summaryrefslogtreecommitdiffstats
path: root/Wrappers/Matlab/demos
diff options
context:
space:
mode:
authorDaniil Kazantsev <dkazanc@hotmail.com>2018-05-30 10:08:01 +0100
committerDaniil Kazantsev <dkazanc@hotmail.com>2018-05-30 10:08:01 +0100
commit4992d79f8d10749f8e9c32c6dae33bfddd239fbc (patch)
treed327d19f48c8dd96a52ec4f028947e8227efb204 /Wrappers/Matlab/demos
parent44f1bf583985a173ef8ac7a0ed4aa95dc07f2f7a (diff)
downloadregularization-4992d79f8d10749f8e9c32c6dae33bfddd239fbc.tar.gz
regularization-4992d79f8d10749f8e9c32c6dae33bfddd239fbc.tar.bz2
regularization-4992d79f8d10749f8e9c32c6dae33bfddd239fbc.tar.xz
regularization-4992d79f8d10749f8e9c32c6dae33bfddd239fbc.zip
LLT-ROF model added
Diffstat (limited to 'Wrappers/Matlab/demos')
-rw-r--r--Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m68
-rw-r--r--Wrappers/Matlab/demos/demoMatlab_denoise.m20
2 files changed, 75 insertions, 13 deletions
diff --git a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m b/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m
index 9a65e37..5cc47b3 100644
--- a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m
+++ b/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m
@@ -6,11 +6,13 @@ addpath(Path1);
addpath(Path2);
N = 512;
-slices = 30;
+slices = 15;
vol3D = zeros(N,N,slices, 'single');
+Ideal3D = zeros(N,N,slices, 'single');
Im = double(imread('lena_gray_512.tif'))/255; % loading image
for i = 1:slices
vol3D(:,:,i) = Im + .05*randn(size(Im));
+Ideal3D(:,:,i) = Im;
end
vol3D(vol3D < 0) = 0;
figure; imshow(vol3D(:,:,15), [0 1]); title('Noisy image');
@@ -23,39 +25,71 @@ tau_rof = 0.0025; % time-marching constant
iter_rof = 300; % number of ROF iterations
tic; u_rof = ROF_TV(single(vol3D), lambda_reg, iter_rof, tau_rof); toc;
energyfunc_val_rof = TV_energy(single(u_rof),single(vol3D),lambda_reg, 1); % get energy function value
-figure; imshow(u_rof(:,:,15), [0 1]); title('ROF-TV denoised volume (CPU)');
+rmse_rof = (RMSE(Ideal3D(:),u_rof(:)));
+fprintf('%s %f \n', 'RMSE error for ROF is:', rmse_rof);
+figure; imshow(u_rof(:,:,7), [0 1]); title('ROF-TV denoised volume (CPU)');
%%
% fprintf('Denoise a volume using the ROF-TV model (GPU) \n');
% tau_rof = 0.0025; % time-marching constant
% iter_rof = 300; % number of ROF iterations
% tic; u_rofG = ROF_TV_GPU(single(vol3D), lambda_reg, iter_rof, tau_rof); toc;
-% figure; imshow(u_rofG(:,:,15), [0 1]); title('ROF-TV denoised volume (GPU)');
+% rmse_rofG = (RMSE(Ideal3D(:),u_rofG(:)));
+% fprintf('%s %f \n', 'RMSE error for ROF is:', rmse_rofG);
+% figure; imshow(u_rofG(:,:,7), [0 1]); title('ROF-TV denoised volume (GPU)');
%%
fprintf('Denoise a volume using the FGP-TV model (CPU) \n');
iter_fgp = 300; % number of FGP iterations
epsil_tol = 1.0e-05; % tolerance
tic; u_fgp = FGP_TV(single(vol3D), lambda_reg, iter_fgp, epsil_tol); toc;
energyfunc_val_fgp = TV_energy(single(u_fgp),single(vol3D),lambda_reg, 1); % get energy function value
-figure; imshow(u_fgp(:,:,15), [0 1]); title('FGP-TV denoised volume (CPU)');
+rmse_fgp = (RMSE(Ideal3D(:),u_fgp(:)));
+fprintf('%s %f \n', 'RMSE error for FGP-TV is:', rmse_fgp);
+figure; imshow(u_fgp(:,:,7), [0 1]); title('FGP-TV denoised volume (CPU)');
%%
% fprintf('Denoise a volume using the FGP-TV model (GPU) \n');
% iter_fgp = 300; % number of FGP iterations
% epsil_tol = 1.0e-05; % tolerance
% tic; u_fgpG = FGP_TV_GPU(single(vol3D), lambda_reg, iter_fgp, epsil_tol); toc;
-% figure; imshow(u_fgpG(:,:,15), [0 1]); title('FGP-TV denoised volume (GPU)');
+% rmse_fgpG = (RMSE(Ideal3D(:),u_fgpG(:)));
+% fprintf('%s %f \n', 'RMSE error for FGP-TV is:', rmse_fgpG);
+% figure; imshow(u_fgpG(:,:,7), [0 1]); title('FGP-TV denoised volume (GPU)');
%%
fprintf('Denoise a volume using the SB-TV model (CPU) \n');
iter_sb = 150; % number of SB iterations
