) = squeeze(weights(:,kkk,:)).*(squeeze(sino_updt(:,kkk,:)) - (squeeze(sino(:,kkk,:)) - alpha_ring.*r_x));
- end
- vec = sum(residual,2);
- if (SlicesZ > 1)
- vec = squeeze(vec(:,1,:));
- end
- r = r_x - (1./L_const).*vec;
- objective(i) = (0.5*sum(residual(:).^2)); % for the objective function output
- elseif (studentt > 0)
- % artifacts removal with Students t penalty
- residual = weights.*(sino_updt - sino);
- for kkk = 1:SlicesZ
- res_vec = reshape(residual(:,:,kkk), Detectors*anglesNumb, 1); % 1D vectorized sinogram
- %s = 100;
- %gr = (2)*res_vec./(s*2 + conj(res_vec).*res_vec);
- [ff, gr] = studentst(res_vec, 1);
- residual(:,:,kkk) = reshape(gr, Detectors, anglesNumb);
- end
- objective(i) = ff; % for the objective function output
- else
- % no ring removal (LS model)
- residual = weights.*(sino_updt - sino);
- objective(i) = 0.5*norm(residual(:)); % for the objective function output
- end
-
- % if the geometry is 2D use slice-by-slice projection-backprojection routine
- if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec'))
- x_temp = zeros(size(X),'single');
- for kkk = 1:SlicesZ
- [x_temp(:,:,kkk)] = astra_create_backprojection_cuda(squeeze(residual(:,:,kkk))', proj_geom, vol_geom);
- end
- else
- [id, x_temp] = astra_create_backprojection3d_cuda(residual, proj_geom, vol_geom);
- astra_mex_data3d('delete', id);
- end
- X = X_t - (1/L_const).*x_temp;
-
- % ----------------Regularization part------------------------%
- if (lambdaFGP_TV > 0)
- % FGP-TV regularization
- if ((strcmp('2D', Dimension) == 1))
- % 2D regularization
- for kkk = 1:SlicesZ
- [X(:,:,kkk), f_val] = FGP_TV(single(X(:,:,kkk)), lambdaFGP_TV/L_const, IterationsRegul, tol, 'iso');
- end
- else
- % 3D regularization
- [X, f_val] = FGP_TV(single(X), lambdaFGP_TV/L_const, IterationsRegul, tol, 'iso');
- end
- objective(i) = (objective(i) + f_val)./(Detectors*anglesNumb*SlicesZ);
- end
- if (lambdaSB_TV > 0)
- % Split Bregman regularization
- if ((strcmp('2D', Dimension) == 1))
- % 2D regularization
- for kkk = 1:SlicesZ
- X(:,:,kkk) = SplitBregman_TV(single(X(:,:,kkk)), lambdaSB_TV/L_const, IterationsRegul, tol); % (more memory efficent)
- end
- else
- % 3D regularization
- X = SplitBregman_TV(single(X), lambdaSB_TV/L_const, IterationsRegul, tol); % (more memory efficent)
- end
- end
- if (lambdaHO > 0)
- % Higher Order (LLT) regularization
- X2 = zeros(N,N,SlicesZ,'single');
- if ((strcmp('2D', Dimension) == 1))
- % 2D regularization
- for kkk = 1:SlicesZ
- X2(:,:,kkk) = LLT_model(single(X(:,:,kkk)), lambdaHO/L_const, tauHO, iterHO, 3.0e-05, 0);
- end
- else
- % 3D regularization
- X2 = LLT_model(single(X), lambdaHO/L_const, tauHO, iterHO, 3.0e-05, 0);
- end
- X = 0.5.*(X + X2); % averaged combination of two solutions
-
- end
- if (lambdaPB > 0)
- % Patch-Based regularization (can be very slow on CPU)
- if ((strcmp('2D', Dimension) == 1))
- % 2D regularization
- for kkk = 1:SlicesZ
- X(:,:,kkk) = PatchBased_Regul(single(X(:,:,kkk)), SearchW, SimilW, h_PB, lambdaPB/L_const);
- end
- else
- X = PatchBased_Regul(single(X), SearchW, SimilW, h_PB, lambdaPB/L_const);
- end
- end
- if (lambdaPB_GPU > 0)
- % Patch-Based regularization (GPU CUDA implementation)
- if ((strcmp('2D', Dimension) == 1))
- % 2D regularization
- for kkk = 1:SlicesZ
- X(:,:,kkk) = NLM_GPU(single(X(:,:,kkk)), SearchW, SimilW, h_PB, lambdaPB_GPU/L_const);
- end
- else
- X = NLM_GPU(single(X), SearchW, SimilW, h_PB, lambdaPB_GPU/L_const);
- end
- end
- if (LambdaDiff_HO > 0)
- % Higher-order diffusion penalty (GPU CUDA implementation)
- if ((strcmp('2D', Dimension) == 1))
- % 2D regularization
- for kkk = 1:SlicesZ
- X(:,:,kkk) = Diff4thHajiaboli_GPU(single(X(:,:,kkk)), LambdaDiff_HO_EdgePar, LambdaDiff_HO/L_const, IterationsRegul);
- end
- else
- X = Diff4thHajiaboli_GPU(X, LambdaDiff_HO_EdgePar, LambdaDiff_HO/L_const, IterationsRegul);
- end
- end
- if (LambdaTGV > 0)
- % Total Generalized variation (currently only 2D)
- lamTGV1 = 1.1; % smoothing trade-off parameters, see Pock's paper
- lamTGV2 = 0.8; % second-order term
- for kkk = 1:SlicesZ
- X(:,:,kkk) = TGV_PD(single(X(:,:,kkk)), LambdaTGV/L_const, lamTGV1, lamTGV2, IterationsRegul);
- end
- end
-
- if (lambdaR_L1 > 0)
