summaryrefslogtreecommitdiffstats
path: root/Wrappers/Matlab/demos
diff options
context:
space:
mode:
authorDaniil Kazantsev <dkazanc@hotmail.com>2018-04-18 22:31:59 +0100
committerDaniil Kazantsev <dkazanc@hotmail.com>2018-04-18 22:31:59 +0100
commit8aaf90a7716c0ca8ab3b9852f18545af7cf05eb9 (patch)
tree9482d5325a9b62864dcac8edbfa886e0399ff2ea /Wrappers/Matlab/demos
parentcbe38cf8874ca3b74e25ce64d61bbb2edeb3a9c1 (diff)
downloadregularization-8aaf90a7716c0ca8ab3b9852f18545af7cf05eb9.tar.gz
regularization-8aaf90a7716c0ca8ab3b9852f18545af7cf05eb9.tar.bz2
regularization-8aaf90a7716c0ca8ab3b9852f18545af7cf05eb9.tar.xz
regularization-8aaf90a7716c0ca8ab3b9852f18545af7cf05eb9.zip
NonlDiff added 2D CPU/CUDA
Diffstat (limited to 'Wrappers/Matlab/demos')
-rw-r--r--Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m9
-rw-r--r--Wrappers/Matlab/demos/demoMatlab_denoise.m16
2 files changed, 25 insertions, 0 deletions
diff --git a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m b/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m
index fb55097..502b6bd 100644
--- a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m
+++ b/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m
@@ -53,6 +53,15 @@ figure; imshow(u_sb(:,:,15), [0 1]); title('SB-TV denoised volume (CPU)');
% tic; u_sbG = SB_TV_GPU(single(vol3D), lambda_reg, iter_sb, epsil_tol); toc;
% figure; imshow(u_sbG(:,:,15), [0 1]); title('SB-TV denoised volume (GPU)');
%%
+%%
+fprintf('Denoise a volume using Nonlinear-Diffusion model (CPU) \n');
+iter_diff = 300; % number of diffusion iterations
+lambda_regDiff = 0.06; % regularisation for the diffusivity
+sigmaPar = 0.04; % edge-preserving parameter
+tau_param = 0.025; % time-marching constant
+tic; u_diff = NonlDiff(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc;
+figure; imshow(u_diff(:,:,15), [0 1]); title('Diffusion denoised volume (CPU)');
+%%
%>>>>>>>>>>>>>> MULTI-CHANNEL priors <<<<<<<<<<<<<<< %
fprintf('Denoise a volume using the FGP-dTV model (CPU) \n');
diff --git a/Wrappers/Matlab/demos/demoMatlab_denoise.m b/Wrappers/Matlab/demos/demoMatlab_denoise.m
index dab98dc..4a0a19a 100644
--- a/Wrappers/Matlab/demos/demoMatlab_denoise.m
+++ b/Wrappers/Matlab/demos/demoMatlab_denoise.m
@@ -46,6 +46,22 @@ figure; imshow(u_sb, [0 1]); title('SB-TV denoised image (CPU)');
% tic; u_sbG = SB_TV_GPU(single(u0), lambda_reg, iter_sb, epsil_tol); toc;
% figure; imshow(u_sbG, [0 1]); title('SB-TV denoised image (GPU)');
%%
+fprintf('Denoise using Nonlinear-Diffusion model (CPU) \n');
+iter_diff = 800; % number of diffusion iterations
+lambda_regDiff = 0.06; % regularisation for the diffusivity
+sigmaPar = 0.04; % edge-preserving parameter
+tau_param = 0.025; % time-marching constant
+tic; u_diff = NonlDiff(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc;
+figure; imshow(u_diff, [0 1]); title('Diffusion denoised image (CPU)');
+%%
+% fprintf('Denoise using Nonlinear-Diffusion model (GPU) \n');
+% iter_diff = 800; % number of diffusion iterations
+% lambda_regDiff = 0.06; % regularisation for the diffusivity
+% sigmaPar = 0.04; % edge-preserving parameter
+% tau_param = 0.025; % time-marching constant
+% tic; u_diff_g = NonlDiff_GPU(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc;
+% figure; imshow(u_diff_g, [0 1]); title('Diffusion denoised image (GPU)');
+%%
%>>>>>>>>>>>>>> MULTI-CHANNEL priors <<<<<<<<<<<<<<< %
fprintf('Denoise using the FGP-dTV model (CPU) \n');