epsil_tol = 1.0e-05; % tolerance
tic; u_sb = SB_TV(single(vol3D), lambda_reg, iter_sb, epsil_tol); toc;
energyfunc_val_sb = TV_energy(single(u_sb),single(vol3D),lambda_reg, 1); % get energy function value
-figure; imshow(u_sb(:,:,15), [0 1]); title('SB-TV denoised volume (CPU)');
+rmse_sb = (RMSE(Ideal3D(:),u_sb(:)));
+fprintf('%s %f \n', 'RMSE error for SB-TV is:', rmse_sb);
+figure; imshow(u_sb(:,:,7), [0 1]); title('SB-TV denoised volume (CPU)');
%%
% fprintf('Denoise a volume using the SB-TV model (GPU) \n');
% iter_sb = 150; % number of SB iterations
% epsil_tol = 1.0e-05; % tolerance
% tic; u_sbG = SB_TV_GPU(single(vol3D), lambda_reg, iter_sb, epsil_tol); toc;
-% figure; imshow(u_sbG(:,:,15), [0 1]); title('SB-TV denoised volume (GPU)');
+% rmse_sbG = (RMSE(Ideal3D(:),u_sbG(:)));
+% fprintf('%s %f \n', 'RMSE error for SB-TV is:', rmse_sbG);
+% figure; imshow(u_sbG(:,:,7), [0 1]); title('SB-TV denoised volume (GPU)');
+%%
+fprintf('Denoise a volume using the ROF-LLT model (CPU) \n');
+lambda_ROF = lambda_reg; % ROF regularisation parameter
+lambda_LLT = lambda_reg*0.35; % LLT regularisation parameter
+iter_LLT = 300; % iterations
+tau_rof_llt = 0.0025; % time-marching constant
+tic; u_rof_llt = LLT_ROF(single(vol3D), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt); toc;
+rmse_rof_llt = (RMSE(Ideal3D(:),u_rof_llt(:)));
+fprintf('%s %f \n', 'RMSE error for ROF-LLT is:', rmse_rof_llt);
+figure; imshow(u_rof_llt(:,:,7), [0 1]); title('ROF-LLT denoised volume (CPU)');
+%%
+% fprintf('Denoise a volume using the ROF-LLT model (GPU) \n');
+% lambda_ROF = lambda_reg; % ROF regularisation parameter
+% lambda_LLT = lambda_reg*0.35; % LLT regularisation parameter
+% iter_LLT = 300; % iterations
+% tau_rof_llt = 0.0025; % time-marching constant
+% tic; u_rof_llt_g = LLT_ROF_GPU(single(vol3D), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt); toc;
+% rmse_rof_llt = (RMSE(Ideal3D(:),u_rof_llt_g(:)));
+% fprintf('%s %f \n', 'RMSE error for ROF-LLT is:', rmse_rof_llt);
+% figure; imshow(u_rof_llt_g(:,:,7), [0 1]); title('ROF-LLT denoised volume (GPU)');
%%
fprintf('Denoise a volume using Nonlinear-Diffusion model (CPU) \n');
iter_diff = 300; % number of diffusion iterations
@@ -63,7 +97,9 @@ lambda_regDiff = 0.025; % regularisation for the diffusivity
sigmaPar = 0.015; % edge-preserving parameter
tau_param = 0.025; % time-marching constant
tic; u_diff = NonlDiff(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc;
-figure; imshow(u_diff(:,:,15), [0 1]); title('Diffusion denoised volume (CPU)');
+rmse_diff = (RMSE(Ideal3D(:),u_diff(:)));
+fprintf('%s %f \n', 'RMSE error for Diffusion is:', rmse_diff);
+figure; imshow(u_diff(:,:,7), [0 1]); title('Diffusion denoised volume (CPU)');
%%
% fprintf('Denoise a volume using Nonlinear-Diffusion model (GPU) \n');
% iter_diff = 300; % number of diffusion iterations
@@ -71,7 +107,9 @@ figure; imshow(u_diff(:,:,15), [0 1]); title('Diffusion denoised volume (CPU)');
% sigmaPar = 0.015; % edge-preserving parameter
% tau_param = 0.025; % time-marching constant
% tic; u_diff_g = NonlDiff_GPU(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc;
-% figure; imshow(u_diff_g(:,:,15), [0 1]); title('Diffusion denoised volume (GPU)');
+% rmse_diff = (RMSE(Ideal3D(:),u_diff_g(:)));
+% fprintf('%s %f \n', 'RMSE error for Diffusion is:', rmse_diff);
+% figure; imshow(u_diff_g(:,:,7), [0 1]); title('Diffusion denoised volume (GPU)');
%%
fprintf('Denoise using Fourth-order anisotropic diffusion model (CPU) \n');
iter_diff = 300; % number of diffusion iterations
@@ -79,7 +117,9 @@ lambda_regDiff = 3.5; % regularisation for the diffusivity
sigmaPar = 0.02; % edge-preserving parameter
tau_param = 0.0015; % time-marching constant
