diff options
author | vagrant <vagrant@localhost.localdomain> | 2019-01-28 11:50:20 +0000 |
---|---|---|
committer | vagrant <vagrant@localhost.localdomain> | 2019-01-28 11:50:20 +0000 |
commit | 0d74c50c48ae518fedb44e5d04a148eaa02b485b (patch) | |
tree | 9e000d8a05a58d101cd838f9d914bbeb9dcee537 /Readme.md | |
parent | a293e77c132f8eaa2b1dd52ae9b926b90f72cfd0 (diff) | |
parent | 4aa979cd6cd0e437ab5cc02367adf140d63030b6 (diff) | |
download | regularization-0d74c50c48ae518fedb44e5d04a148eaa02b485b.tar.gz regularization-0d74c50c48ae518fedb44e5d04a148eaa02b485b.tar.bz2 regularization-0d74c50c48ae518fedb44e5d04a148eaa02b485b.tar.xz regularization-0d74c50c48ae518fedb44e5d04a148eaa02b485b.zip |
Merge branch 'master' of https://github.com/vais-ral/CCPi-Regularisation-Toolkit
Conflicts:
build/jenkins-build.sh
Diffstat (limited to 'Readme.md')
-rw-r--r-- | Readme.md | 3 |
1 files changed, 3 insertions, 0 deletions
@@ -1,3 +1,6 @@ +| Master | Development | +|--------|-------------| +| [![Build Status](https://anvil.softeng-support.ac.uk/jenkins/buildStatus/icon?job=CILsingle/CCPi-Regularisation-Toolkit)](https://anvil.softeng-support.ac.uk/jenkins/job/CILsingle/job/CCPi-Regularisation-Toolkit/) | [![Build Status](https://anvil.softeng-support.ac.uk/jenkins/buildStatus/icon?job=CILsingle/CCPi-Regularisation-Toolkit-dev)](https://anvil.softeng-support.ac.uk/jenkins/job/CILsingle/job/CCPi-Regularisation-Toolkit-dev/) | # CCPi-Regularisation Toolkit (CCPi-RGL) **Iterative image reconstruction (IIR) methods normally require regularisation to stabilise the convergence and make the reconstruction problem (inverse problem) more well-posed. The CCPi-RGL software provides 2D/3D and multi-channel regularisation strategies to ensure better performance of IIR methods. The regularisation modules are well-suited to use with [splitting algorithms](https://en.wikipedia.org/wiki/Augmented_Lagrangian_method#Alternating_direction_method_of_multipliers), such as, [ADMM](https://github.com/dkazanc/ADMM-tomo) and [FISTA](https://github.com/dkazanc/FISTA-tomo). Furthermore, the toolkit can be used for simpler inversion tasks, such as, image denoising, inpaiting, deconvolution etc. The core modules are written in C-OMP and CUDA languages and wrappers for Matlab and Python are provided.** |