- r = max(abs(r)-lambdaR_L1, 0).*sign(r); % soft-thresholding operator for ring vector
- end
-
- t = (1 + sqrt(1 + 4*t^2))/2; % updating t
- X_t = X + ((t_old-1)/t).*(X - X_old); % updating X
-
- if (lambdaR_L1 > 0)
- r_x = r + ((t_old-1)/t).*(r - r_old); % updating r
- end
-
- if (show == 1)
- figure(10); imshow(X(:,:,slice), [0 maxvalplot]);
- if (lambdaR_L1 > 0)
- figure(11); plot(r); title('Rings offset vector')
- end
- pause(0.01);
- end
- if (strcmp(X_ideal, 'none' ) == 0)
- Resid_error(i) = RMSE(X(ROI), X_ideal(ROI));
- fprintf('%s %i %s %s %.4f %s %s %f \n', 'Iteration Number:', i, '|', 'Error RMSE:', Resid_error(i), '|', 'Objective:', objective(i));
- else
- fprintf('%s %i %s %s %f \n', 'Iteration Number:', i, '|', 'Objective:', objective(i));
- end
- end
-else
- % Ordered Subsets (OS) FISTA reconstruction routine (normally one order of magnitude faster than the classical version)
- t = 1;
- X_t = X;
- proj_geomSUB = proj_geom;
-
- r = zeros(Detectors,SlicesZ, 'single'); % 2D array (for 3D data) of sparse "ring" vectors
- r_x = r; % another ring variable
- residual2 = zeros(size(sino),'single');
- sino_updt_FULL = zeros(size(sino),'single');
-
-
- % Outer FISTA iterations loop
- for i = 1:iterFISTA
-
- if ((i > 1) && (lambdaR_L1 > 0))
- % in order to make Group-Huber fidelity work with ordered subsets
- % we still need to work with full sinogram
-
- % the offset variable must be calculated for the whole
- % updated sinogram - sino_updt_FULL
- for kkk = 1:anglesNumb
- residual2(:,kkk,:) = squeeze(weights(:,kkk,:)).*(squeeze(sino_updt_FULL(:,kkk,:)) - (squeeze(sino(:,kkk,:)) - alpha_ring.*r_x));
- end
-
- r_old = r;
- vec = sum(residual2,2);
- if (SlicesZ > 1)
- vec = squeeze(vec(:,1,:));
- end
- r = r_x - (1./L_const).*vec; % update ring variable
- end
-
- % subsets loop
- counterInd = 1;
- for ss = 1:subsets
- X_old = X;
- t_old = t;
-
- numProjSub = binsDiscr(ss); % the number of projections per subset
- sino_updt_Sub = zeros(Detectors, numProjSub, SlicesZ,'single');
- CurrSubIndeces = IndicesReorg(counterInd:(counterInd + numProjSub - 1)); % extract indeces attached to the subset
- proj_geomSUB.ProjectionAngles = angles(CurrSubIndeces);
-
- if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec'))
- % if geometry is 2D use slice-by-slice projection-backprojection routine
- for kkk = 1:SlicesZ
- [sino_id, sinoT] = astra_create_sino_cuda(X_t(:,:,kkk), proj_geomSUB, vol_geom);
- sino_updt_Sub(:,:,kkk) = sinoT';
- astra_mex_data2d('delete', sino_id);
- end
- else
- % for 3D geometry (watch the GPU memory overflow in earlier ASTRA versions < 1.8)
- [sino_id, sino_updt_Sub] = astra_create_sino3d_cuda(X_t, proj_geomSUB, vol_geom);
- astra_mex_data3d('delete', sino_id);
- end
-
- if (lambdaR_L1 > 0)
- % Group-Huber fidelity (ring removal)
- residualSub = zeros(Detectors, numProjSub, SlicesZ,'single'); % residual for a chosen subset
- for kkk = 1:numProjSub
- indC = CurrSubIndeces(kkk);
- residualSub(:,kkk,:) = squeeze(weights(:,indC,:)).*(squeeze(sino_updt_Sub(:,kkk,:)) - (squeeze(sino(:,indC,:)) - alpha_ring.*r_x));
- sino_updt_FULL(:,indC,:) = squeeze(sino_updt_Sub(:,kkk,:)); % filling the full sinogram
- end
-
- elseif (studentt > 0)
- % student t data fidelity
-
- % artifacts removal with Students t penalty
- residualSub = squeeze(weights(:,CurrSubIndeces,:)).*(sino_updt_Sub - squeeze(sino(:,CurrSubIndeces,:)));
-
- for kkk = 1:SlicesZ
- res_vec = reshape(residualSub(:,:,kkk), Detectors*numProjSub, 1); % 1D vectorized sinogram
- %s = 100;
- %gr = (2)*res_vec./(s*2 + conj(res_vec).*res_vec);
- [ff, gr] = studentst(res_vec, 1);
- residualSub(:,:,kkk) = reshape(gr, Detectors, numProjSub);
- end
- objective(i) = ff; % for the objective function output
- else
- % PWLS model
- residualSub = squeeze(weights(:,CurrSubIndeces,:)).*(sino_updt_Sub - squeeze(sino(:,CurrSubIndeces,:)));
- objective(i) = 0.5*norm(residualSub(:)); % for the objective function output
- end
-
- % perform backprojection of a subset
- if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec'))
- % if geometry is 2D use slice-by-slice projection-backprojection routine
- x_temp = zeros(size(X),'single');
- for kkk = 1:SlicesZ
- [x_temp(:,:,kkk)] = astra_create_backprojection_cuda(squeeze(residualSub(:,:,kkk))', proj_geomSUB, vol_geom);