tic; u_diff4 = Diffusion_4thO(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc;
-figure; imshow(u_diff4(:,:,15), [0 1]); title('Diffusion 4thO denoised volume (CPU)');
+rmse_diff4 = (RMSE(Ideal3D(:),u_diff4(:)));
+fprintf('%s %f \n', 'RMSE error for Anis.Diff of 4th order is:', rmse_diff4);
+figure; imshow(u_diff4(:,:,7), [0 1]); title('Diffusion 4thO denoised volume (CPU)');
%%
% fprintf('Denoise using Fourth-order anisotropic diffusion model (GPU) \n');
% iter_diff = 300; % number of diffusion iterations
@@ -87,7 +127,9 @@ figure; imshow(u_diff4(:,:,15), [0 1]); title('Diffusion 4thO denoised volume (C
% sigmaPar = 0.02; % edge-preserving parameter
% tau_param = 0.0015; % time-marching constant
% tic; u_diff4_g = Diffusion_4thO_GPU(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc;
-% figure; imshow(u_diff4_g(:,:,15), [0 1]); title('Diffusion 4thO denoised volume (GPU)');
+% rmse_diff4 = (RMSE(Ideal3D(:),u_diff4_g(:)));
+% fprintf('%s %f \n', 'RMSE error for Anis.Diff of 4th order is:', rmse_diff4);
+% figure; imshow(u_diff4_g(:,:,7), [0 1]); title('Diffusion 4thO denoised volume (GPU)');
%%
%>>>>>>>>>>>>>> MULTI-CHANNEL priors <<<<<<<<<<<<<<< %
@@ -105,7 +147,7 @@ iter_fgp = 300; % number of FGP iterations
epsil_tol = 1.0e-05; % tolerance
eta = 0.2; % Reference image gradient smoothing constant
tic; u_fgp_dtv = FGP_dTV(single(vol3D), single(vol3D_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc;
-figure; imshow(u_fgp_dtv(:,:,15), [0 1]); title('FGP-dTV denoised volume (CPU)');
+figure; imshow(u_fgp_dtv(:,:,7), [0 1]); title('FGP-dTV denoised volume (CPU)');
%%
fprintf('Denoise a volume using the FGP-dTV model (GPU) \n');
@@ -121,5 +163,5 @@ iter_fgp = 300; % number of FGP iterations
epsil_tol = 1.0e-05; % tolerance
eta = 0.2; % Reference image gradient smoothing constant
tic; u_fgp_dtv_g = FGP_dTV_GPU(single(vol3D), single(vol3D_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc;
-figure; imshow(u_fgp_dtv_g(:,:,15), [0 1]); title('FGP-dTV denoised volume (GPU)');
+figure; imshow(u_fgp_dtv_g(:,:,7), [0 1]); title('FGP-dTV denoised volume (GPU)');
%%
diff --git a/Wrappers/Matlab/demos/demoMatlab_denoise.m b/Wrappers/Matlab/demos/demoMatlab_denoise.m
index 3f0ca54..d11bc63 100644
--- a/Wrappers/Matlab/demos/demoMatlab_denoise.m
+++ b/Wrappers/Matlab/demos/demoMatlab_denoise.m
@@ -79,6 +79,26 @@ figure; imshow(u_tgv, [0 1]); title('TGV denoised image (CPU)');
% fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV_gpu);
% figure; imshow(u_tgv_gpu, [0 1]); title('TGV denoised image (GPU)');
%%
+fprintf('Denoise using the ROF-LLT model (CPU) \n');
+lambda_ROF = lambda_reg; % ROF regularisation parameter
+lambda_LLT = lambda_reg*0.45; % LLT regularisation parameter
+iter_LLT = 1; % iterations
+tau_rof_llt = 0.0025; % time-marching constant
+tic; u_rof_llt = LLT_ROF(single(u0), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt); toc;
+rmseROFLLT = (RMSE(u_rof_llt(:),Im(:)));
+fprintf('%s %f \n', 'RMSE error for TGV is:', rmseROFLLT);
+figure; imshow(u_rof_llt, [0 1]); title('ROF-LLT denoised image (CPU)');
+%%
+% fprintf('Denoise using the ROF-LLT model (GPU) \n');
+% lambda_ROF = lambda_reg; % ROF regularisation parameter
+% lambda_LLT = lambda_reg*0.45; % LLT regularisation parameter
+% iter_LLT = 500; % iterations
+% tau_rof_llt = 0.0025; % time-marching constant
+% tic; u_rof_llt_g = LLT_ROF_GPU(single(u0), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt); toc;
+% rmseROFLLT_g = (RMSE(u_rof_llt_g(:),Im(:)));
+% fprintf('%s %f \n', 'RMSE error for TGV is:', rmseROFLLT_g);
+% figure; imshow(u_rof_llt_g, [0 1]); title('ROF-LLT denoised image (GPU)');
+%%
fprintf('Denoise using Nonlinear-Diffusion model (CPU) \n');
iter_diff = 800; % number of diffusion iterations
lambda_regDiff = 0.025; % regularisation for the diffusivity