summaryrefslogtreecommitdiffstats
path: root/Readme.md
diff options
context:
space:
mode:
authorDaniil Kazantsev <dkazanc@hotmail.com>2018-04-17 12:58:28 +0100
committerDaniil Kazantsev <dkazanc@hotmail.com>2018-04-17 12:58:28 +0100
commitd0a33e4f941539ba44a071cfab75d7bf9543990f (patch)
treeed825ba90ca17448ab07309435095f3612ffe703 /Readme.md
parent7e556922a60e052d24c1e467df13423904729357 (diff)
downloadregularization-d0a33e4f941539ba44a071cfab75d7bf9543990f.tar.gz
regularization-d0a33e4f941539ba44a071cfab75d7bf9543990f.tar.bz2
regularization-d0a33e4f941539ba44a071cfab75d7bf9543990f.tar.xz
regularization-d0a33e4f941539ba44a071cfab75d7bf9543990f.zip
TNV module added
Diffstat (limited to 'Readme.md')
-rw-r--r--Readme.md7
1 files changed, 5 insertions, 2 deletions
diff --git a/Readme.md b/Readme.md
index 59ac46a..60c38ab 100644
--- a/Readme.md
+++ b/Readme.md
@@ -5,7 +5,7 @@ CCPi-RGL software consist of 2D/3D regularisation modules for single-channel and
can also be used as image denoising iterative filters. The core modules are written in C-OMP and CUDA languages and wrappers for Matlab and Python are provided.**
<div align="center">
- <img src="docs/images/probl.png" height="250"><br>
+ <img src="docs/images/probl.png" height="225"><br>
</div>
## Prerequisites:
@@ -24,6 +24,7 @@ can also be used as image denoising iterative filters. The core modules are writ
### Multi-channel
1. Fast-Gradient-Projection (FGP) Directional Total Variation [2D/3D CPU/GPU]; (Ref. 3,2)
+2. Total Nuclear Variation (TNV) penalty [2D+channels CPU]; (Ref. 5)
## Installation:
@@ -36,7 +37,8 @@ can also be used as image denoising iterative filters. The core modules are writ
conda build conda-recipe --numpy 1.12 --python 3.5
conda install ccpi-regulariser=0.9.2 --use-local --force
cd demos/
- python demo_cpu_regularisers.py.py # to run CPU demo
+ python demo_cpu_regularisers.py # to run CPU demo
+ python demo_gpu_regularisers.py # to run GPU demo
```
### Matlab
```
@@ -50,6 +52,7 @@ can also be used as image denoising iterative filters. The core modules are writ
2. Beck, A. and Teboulle, M., 2009. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Transactions on Image Processing, 18(11), pp.2419-2434.
3. Ehrhardt, M.J. and Betcke, M.M., 2016. Multicontrast MRI reconstruction with structure-guided total variation. SIAM Journal on Imaging Sciences, 9(3), pp.1084-1106.
4. Goldstein, T. and Osher, S., 2009. The split Bregman method for L1-regularized problems. SIAM journal on imaging sciences, 2(2), pp.323-343.
+5. Duran, J., Moeller, M., Sbert, C. and Cremers, D., 2016. Collaborative total variation: a general framework for vectorial TV models. SIAM Journal on Imaging Sciences, 9(1), pp.116-151.
### License:
[Apache License, Version 2.0](http://www.apache.org/licenses/LICENSE-2.0)