- end
- else
- [id, x_temp] = astra_create_backprojection3d_cuda(residualSub, proj_geomSUB, vol_geom);
- astra_mex_data3d('delete', id);
- end
-
- X = X_t - (1/L_const).*x_temp;
-
- % ----------------Regularization part------------------------%
- if (lambdaFGP_TV > 0)
- % FGP-TV regularization
- if ((strcmp('2D', Dimension) == 1))
- % 2D regularization
- for kkk = 1:SlicesZ
- [X(:,:,kkk), f_val] = FGP_TV(single(X(:,:,kkk)), lambdaFGP_TV/(subsets*L_const), IterationsRegul, tol, 'iso');
- end
- else
- % 3D regularization
- [X, f_val] = FGP_TV(single(X), lambdaFGP_TV/(subsets*L_const), IterationsRegul, tol, 'iso');
- end
- objective(i) = objective(i) + f_val;
- end
- if (lambdaSB_TV > 0)
- % Split Bregman regularization
- if ((strcmp('2D', Dimension) == 1))
- % 2D regularization
- for kkk = 1:SlicesZ
- X(:,:,kkk) = SplitBregman_TV(single(X(:,:,kkk)), lambdaSB_TV/(subsets*L_const), IterationsRegul, tol); % (more memory efficent)
- end
- else
- % 3D regularization
- X = SplitBregman_TV(single(X), lambdaSB_TV/(subsets*L_const), IterationsRegul, tol); % (more memory efficent)
- end
- end
- if (lambdaHO > 0)
- % Higher Order (LLT) regularization
- X2 = zeros(N,N,SlicesZ,'single');
- if ((strcmp('2D', Dimension) == 1))
- % 2D regularization
- for kkk = 1:SlicesZ
- X2(:,:,kkk) = LLT_model(single(X(:,:,kkk)), lambdaHO/(subsets*L_const), tauHO/subsets, iterHO, 2.0e-05, 0);
- end
- else
- % 3D regularization
- X2 = LLT_model(single(X), lambdaHO/(subsets*L_const), tauHO/subsets, iterHO, 2.0e-05, 0);
- end
- X = 0.5.*(X + X2); % the averaged combination of two solutions
- end
- if (lambdaPB > 0)
- % Patch-Based regularization (can be slow on CPU)
- if ((strcmp('2D', Dimension) == 1))
- % 2D regularization
- for kkk = 1:SlicesZ
- X(:,:,kkk) = PatchBased_Regul(single(X(:,:,kkk)), SearchW, SimilW, h_PB, lambdaPB/(subsets*L_const));
- end
- else
- X = PatchBased_Regul(single(X), SearchW, SimilW, h_PB, lambdaPB/(subsets*L_const));
- end
- end
- if (lambdaPB_GPU > 0)
- % Patch-Based regularization (GPU CUDA implementation)
- if ((strcmp('2D', Dimension) == 1))
- % 2D regularization
- for kkk = 1:SlicesZ
- X(:,:,kkk) = NLM_GPU(single(X(:,:,kkk)), SearchW, SimilW, h_PB, lambdaPB_GPU/(subsets*L_const));
- end
- else
- X = NLM_GPU(single(X), SearchW, SimilW, h_PB, lambdaPB_GPU/(subsets*L_const));
- end
- end
- if (LambdaDiff_HO > 0)
- % Higher-order diffusion penalty (GPU CUDA implementation)
- if ((strcmp('2D', Dimension) == 1))
- % 2D regularization
- for kkk = 1:SlicesZ
- X(:,:,kkk) = Diff4thHajiaboli_GPU(single(X(:,:,kkk)), LambdaDiff_HO_EdgePar, LambdaDiff_HO/(subsets*L_const), round(IterationsRegul/subsets));
- end
- else
- X = Diff4thHajiaboli_GPU(X, LambdaDiff_HO_EdgePar, LambdaDiff_HO/(subsets*L_const), round(IterationsRegul/subsets));
- end
- end
- if (LambdaTGV > 0)
- % Total Generalized variation (currently only 2D)
- lamTGV1 = 1.1; % smoothing trade-off parameters, see Pock's paper
- lamTGV2 = 0.5; % second-order term
- for kkk = 1:SlicesZ
- X(:,:,kkk) = TGV_PD(single(X(:,:,kkk)), LambdaTGV/(subsets*L_const), lamTGV1, lamTGV2, IterationsRegul);
- end
- end
-
- t = (1 + sqrt(1 + 4*t^2))/2; % updating t
- X_t = X + ((t_old-1)/t).*(X - X_old); % updating X
- counterInd = counterInd + numProjSub;
- end
-
- if (i == 1)
- r_old = r;
- end
-
- % working with a 'ring vector'
- if (lambdaR_L1 > 0)
- r = max(abs(r)-lambdaR_L1, 0).*sign(r); % soft-thresholding operator for ring vector
- r_x = r + ((t_old-1)/t).*(r - r_old); % updating r
- end
-
- if (show == 1)
- figure(10); imshow(X(:,:,slice), [0 maxvalplot]);
- if (lambdaR_L1 > 0)
- figure(11); plot(r); title('Rings offset vector')
- end
- pause(0.01);
- end
-
- if (strcmp(X_ideal, 'none' ) == 0)
- Resid_error(i) = RMSE(X(ROI), X_ideal(ROI));
- fprintf('%s %i %s %s %.4f %s %s %f \n', 'Iteration Number:', i, '|', 'Error RMSE:', Resid_error(i), '|', 'Objective:', objective(i));
- else
- fprintf('%s %i %s %s %f \n', 'Iteration Number:', i, '|', 'Objective:', objective(i));
- end
- end
-end
-
-output.Resid_error = Resid_error;
-output.objective = objective;
-output.L_const = L_const;
-
-end
diff --git a/main_func/regularizers_CPU/FGP_TV.c b/main_func/regularizers_CPU/FGP_TV.c
deleted file mode 100644
index 30cea1a..0000000
