summaryrefslogtreecommitdiffstats
path: root/Readme.md
diff options
context:
space:
mode:
authorDaniil Kazantsev <dkazanc@hotmail.com>2018-04-12 10:25:21 +0100
committerDaniil Kazantsev <dkazanc@hotmail.com>2018-04-12 10:25:21 +0100
commit58f5ce047b063d53906e38047b6ae744ccdbd4eb (patch)
tree611d46727147c2473f81c35174a6c105e830e94c /Readme.md
parentaa99eb8a9bd47ecd6e4d3d1e8c9f0cfbefb4f7bb (diff)
downloadregularization-58f5ce047b063d53906e38047b6ae744ccdbd4eb.tar.gz
regularization-58f5ce047b063d53906e38047b6ae744ccdbd4eb.tar.bz2
regularization-58f5ce047b063d53906e38047b6ae744ccdbd4eb.tar.xz
regularization-58f5ce047b063d53906e38047b6ae744ccdbd4eb.zip
dTV method added
Diffstat (limited to 'Readme.md')
-rw-r--r--Readme.md2
1 files changed, 2 insertions, 0 deletions
diff --git a/Readme.md b/Readme.md
index 056ade5..31d03a1 100644
--- a/Readme.md
+++ b/Readme.md
@@ -18,6 +18,7 @@ can also be used as image denoising iterative filters. The core modules are writ
2. Fast-Gradient-Projection (FGP) Total Variation [2D/3D GPU/CPU]; (Ref. 2)
### Multi-channel
+1. Fast-Gradient-Projection (FGP) Directional Total Variation [2D/3D GPU/CPU]; (Ref. 4,2)
## Installation:
@@ -43,6 +44,7 @@ can also be used as image denoising iterative filters. The core modules are writ
1. Rudin, L.I., Osher, S. and Fatemi, E., 1992. Nonlinear total variation based noise removal algorithms. Physica D: nonlinear phenomena, 60(1-4), pp.259-268.
2. Beck, A. and Teboulle, M., 2009. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Transactions on Image Processing, 18(11), pp.2419-2434.
3. Lysaker, M., Lundervold, A. and Tai, X.C., 2003. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Transactions on image processing, 12(12), pp.1579-1590.
+4. Ehrhardt, M.J. and Betcke, M.M., 2016. Multicontrast MRI reconstruction with structure-guided total variation. SIAM Journal on Imaging Sciences, 9(3), pp.1084-1106.
### License:
[Apache License, Version 2.0](http://www.apache.org/licenses/LICENSE-2.0)