diff options
author | Daniil Kazantsev <dkazanc@hotmail.com> | 2018-04-18 22:31:59 +0100 |
---|---|---|
committer | Daniil Kazantsev <dkazanc@hotmail.com> | 2018-04-18 22:31:59 +0100 |
commit | 8aaf90a7716c0ca8ab3b9852f18545af7cf05eb9 (patch) | |
tree | 9482d5325a9b62864dcac8edbfa886e0399ff2ea /Readme.md | |
parent | cbe38cf8874ca3b74e25ce64d61bbb2edeb3a9c1 (diff) | |
download | regularization-8aaf90a7716c0ca8ab3b9852f18545af7cf05eb9.tar.gz regularization-8aaf90a7716c0ca8ab3b9852f18545af7cf05eb9.tar.bz2 regularization-8aaf90a7716c0ca8ab3b9852f18545af7cf05eb9.tar.xz regularization-8aaf90a7716c0ca8ab3b9852f18545af7cf05eb9.zip |
NonlDiff added 2D CPU/CUDA
Diffstat (limited to 'Readme.md')
-rw-r--r-- | Readme.md | 7 |
1 files changed, 5 insertions, 2 deletions
@@ -1,8 +1,9 @@ # CCPi-Regularisation Toolkit (CCPi-RGL) **Iterative image reconstruction (IIR) methods normally require regularisation to stabilise the convergence and make the reconstruction problem more well-posed. -CCPi-RGL software consist of 2D/3D regularisation modules for single-channel and multi-channel reconstruction problems. The modules especially suited for IIR, however, -can also be used as image denoising iterative filters. The core modules are written in C-OMP and CUDA languages and wrappers for Matlab and Python are provided.** +CCPi-RGL software consist of 2D/3D regularisation modules for single-channel and multi-channel reconstruction problems. The regularisation modules are well-suited for +[splitting algorithms](https://en.wikipedia.org/wiki/Augmented_Lagrangian_method#Alternating_direction_method_of_multipliers), of ADMM or FISTA type. Furthermore, +the toolkit can be used independently to solve image denoising problems. The core modules are written in C-OMP and CUDA languages and wrappers for Matlab and Python are provided.** <div align="center"> <img src="docs/images/probl.png" height="225"><br> @@ -21,6 +22,7 @@ can also be used as image denoising iterative filters. The core modules are writ 1. Rudin-Osher-Fatemi (ROF) Total Variation (explicit PDE minimisation scheme) [2D/3D CPU/GPU]; (Ref. 1) 2. Fast-Gradient-Projection (FGP) Total Variation [2D/3D CPU/GPU]; (Ref. 2) 3. Split-Bregman (SB) Total Variation [2D/3D CPU/GPU]; (Ref. 4) +4. Linear and nonlinear diffusion (explicit PDE minimisation scheme) [2D/3D CPU/GPU]; (Ref. 6) ### Multi-channel 1. Fast-Gradient-Projection (FGP) Directional Total Variation [2D/3D CPU/GPU]; (Ref. 3,2) @@ -53,6 +55,7 @@ can also be used as image denoising iterative filters. The core modules are writ 3. Ehrhardt, M.J. and Betcke, M.M., 2016. Multicontrast MRI reconstruction with structure-guided total variation. SIAM Journal on Imaging Sciences, 9(3), pp.1084-1106. 4. Goldstein, T. and Osher, S., 2009. The split Bregman method for L1-regularized problems. SIAM journal on imaging sciences, 2(2), pp.323-343. 5. Duran, J., Moeller, M., Sbert, C. and Cremers, D., 2016. Collaborative total variation: a general framework for vectorial TV models. SIAM Journal on Imaging Sciences, 9(1), pp.116-151. +6. Black, M.J., Sapiro, G., Marimont, D.H. and Heeger, D., 1998. Robust anisotropic diffusion. IEEE Transactions on image processing, 7(3), pp.421-432. ### License: [Apache License, Version 2.0](http://www.apache.org/licenses/LICENSE-2.0) |