--- a/main_func/regularizers_CPU/FGP_TV.c
+++ /dev/null
@@ -1,216 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-#include "matrix.h"
-#include "mex.h"
-#include "FGP_TV_core.h"
-
-/* C-OMP implementation of FGP-TV [1] denoising/regularization model (2D/3D case)
- *
- * Input Parameters:
- * 1. Noisy image/volume [REQUIRED]
- * 2. lambda - regularization parameter [REQUIRED]
- * 3. Number of iterations [OPTIONAL parameter]
- * 4. eplsilon: tolerance constant [OPTIONAL parameter]
- * 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter]
- *
- * Output:
- * [1] Filtered/regularized image
- * [2] last function value
- *
- * Example of image denoising:
- * figure;
- * Im = double(imread('lena_gray_256.tif'))/255; % loading image
- * u0 = Im + .05*randn(size(Im)); % adding noise
- * u = FGP_TV(single(u0), 0.05, 100, 1e-04);
- *
- * to compile with OMP support: mex FGP_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
- * This function is based on the Matlab's code and paper by
- * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems"
- *
- * D. Kazantsev, 2016-17
- *
- */
-
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-
-{
- int number_of_dims, iter, dimX, dimY, dimZ, ll, j, count, methTV;
- const int *dim_array;
- float *A, *D=NULL, *D_old=NULL, *P1=NULL, *P2=NULL, *P3=NULL, *P1_old=NULL, *P2_old=NULL, *P3_old=NULL, *R1=NULL, *R2=NULL, *R3=NULL, lambda, tk, tkp1, re, re1, re_old, epsil;
-
- number_of_dims = mxGetNumberOfDimensions(prhs[0]);
- dim_array = mxGetDimensions(prhs[0]);
-
- /*Handling Matlab input data*/
- if ((nrhs < 2) || (nrhs > 5)) mexErrMsgTxt("At least 2 parameters is required: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1')");
-
- A = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */
- lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */
- iter = 50; /* default iterations number */
- epsil = 0.0001; /* default tolerance constant */
- methTV = 0; /* default isotropic TV penalty */
-
- if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */
- if ((nrhs == 4) || (nrhs == 5)) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */
- if (nrhs == 5) {
- char *penalty_type;
- penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */
- if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',");
- if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */
- mxFree(penalty_type);
- }
- /*output function value (last iteration) */
- plhs[1] = mxCreateNumericMatrix(1, 1, mxSINGLE_CLASS, mxREAL);
- float *funcvalA = (float *) mxGetData(plhs[1]);
-
- if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
-
- /*Handling Matlab output data*/
- dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
-
- tk = 1.0f;
- tkp1=1.0f;
- count = 0;
- re_old = 0.0f;
-
- if (number_of_dims == 2) {
- dimZ = 1; /*2D case*/
- D = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- D_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- P1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- P2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- P1_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- P2_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- R1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- R2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
-
- /* begin iterations */
- for(ll=0; ll<iter; ll++) {
-
- /* computing the gradient of the objective function */
- Obj_func2D(A, D, R1, R2, lambda, dimX, dimY);
-
- /*Taking a step towards minus of the gradient*/
- Grad_func2D(P1, P2, D, R1, R2, lambda, dimX, dimY);
-
- /* projection step */
- Proj_func2D(P1, P2, methTV, dimX, dimY);
-
- /*updating R and t*/
- tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f;
- Rupd_func2D(P1, P1_old, P2, P2_old, R1, R2, tkp1, tk, dimX, dimY);
-
- /* calculate norm */
- re = 0.0f; re1 = 0.0f;
- for(j=0; j<dimX*dimY*dimZ; j++)
- {
- re += pow(D[j] - D_old[j],2);
- re1 += pow(D[j],2);
- }
- re = sqrt(re)/sqrt(re1);
- if (re < epsil) count++;
- if (count > 4) {
- Obj_func_CALC2D(A, D, funcvalA, lambda, dimX, dimY);
- break; }
-
- /* check that the residual norm is decreasing */
- if (ll > 2) {
- if (re > re_old) {
- Obj_func_CALC2D(A, D, funcvalA, lambda, dimX, dimY);
- break; }}
- re_old = re;
- /*printf("%f %i %i \n", re, ll, count); */
