summaryrefslogtreecommitdiffstats
path: root/Readme.md
diff options
context:
space:
mode:
authorvagrant <vagrant@localhost.localdomain>2019-01-28 11:50:20 +0000
committervagrant <vagrant@localhost.localdomain>2019-01-28 11:50:20 +0000
commit0d74c50c48ae518fedb44e5d04a148eaa02b485b (patch)
tree9e000d8a05a58d101cd838f9d914bbeb9dcee537 /Readme.md
parenta293e77c132f8eaa2b1dd52ae9b926b90f72cfd0 (diff)
parent4aa979cd6cd0e437ab5cc02367adf140d63030b6 (diff)
downloadregularization-0d74c50c48ae518fedb44e5d04a148eaa02b485b.tar.gz
regularization-0d74c50c48ae518fedb44e5d04a148eaa02b485b.tar.bz2
regularization-0d74c50c48ae518fedb44e5d04a148eaa02b485b.tar.xz
regularization-0d74c50c48ae518fedb44e5d04a148eaa02b485b.zip
Merge branch 'master' of https://github.com/vais-ral/CCPi-Regularisation-Toolkit
Conflicts: build/jenkins-build.sh
Diffstat (limited to 'Readme.md')
-rw-r--r--Readme.md3
1 files changed, 3 insertions, 0 deletions
diff --git a/Readme.md b/Readme.md
index cdf823d..1745b9e 100644
--- a/Readme.md
+++ b/Readme.md
@@ -1,3 +1,6 @@
+| Master | Development |
+|--------|-------------|
+| [![Build Status](https://anvil.softeng-support.ac.uk/jenkins/buildStatus/icon?job=CILsingle/CCPi-Regularisation-Toolkit)](https://anvil.softeng-support.ac.uk/jenkins/job/CILsingle/job/CCPi-Regularisation-Toolkit/) | [![Build Status](https://anvil.softeng-support.ac.uk/jenkins/buildStatus/icon?job=CILsingle/CCPi-Regularisation-Toolkit-dev)](https://anvil.softeng-support.ac.uk/jenkins/job/CILsingle/job/CCPi-Regularisation-Toolkit-dev/) |
# CCPi-Regularisation Toolkit (CCPi-RGL)
**Iterative image reconstruction (IIR) methods normally require regularisation to stabilise the convergence and make the reconstruction problem (inverse problem) more well-posed. The CCPi-RGL software provides 2D/3D and multi-channel regularisation strategies to ensure better performance of IIR methods. The regularisation modules are well-suited to use with [splitting algorithms](https://en.wikipedia.org/wiki/Augmented_Lagrangian_method#Alternating_direction_method_of_multipliers), such as, [ADMM](https://github.com/dkazanc/ADMM-tomo) and [FISTA](https://github.com/dkazanc/FISTA-tomo). Furthermore, the toolkit can be used for simpler inversion tasks, such as, image denoising, inpaiting, deconvolution etc. The core modules are written in C-OMP and CUDA languages and wrappers for Matlab and Python are provided.**