-
- /*storing old values*/
- copyIm(D, D_old, dimX, dimY, dimZ);
- copyIm(P1, P1_old, dimX, dimY, dimZ);
- copyIm(P2, P2_old, dimX, dimY, dimZ);
- tk = tkp1;
-
- /* calculating the objective function value */
- if (ll == (iter-1)) Obj_func_CALC2D(A, D, funcvalA, lambda, dimX, dimY);
- }
- printf("FGP-TV iterations stopped at iteration %i with the function value %f \n", ll, funcvalA[0]);
- }
- if (number_of_dims == 3) {
- D = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- D_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- P1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- P2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- P3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- P1_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- P2_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- P3_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- R1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- R2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- R3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
-
- /* begin iterations */
- for(ll=0; ll<iter; ll++) {
-
- /* computing the gradient of the objective function */
- Obj_func3D(A, D, R1, R2, R3,lambda, dimX, dimY, dimZ);
-
- /*Taking a step towards minus of the gradient*/
- Grad_func3D(P1, P2, P3, D, R1, R2, R3, lambda, dimX, dimY, dimZ);
-
- /* projection step */
- Proj_func3D(P1, P2, P3, dimX, dimY, dimZ);
-
- /*updating R and t*/
- tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f;
- Rupd_func3D(P1, P1_old, P2, P2_old, P3, P3_old, R1, R2, R3, tkp1, tk, dimX, dimY, dimZ);
-
- /* calculate norm - stopping rules*/
- re = 0.0f; re1 = 0.0f;
- for(j=0; j<dimX*dimY*dimZ; j++)
- {
- re += pow(D[j] - D_old[j],2);
- re1 += pow(D[j],2);
- }
- re = sqrt(re)/sqrt(re1);
- /* stop if the norm residual is less than the tolerance EPS */
- if (re < epsil) count++;
- if (count > 3) {
- Obj_func_CALC3D(A, D, funcvalA, lambda, dimX, dimY, dimZ);
- break;}
-
- /* check that the residual norm is decreasing */
- if (ll > 2) {
- if (re > re_old) {
- Obj_func_CALC3D(A, D, funcvalA, lambda, dimX, dimY, dimZ);
- }}
- re_old = re;
- /*printf("%f %i %i \n", re, ll, count); */
-
- /*storing old values*/
- copyIm(D, D_old, dimX, dimY, dimZ);
- copyIm(P1, P1_old, dimX, dimY, dimZ);
- copyIm(P2, P2_old, dimX, dimY, dimZ);
- copyIm(P3, P3_old, dimX, dimY, dimZ);
- tk = tkp1;
-
- if (ll == (iter-1)) Obj_func_CALC3D(A, D, funcvalA, lambda, dimX, dimY, dimZ);
- }
- printf("FGP-TV iterations stopped at iteration %i with the function value %f \n", ll, funcvalA[0]);
- }
-}
diff --git a/main_func/regularizers_CPU/LLT_model.c b/main_func/regularizers_CPU/LLT_model.c
deleted file mode 100644
index 0b07b47..0000000
--- a/main_func/regularizers_CPU/LLT_model.c
+++ /dev/null
@@ -1,169 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include "mex.h"
-#include "matrix.h"
-#include "LLT_model_core.h"
-
-/* C-OMP implementation of Lysaker, Lundervold and Tai (LLT) model of higher order regularization penalty
-*
-* Input Parameters:
-* 1. U0 - original noise image/volume
-* 2. lambda - regularization parameter
-* 3. tau - time-step for explicit scheme
-* 4. iter - iterations number
-* 5. epsil - tolerance constant (to terminate earlier)
-* 6. switcher - default is 0, switch to (1) to restrictive smoothing in Z dimension (in test)
-*
-* Output:
-* Filtered/regularized image
-*
-* Example:
-* figure;
-* Im = double(imread('lena_gray_256.tif'))/255; % loading image
-* u0 = Im + .03*randn(size(Im)); % adding noise
-* [Den] = LLT_model(single(u0), 10, 0.1, 1);
-*
-*
-* to compile with OMP support: mex LLT_model.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
-* References: Lysaker, Lundervold and Tai (LLT) 2003, IEEE
-*
-* 28.11.16/Harwell
-*/
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-
-{
- int number_of_dims, iter, dimX, dimY, dimZ, ll, j, count, switcher;
- const int *dim_array;
- float *U0, *U=NULL, *U_old=NULL, *D1=NULL, *D2=NULL, *D3=NULL, lambda, tau, re, re1, epsil, re_old;
- unsigned short *Map=NULL;
-
- number_of_dims = mxGetNumberOfDimensions(prhs[0]);
- dim_array = mxGetDimensions(prhs[0]);
-
- /*Handling Matlab input data*/
- U0 = (float *) mxGetData(prhs[0]); /*origanal noise image/volume*/
- if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input in single precision is required"); }
- lambda = (float) mxGetScalar(prhs[1]); /*regularization parameter*/
- tau = (float) mxGetScalar(prhs[2]); /* time-step */
- iter = (int) mxGetScalar(prhs[3]); /*iterations number*/
- epsil = (float) mxGetScalar(prhs[4]); /* tolerance constant */
- switcher = (int) mxGetScalar(prhs[5]); /*switch on (1) restrictive smoothing in Z dimension*/
-
- /*Handling Matlab output data*/
- dimX = dim_array[0]; dimY = dim_array[1]; dimZ = 1;
-
- if (number_of_dims == 2) {
- /*2D case*/
- U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- D1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- D2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- }
- else if (number_of_dims == 3) {
- /*3D case*/
- dimZ = dim_array[2];
- U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- U_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- D1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- D2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- D3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- if (switcher != 0) {
- Map = (unsigned short*)mxGetPr(plhs[1] = mxCreateNumericArray(3, dim_array, mxUINT16_CLASS, mxREAL));
- }
- }
- else {mexErrMsgTxt("The input data should be 2D or 3D");}
-
- /*Copy U0 to U*/
- copyIm(U0, U, dimX, dimY, dimZ);
-
- count = 1;
- re_old = 0.0f;
- if (number_of_dims == 2) {
- for(ll = 0; ll < iter; ll++) {
-
- copyIm(U, U_old, dimX, dimY, dimZ);
-
- /*estimate inner derrivatives */
- der2D(U, D1, D2, dimX, dimY, dimZ);
- /* calculate div^2 and update */
- div_upd2D(U0, U, D1, D2, dimX, dimY, dimZ, lambda, tau);
-
- /* calculate norm to terminate earlier */
- re = 0.0f; re1 = 0.0f;
- for(j=0; j<dimX*dimY*dimZ; j++)
- {
- re += pow(U_old[j] - U[j],2);
- re1 += pow(U_old[j],2);
- }
- re = sqrt(re)/sqrt(re1);
- if (re < epsil) count++;
- if (count > 4) break;
-
- /* check that the residual norm is decreasing */
- if (ll > 2) {
- if (re > re_old) break;
- }
- re_old = re;
-
- } /*end of iterations*/
- printf("HO iterations stopped at iteration: %i\n", ll);
- }
- /*3D version*/
- if (number_of_dims == 3) {
-
- if (switcher == 1) {
- /* apply restrictive smoothing */
- calcMap(U, Map, dimX, dimY, dimZ);
- /*clear outliers */
- cleanMap(Map, dimX, dimY, dimZ);
- }
- for(ll = 0; ll < iter; ll++) {
-
- copyIm(U, U_old, dimX, dimY, dimZ);
-
- /*estimate inner derrivatives */
- der3D(U, D1, D2, D3, dimX, dimY, dimZ);
- /* calculate div^2 and update */
- div_upd3D(U0, U, D1, D2, D3, Map, switcher, dimX, dimY, dimZ, lambda, tau);
-
- /* calculate norm to terminate earlier */
- re = 0.0f; re1 = 0.0f;
- for(j=0; j<dimX*dimY*dimZ; j++)
- {
- re += pow(U_old[j] - U[j],2);
- re1 += pow(U_old[j],2);
- }
- re = sqrt(re)/sqrt(re1);
- if (re < epsil) count++;
- if (count > 4) break;
-
- /* check that the residual norm is decreasing */
- if (ll > 2) {
- if (re > re_old) break;
- }
- re_old = re;
-
- } /*end of iterations*/
- printf("HO iterations stopped at iteration: %i\n", ll);
- }
-}
diff --git a/main_func/regularizers_CPU/SplitBregman_TV.c b/main_func/regularizers_CPU/SplitBregman_TV.c
deleted file mode 100644
index 38f6a9d..0000000
--- a/main_func/regularizers_CPU/SplitBregman_TV.c
+++ /dev/null
@@ -1,179 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include "mex.h"
-#include <matrix.h>
-#include "SplitBregman_TV_core.h"
-
-/* C-OMP implementation of Split Bregman - TV denoising-regularization model (2D/3D)
- *
- * Input Parameters:
- * 1. Noisy image/volume
- * 2. lambda - regularization parameter
- * 3. Number of iterations [OPTIONAL parameter]
- * 4. eplsilon - tolerance constant [OPTIONAL parameter]
- * 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter]
- *
- * Output:
- * Filtered/regularized image
- *
- * Example:
- * figure;
- * Im = double(imread('lena_gray_256.tif'))/255; % loading image
- * u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
- * u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
- *
- * to compile with OMP support: mex SplitBregman_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
- * References:
- * The Split Bregman Method for L1 Regularized Problems, by Tom Goldstein and Stanley Osher.
- * D. Kazantsev, 2016*
- */
-
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-
-{
- int number_of_dims, iter, dimX, dimY, dimZ, ll, j, count, methTV;
- const int *dim_array;
- float *A, *U=NULL, *U_old=NULL, *Dx=NULL, *Dy=NULL, *Dz=NULL, *Bx=NULL, *By=NULL, *Bz=NULL, lambda, mu, epsil, re, re1, re_old;
-
- number_of_dims = mxGetNumberOfDimensions(prhs[0]);
- dim_array = mxGetDimensions(prhs[0]);
-
- /*Handling Matlab input data*/
- if ((nrhs < 2) || (nrhs > 5)) mexErrMsgTxt("At least 2 parameters is required: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1')");
-
- /*Handling Matlab input data*/
- A = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */
- mu = (float) mxGetScalar(prhs[1]); /* regularization parameter */
- iter = 35; /* default iterations number */
- epsil = 0.0001; /* default tolerance constant */
- methTV = 0; /* default isotropic TV penalty */
- if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */
- if ((nrhs == 4) || (nrhs == 5)) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */
- if (nrhs == 5) {
- char *penalty_type;
- penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */
- if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',");
- if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */
- mxFree(penalty_type);
- }
- if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
-
- lambda = 2.0f*mu;
- count = 1;
- re_old = 0.0f;
- /*Handling Matlab output data*/
- dimY = dim_array[0]; dimX = dim_array[1]; dimZ = dim_array[2];
-
- if (number_of_dims == 2) {
- dimZ = 1; /*2D case*/
- U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- Dx = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- Dy = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- Bx = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- By = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
-
- copyIm(A, U, dimX, dimY, dimZ); /*initialize */
-
- /* begin outer SB iterations */
- for(ll=0; ll<iter; ll++) {
-
- /*storing old values*/
- copyIm(U, U_old, dimX, dimY, dimZ);
-
- /*GS iteration */
- gauss_seidel2D(U, A, Dx, Dy, Bx, By, dimX, dimY, lambda, mu);
-
- if (methTV == 1) updDxDy_shrinkAniso2D(U, Dx, Dy, Bx, By, dimX, dimY, lambda);
- else updDxDy_shrinkIso2D(U, Dx, Dy, Bx, By, dimX, dimY, lambda);
-
- updBxBy2D(U, Dx, Dy, Bx, By, dimX, dimY);
-
- /* calculate norm to terminate earlier */
- re = 0.0f; re1 = 0.0f;
- for(j=0; j<dimX*dimY*dimZ; j++)
- {
- re += pow(U_old[j] - U[j],2);
- re1 += pow(U_old[j],2);
- }
- re = sqrt(re)/sqrt(re1);
- if (re < epsil) count++;
- if (count > 4) break;
-
- /* check that the residual norm is decreasing */
- if (ll > 2) {
- if (re > re_old) break;
- }
- re_old = re;
- /*printf("%f %i %i \n", re, ll, count); */
-
- /*copyIm(U_old, U, dimX, dimY, dimZ); */
- }
- printf("SB iterations stopped at iteration: %i\n", ll);
- }
- if (number_of_dims == 3) {
- U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- U_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- Dx = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- Dy = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- Dz = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- Bx = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- By = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- Bz = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
-
- copyIm(A, U, dimX, dimY, dimZ); /*initialize */
-
- /* begin outer SB iterations */
- for(ll=0; ll<iter; ll++) {
-
- /*storing old values*/
- copyIm(U, U_old, dimX, dimY, dimZ);
-
- /*GS iteration */
- gauss_seidel3D(U, A, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda, mu);
-
- if (methTV == 1) updDxDyDz_shrinkAniso3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda);
- else updDxDyDz_shrinkIso3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda);
-
- updBxByBz3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ);
-
- /* calculate norm to terminate earlier */
- re = 0.0f; re1 = 0.0f;
- for(j=0; j<dimX*dimY*dimZ; j++)
- {
- re += pow(U[j] - U_old[j],2);
- re1 += pow(U[j],2);
- }
- re = sqrt(re)/sqrt(re1);
- if (re < epsil) count++;
- if (count > 4) break;
-
- /* check that the residual norm is decreasing */
- if (ll > 2) {
- if (re > re_old) break; }
- /*printf("%f %i %i \n", re, ll, count); */
- re_old = re;
- }
- printf("SB iterations stopped at iteration: %i\n", ll);
- }
-} \ No newline at end of file
diff --git a/main_func/regularizers_CPU/TGV_PD.c b/main_func/regularizers_CPU/TGV_PD.c
deleted file mode 100644
index c9cb440..0000000
--- a/main_func/regularizers_CPU/TGV_PD.c
+++ /dev/null
@@ -1,144 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include "TGV_PD_core.h"
-#include "mex.h"
-
-/* C-OMP implementation of Primal-Dual denoising method for
- * Total Generilized Variation (TGV)-L2 model (2D case only)
- *
- * Input Parameters:
- * 1. Noisy image/volume (2D)
- * 2. lambda - regularization parameter
- * 3. parameter to control first-order term (alpha1)
- * 4. parameter to control the second-order term (alpha0)
- * 5. Number of CP iterations
- *
- * Output:
- * Filtered/regularized image
- *
- * Example:
- * figure;
- * Im = double(imread('lena_gray_256.tif'))/255; % loading image
- * u0 = Im + .03*randn(size(Im)); % adding noise
- * tic; u = TGV_PD(single(u0), 0.02, 1.3, 1, 550); toc;
- *
- * to compile with OMP support: mex TGV_PD.c TGV_PD_core.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
- * References:
- * K. Bredies "Total Generalized Variation"
- *
- * 28.11.16/Harwell
- */
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-
-{
- int number_of_dims, iter, dimX, dimY, dimZ, ll;
- const int *dim_array;
- float *A, *U, *U_old, *P1, *P2, *Q1, *Q2, *Q3, *V1, *V1_old, *V2, *V2_old, lambda, L2, tau, sigma, alpha1, alpha0;
-
- number_of_dims = mxGetNumberOfDimensions(prhs[0]);
- dim_array = mxGetDimensions(prhs[0]);
-
- /*Handling Matlab input data*/
- A = (float *) mxGetData(prhs[0]); /*origanal noise image/volume*/
- if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input in single precision is required"); }
- lambda = (float) mxGetScalar(prhs[1]); /*regularization parameter*/
- alpha1 = (float) mxGetScalar(prhs[2]); /*first-order term*/
- alpha0 = (float) mxGetScalar(prhs[3]); /*second-order term*/
- iter = (int) mxGetScalar(prhs[4]); /*iterations number*/
- if(nrhs != 5) mexErrMsgTxt("Five input parameters is reqired: Image(2D/3D), Regularization parameter, alpha1, alpha0, Iterations");
-
- /*Handling Matlab output data*/
- dimX = dim_array[0]; dimY = dim_array[1];
-
- if (number_of_dims == 2) {
- /*2D case*/
- dimZ = 1;
- U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
-
- /*dual variables*/
- P1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- P2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
-
- Q1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- Q2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- Q3 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
-
- U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
-
- V1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- V1_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- V2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- V2_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
-
-
- /*printf("%i \n", i);*/
- L2 = 12.0f; /*Lipshitz constant*/
- tau = 1.0/pow(L2,0.5);
- sigma = 1.0/pow(L2,0.5);
-
- /*Copy A to U*/
- copyIm(A, U, dimX, dimY, dimZ);
-
- /* Here primal-dual iterations begin for 2D */
- for(ll = 0; ll < iter; ll++) {
-
- /* Calculate Dual Variable P */
- DualP_2D(U, V1, V2, P1, P2, dimX, dimY, dimZ, sigma);
-
- /*Projection onto convex set for P*/
- ProjP_2D(P1, P2, dimX, dimY, dimZ, alpha1);
-
- /* Calculate Dual Variable Q */
- DualQ_2D(V1, V2, Q1, Q2, Q3, dimX, dimY, dimZ, sigma);
-
- /*Projection onto convex set for Q*/
- ProjQ_2D(Q1, Q2, Q3, dimX, dimY, dimZ, alpha0);
-
- /*saving U into U_old*/
- copyIm(U, U_old, dimX, dimY, dimZ);
-
- /*adjoint operation -> divergence and projection of P*/
- DivProjP_2D(U, A, P1, P2, dimX, dimY, dimZ, lambda, tau);
-
- /*get updated solution U*/
- newU(U, U_old, dimX, dimY, dimZ);
-
- /*saving V into V_old*/
- copyIm(V1, V1_old, dimX, dimY, dimZ);
- copyIm(V2, V2_old, dimX, dimY, dimZ);
-
- /* upd V*/
- UpdV_2D(V1, V2, P1, P2, Q1, Q2, Q3, dimX, dimY, dimZ, tau);
-
- /*get new V*/
- newU(V1, V1_old, dimX, dimY, dimZ);
- newU(V2, V2_old, dimX, dimY, dimZ);
- } /*end of iterations*/
- }
- else if (number_of_dims == 3) {
- mexErrMsgTxt("The input data should be a 2D array");
- /*3D case*/
- }
- else {mexErrMsgTxt("The input data should be a 2D array");}
-
-}
diff --git a/main_func/studentst.m b/main_func/studentst.m
deleted file mode 100644
index 93e0a0a..0000000
--- a/main_func/studentst.m
+++ /dev/null
@@ -1,47 +0,0 @@
-function [f,g,h,s,k] = studentst(r,k,s)
-% Students T penalty with 'auto-tuning'
-%
-% use:
-% [f,g,h,{k,{s}}] = studentst(r) - automatically fits s and k
-% [f,g,h,{k,{s}}] = studentst(r,k) - automatically fits s
-% [f,g,h,{k,{s}}] = studentst(r,k,s) - use given s and k
-%
-% input:
-% r - residual as column vector
-% s - scale (optional)
-% k - degrees of freedom (optional)
-%
-% output:
-% f - misfit (scalar)
-% g - gradient (column vector)
-% h - positive approximation of the Hessian (column vector, Hessian is a diagonal matrix)
-% s,k - scale and degrees of freedom
-%
-% Tristan van Leeuwen, 2012.
-% tleeuwen@eos.ubc.ca
-
-% fit both s and k
-if nargin == 1
- opts = optimset('maxFunEvals',1e2);
- tmp = fminsearch(@(x)st(r,x(1),x(2)),[1;2],opts);
- s = tmp(1);
- k = tmp(2);
-end
-
-
-if nargin == 2
- opts = optimset('maxFunEvals',1e2);
- tmp = fminsearch(@(x)st(r,x,k),[1],opts);
- s = tmp(1);
-end
-
-% evaulate penalty
-[f,g,h] = st(r,s,k);
-
-
-function [f,g,h] = st(r,s,k)
-n = length(r);
-c = -n*(gammaln((k+1)/2) - gammaln(k/2) - .5*log(pi*s*k));
-f = c + .5*(k+1)*sum(log(1 + conj(r).*r/(s*k)));
-g = (k+1)*r./(s*k + conj(r).*r);
-h = (k+1)./(s*k + conj(r).*r);
diff --git a/src/Python/conda-recipe/meta.yaml b/src/Python/conda-recipe/meta.yaml
index 7068e9d..9ef9156 100644
--- a/src/Python/conda-recipe/meta.yaml
+++ b/src/Python/conda-recipe/meta.yaml
@@ -14,8 +14,8 @@ requirements:
- python
- numpy
- setuptools
- - boost ==1.64
- - boost-cpp ==1.64
+ - boost ==1.65
+ - boost-cpp ==1.65
- cython
run: