diff options
author | Tomas Kulhanek <tomas.kulhanek@stfc.ac.uk> | 2019-02-21 02:10:14 -0500 |
---|---|---|
committer | Tomas Kulhanek <tomas.kulhanek@stfc.ac.uk> | 2019-02-21 02:10:14 -0500 |
commit | 3caa686662f7d937cf7eb852dde437cd66e79a6e (patch) | |
tree | 76088f5924ff9278e0a37140fce888cd89b84a7e /Wrappers/Matlab | |
parent | 8f2e86726669b9dadb3c788e0ea681d397a2eeb7 (diff) | |
download | regularization-3caa686662f7d937cf7eb852dde437cd66e79a6e.tar.gz regularization-3caa686662f7d937cf7eb852dde437cd66e79a6e.tar.bz2 regularization-3caa686662f7d937cf7eb852dde437cd66e79a6e.tar.xz regularization-3caa686662f7d937cf7eb852dde437cd66e79a6e.zip |
restructured sources
Diffstat (limited to 'Wrappers/Matlab')
32 files changed, 0 insertions, 2775 deletions
diff --git a/Wrappers/Matlab/CMakeLists.txt b/Wrappers/Matlab/CMakeLists.txt deleted file mode 100755 index 0c26148..0000000 --- a/Wrappers/Matlab/CMakeLists.txt +++ /dev/null @@ -1,147 +0,0 @@ -project(regulariserMatlab)
-
-
-find_package(Matlab REQUIRED COMPONENTS MAIN_PROGRAM MX_LIBRARY ENG_LIBRARY )
-
-
-
-#C:\Users\ofn77899\Documents\Projects\CCPi\GitHub\CCPi-FISTA_Reconstruction\Core\regularisers_CPU
-# matlab_add_mex(
- # NAME CPU_ROF
- # SRC
- # ${CMAKE_SOURCE_DIR}/Wrappers/Matlab/mex_compile/regularisers_CPU/ROF_TV.c
- # LINK_TO cilreg ${Matlab_LIBRARIES}
- # )
-
-# target_include_directories(CPU_ROF
- # PUBLIC ${CMAKE_SOURCE_DIR}/Core/regularisers_CPU
- # ${CMAKE_SOURCE_DIR}/Core/regularisers_GPU
- # ${CMAKE_SOURCE_DIR}/Core/inpainters_CPU
- # ${CMAKE_SOURCE_DIR}/Core/
- # ${MATLAB_INCLUDE_DIR})
-
- # matlab_add_mex(
- # NAME CPU_TNV
- # SRC
- # ${CMAKE_SOURCE_DIR}/Wrappers/Matlab/mex_compile/regularisers_CPU/TNV.c
- # LINK_TO cilreg ${Matlab_LIBRARIES}
- # )
-
-# target_include_directories(CPU_TNV
- # PUBLIC ${CMAKE_SOURCE_DIR}/Core/regularisers_CPU
- # ${CMAKE_SOURCE_DIR}/Core/regularisers_GPU
- # ${CMAKE_SOURCE_DIR}/Core/inpainters_CPU
- # ${CMAKE_SOURCE_DIR}/Core/
- # ${MATLAB_INCLUDE_DIR})
-
-#set (CPU_MEX_FILES "regularisers_CPU/TNV.c;regularisers_CPU/ROF_TV.c")
-#set (MEX_TARGETS "CPU_TNV;CPU_ROF")
-#list(APPEND MEX_TARGETS "CPU_TNV")
-#list(APPEND MEX_TARGETS "CPU_ROF")
-
-file(GLOB CPU_MEX_FILES
- "${CMAKE_SOURCE_DIR}/Wrappers/Matlab/mex_compile/regularisers_CPU/*.c"
- #"${CMAKE_SOURCE_DIR}/Wrappers/Matlab/mex_compile/regularisers_GPU/*.c"
-)
-
-#message("CPU_MEX_FILES " ${CPU_MEX_FILES})
-
-list(LENGTH CPU_MEX_FILES num)
-
-
-MATH(EXPR num "${num}-1")
-#set(num "-1")
-message("found ${num} files")
-
-foreach(tgt RANGE 0 ${num})
- message("number " ${tgt})
- list(LENGTH CPU_MEX_FILES num2)
- message("the list is ${num2}")
- #list(GET CPU_TARGETS ${tgt} current_target)
- list(GET CPU_MEX_FILES ${tgt} current_file_name)
- get_filename_component(current_file ${current_file_name} NAME)
- string(REGEX MATCH "(.+).c" match ${current_file})
- if (NOT ${match} EQUAL "" )
- set (current_target ${CMAKE_MATCH_1})
- endif()
- message("matlab_add_mex target " ${current_file} " and " ${current_target})
- matlab_add_mex(
- NAME ${current_target}
- SRC
- ${current_file_name}
- #${CMAKE_SOURCE_DIR}/Core/regularisers_CPU/FGP_TV_core.c
- #${CMAKE_SOURCE_DIR}/Core/regularisers_CPU/SB_TV_core.c
- #${CMAKE_SOURCE_DIR}/Core/regularisers_CPU/TGV_core.c
- #${CMAKE_SOURCE_DIR}/Core/regularisers_CPU/Diffusion_core.c
- #${CMAKE_SOURCE_DIR}/Core/regularisers_CPU/Diffus4th_order_core.c
- #${CMAKE_SOURCE_DIR}/Core/regularisers_CPU/LLT_ROF_core.c
- #${CMAKE_SOURCE_DIR}/Core/regularisers_CPU/ROF_TV_core.c
- #${CMAKE_SOURCE_DIR}/Core/regularisers_CPU/FGP_dTV_core.c
- #${CMAKE_SOURCE_DIR}/Core/regularisers_CPU/TNV_core.c
- #${CMAKE_SOURCE_DIR}/Core/regularisers_CPU/utils.c
- #${CMAKE_SOURCE_DIR}/Core/inpainters_CPU/Diffusion_Inpaint_core.c
- #${CMAKE_SOURCE_DIR}/Core/inpainters_CPU/NonlocalMarching_Inpaint_core.c
- LINK_TO cilreg ${Matlab_LIBRARIES}
- )
-
-target_include_directories(${current_target}
- PUBLIC ${CMAKE_SOURCE_DIR}/Core/regularisers_CPU
- ${CMAKE_SOURCE_DIR}/Core/regularisers_GPU
- ${CMAKE_SOURCE_DIR}/Core/inpainters_CPU
- ${CMAKE_SOURCE_DIR}/Core/
- ${MATLAB_INCLUDE_DIR})
- set_property(TARGET ${current_target} PROPERTY C_STANDARD 99)
- list(APPEND CPU_MEX_TARGETS ${current_target})
- INSTALL(TARGETS ${current_target} DESTINATION "${MATLAB_DEST}")
-endforeach()
-
-add_custom_target(MatlabWrapper DEPENDS ${CPU_MEX_TARGETS})
-
-if (BUILD_CUDA)
- find_package(CUDA)
- if (CUDA_FOUND)
- file(GLOB GPU_MEX_FILES
- "${CMAKE_SOURCE_DIR}/Wrappers/Matlab/mex_compile/regularisers_GPU/*.cpp"
- )
-
- list(LENGTH GPU_MEX_FILES num)
-message("number of GPU files " ${num})
-
- MATH(EXPR num "${num}-1")
- #set(num "-1")
-
- foreach(tgt RANGE ${num})
- message("number " ${tgt})
- list(LENGTH GPU_MEX_FILES num2)
- message("the list is ${num2}")
- #list(GET CPU_TARGETS ${tgt} current_target)
- list(GET GPU_MEX_FILES ${tgt} current_file_name)
- get_filename_component(current_file ${current_file_name} NAME)
- string(REGEX MATCH "(.+).c" match ${current_file})
- if (NOT ${match} EQUAL "" )
- set (current_target ${CMAKE_MATCH_1})
- endif()
- message("matlab_add_mex target " ${current_file} " and " ${current_target})
- message("matlab_add_mex " ${current_target})
- matlab_add_mex(
- NAME ${current_target}
- SRC
- ${current_file_name}
- LINK_TO cilregcuda ${Matlab_LIBRARIES}
- )
-
- target_include_directories(${current_target}
- PUBLIC ${CMAKE_SOURCE_DIR}/Core/regularisers_CPU
- ${CMAKE_SOURCE_DIR}/Core/regularisers_GPU
- ${CMAKE_SOURCE_DIR}/Core/inpainters_CPU
- ${CMAKE_SOURCE_DIR}/Core/
- ${MATLAB_INCLUDE_DIR})
-
- list(APPEND GPU_MEX_TARGETS ${current_target})
- INSTALL(TARGETS ${current_target} DESTINATION "${MATLAB_DEST}")
- endforeach()
-
- add_custom_target(MatlabWrapperGPU DEPENDS ${GPU_MEX_TARGETS})
-
- endif()
-endif()
diff --git a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m b/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m deleted file mode 100644 index 0c331a4..0000000 --- a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m +++ /dev/null @@ -1,178 +0,0 @@ -% Volume (3D) denoising demo using CCPi-RGL -clear; close all -Path1 = sprintf(['..' filesep 'mex_compile' filesep 'installed'], 1i); -Path2 = sprintf(['..' filesep '..' filesep '..' filesep 'data' filesep], 1i); -Path3 = sprintf(['..' filesep 'supp'], 1i); -addpath(Path1); -addpath(Path2); -addpath(Path3); - -N = 512; -slices = 7; -vol3D = zeros(N,N,slices, 'single'); -Ideal3D = zeros(N,N,slices, 'single'); -Im = double(imread('lena_gray_512.tif'))/255; % loading image -for i = 1:slices -vol3D(:,:,i) = Im + .05*randn(size(Im)); -Ideal3D(:,:,i) = Im; -end -vol3D(vol3D < 0) = 0; -figure; imshow(vol3D(:,:,15), [0 1]); title('Noisy image'); - - -lambda_reg = 0.03; % regularsation parameter for all methods -%% -fprintf('Denoise a volume using the ROF-TV model (CPU) \n'); -tau_rof = 0.0025; % time-marching constant -iter_rof = 300; % number of ROF iterations -tic; u_rof = ROF_TV(single(vol3D), lambda_reg, iter_rof, tau_rof); toc; -energyfunc_val_rof = TV_energy(single(u_rof),single(vol3D),lambda_reg, 1); % get energy function value -rmse_rof = (RMSE(Ideal3D(:),u_rof(:))); -fprintf('%s %f \n', 'RMSE error for ROF is:', rmse_rof); -figure; imshow(u_rof(:,:,7), [0 1]); title('ROF-TV denoised volume (CPU)'); -%% -% fprintf('Denoise a volume using the ROF-TV model (GPU) \n'); -% tau_rof = 0.0025; % time-marching constant -% iter_rof = 300; % number of ROF iterations -% tic; u_rofG = ROF_TV_GPU(single(vol3D), lambda_reg, iter_rof, tau_rof); toc; -% rmse_rofG = (RMSE(Ideal3D(:),u_rofG(:))); -% fprintf('%s %f \n', 'RMSE error for ROF is:', rmse_rofG); -% figure; imshow(u_rofG(:,:,7), [0 1]); title('ROF-TV denoised volume (GPU)'); -%% -fprintf('Denoise a volume using the FGP-TV model (CPU) \n'); -iter_fgp = 300; % number of FGP iterations -epsil_tol = 1.0e-05; % tolerance -tic; u_fgp = FGP_TV(single(vol3D), lambda_reg, iter_fgp, epsil_tol); toc; -energyfunc_val_fgp = TV_energy(single(u_fgp),single(vol3D),lambda_reg, 1); % get energy function value -rmse_fgp = (RMSE(Ideal3D(:),u_fgp(:))); -fprintf('%s %f \n', 'RMSE error for FGP-TV is:', rmse_fgp); -figure; imshow(u_fgp(:,:,7), [0 1]); title('FGP-TV denoised volume (CPU)'); -%% -% fprintf('Denoise a volume using the FGP-TV model (GPU) \n'); -% iter_fgp = 300; % number of FGP iterations -% epsil_tol = 1.0e-05; % tolerance -% tic; u_fgpG = FGP_TV_GPU(single(vol3D), lambda_reg, iter_fgp, epsil_tol); toc; -% rmse_fgpG = (RMSE(Ideal3D(:),u_fgpG(:))); -% fprintf('%s %f \n', 'RMSE error for FGP-TV is:', rmse_fgpG); -% figure; imshow(u_fgpG(:,:,7), [0 1]); title('FGP-TV denoised volume (GPU)'); -%% -fprintf('Denoise a volume using the SB-TV model (CPU) \n'); -iter_sb = 150; % number of SB iterations -epsil_tol = 1.0e-05; % tolerance -tic; u_sb = SB_TV(single(vol3D), lambda_reg, iter_sb, epsil_tol); toc; -energyfunc_val_sb = TV_energy(single(u_sb),single(vol3D),lambda_reg, 1); % get energy function value -rmse_sb = (RMSE(Ideal3D(:),u_sb(:))); -fprintf('%s %f \n', 'RMSE error for SB-TV is:', rmse_sb); -figure; imshow(u_sb(:,:,7), [0 1]); title('SB-TV denoised volume (CPU)'); -%% -% fprintf('Denoise a volume using the SB-TV model (GPU) \n'); -% iter_sb = 150; % number of SB iterations -% epsil_tol = 1.0e-05; % tolerance -% tic; u_sbG = SB_TV_GPU(single(vol3D), lambda_reg, iter_sb, epsil_tol); toc; -% rmse_sbG = (RMSE(Ideal3D(:),u_sbG(:))); -% fprintf('%s %f \n', 'RMSE error for SB-TV is:', rmse_sbG); -% figure; imshow(u_sbG(:,:,7), [0 1]); title('SB-TV denoised volume (GPU)'); -%% -fprintf('Denoise a volume using the ROF-LLT model (CPU) \n'); -lambda_ROF = lambda_reg; % ROF regularisation parameter -lambda_LLT = lambda_reg*0.35; % LLT regularisation parameter -iter_LLT = 300; % iterations -tau_rof_llt = 0.0025; % time-marching constant -tic; u_rof_llt = LLT_ROF(single(vol3D), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt); toc; -rmse_rof_llt = (RMSE(Ideal3D(:),u_rof_llt(:))); -fprintf('%s %f \n', 'RMSE error for ROF-LLT is:', rmse_rof_llt); -figure; imshow(u_rof_llt(:,:,7), [0 1]); title('ROF-LLT denoised volume (CPU)'); -%% -% fprintf('Denoise a volume using the ROF-LLT model (GPU) \n'); -% lambda_ROF = lambda_reg; % ROF regularisation parameter -% lambda_LLT = lambda_reg*0.35; % LLT regularisation parameter -% iter_LLT = 300; % iterations -% tau_rof_llt = 0.0025; % time-marching constant -% tic; u_rof_llt_g = LLT_ROF_GPU(single(vol3D), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt); toc; -% rmse_rof_llt = (RMSE(Ideal3D(:),u_rof_llt_g(:))); -% fprintf('%s %f \n', 'RMSE error for ROF-LLT is:', rmse_rof_llt); -% figure; imshow(u_rof_llt_g(:,:,7), [0 1]); title('ROF-LLT denoised volume (GPU)'); -%% -fprintf('Denoise a volume using Nonlinear-Diffusion model (CPU) \n'); -iter_diff = 300; % number of diffusion iterations -lambda_regDiff = 0.025; % regularisation for the diffusivity -sigmaPar = 0.015; % edge-preserving parameter -tau_param = 0.025; % time-marching constant -tic; u_diff = NonlDiff(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc; -rmse_diff = (RMSE(Ideal3D(:),u_diff(:))); -fprintf('%s %f \n', 'RMSE error for Diffusion is:', rmse_diff); -figure; imshow(u_diff(:,:,7), [0 1]); title('Diffusion denoised volume (CPU)'); -%% -% fprintf('Denoise a volume using Nonlinear-Diffusion model (GPU) \n'); -% iter_diff = 300; % number of diffusion iterations -% lambda_regDiff = 0.025; % regularisation for the diffusivity -% sigmaPar = 0.015; % edge-preserving parameter -% tau_param = 0.025; % time-marching constant -% tic; u_diff_g = NonlDiff_GPU(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc; -% rmse_diff = (RMSE(Ideal3D(:),u_diff_g(:))); -% fprintf('%s %f \n', 'RMSE error for Diffusion is:', rmse_diff); -% figure; imshow(u_diff_g(:,:,7), [0 1]); title('Diffusion denoised volume (GPU)'); -%% -fprintf('Denoise using Fourth-order anisotropic diffusion model (CPU) \n'); -iter_diff = 300; % number of diffusion iterations -lambda_regDiff = 3.5; % regularisation for the diffusivity -sigmaPar = 0.02; % edge-preserving parameter -tau_param = 0.0015; % time-marching constant -tic; u_diff4 = Diffusion_4thO(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc; -rmse_diff4 = (RMSE(Ideal3D(:),u_diff4(:))); -fprintf('%s %f \n', 'RMSE error for Anis.Diff of 4th order is:', rmse_diff4); -figure; imshow(u_diff4(:,:,7), [0 1]); title('Diffusion 4thO denoised volume (CPU)'); -%% -% fprintf('Denoise using Fourth-order anisotropic diffusion model (GPU) \n'); -% iter_diff = 300; % number of diffusion iterations -% lambda_regDiff = 3.5; % regularisation for the diffusivity -% sigmaPar = 0.02; % edge-preserving parameter -% tau_param = 0.0015; % time-marching constant -% tic; u_diff4_g = Diffusion_4thO_GPU(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc; -% rmse_diff4 = (RMSE(Ideal3D(:),u_diff4_g(:))); -% fprintf('%s %f \n', 'RMSE error for Anis.Diff of 4th order is:', rmse_diff4); -% figure; imshow(u_diff4_g(:,:,7), [0 1]); title('Diffusion 4thO denoised volume (GPU)'); -%% -fprintf('Denoise using the TGV model (CPU) \n'); -lambda_TGV = 0.03; % regularisation parameter -alpha1 = 1.0; % parameter to control the first-order term -alpha0 = 2.0; % parameter to control the second-order term -iter_TGV = 500; % number of Primal-Dual iterations for TGV -tic; u_tgv = TGV(single(vol3D), lambda_TGV, alpha1, alpha0, iter_TGV); toc; -rmseTGV = RMSE(Ideal3D(:),u_tgv(:)); -fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV); -figure; imshow(u_tgv(:,:,3), [0 1]); title('TGV denoised volume (CPU)'); -%% -%>>>>>>>>>>>>>> MULTI-CHANNEL priors <<<<<<<<<<<<<<< % -fprintf('Denoise a volume using the FGP-dTV model (CPU) \n'); - -% create another volume (reference) with slightly less amount of noise -vol3D_ref = zeros(N,N,slices, 'single'); -for i = 1:slices -vol3D_ref(:,:,i) = Im + .01*randn(size(Im)); -end -vol3D_ref(vol3D_ref < 0) = 0; -% vol3D_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV) - -iter_fgp = 300; % number of FGP iterations -epsil_tol = 1.0e-05; % tolerance -eta = 0.2; % Reference image gradient smoothing constant -tic; u_fgp_dtv = FGP_dTV(single(vol3D), single(vol3D_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc; -figure; imshow(u_fgp_dtv(:,:,7), [0 1]); title('FGP-dTV denoised volume (CPU)'); -%% -fprintf('Denoise a volume using the FGP-dTV model (GPU) \n'); - -% create another volume (reference) with slightly less amount of noise -vol3D_ref = zeros(N,N,slices, 'single'); -for i = 1:slices -vol3D_ref(:,:,i) = Im + .01*randn(size(Im)); -end -vol3D_ref(vol3D_ref < 0) = 0; -% vol3D_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV) - -iter_fgp = 300; % number of FGP iterations -epsil_tol = 1.0e-05; % tolerance -eta = 0.2; % Reference image gradient smoothing constant -tic; u_fgp_dtv_g = FGP_dTV_GPU(single(vol3D), single(vol3D_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc; -figure; imshow(u_fgp_dtv_g(:,:,7), [0 1]); title('FGP-dTV denoised volume (GPU)'); -%% diff --git a/Wrappers/Matlab/demos/demoMatlab_denoise.m b/Wrappers/Matlab/demos/demoMatlab_denoise.m deleted file mode 100644 index 14d3096..0000000 --- a/Wrappers/Matlab/demos/demoMatlab_denoise.m +++ /dev/null @@ -1,189 +0,0 @@ -% Image (2D) denoising demo using CCPi-RGL -clear; close all -fsep = '/'; - -Path1 = sprintf(['..' fsep 'mex_compile' fsep 'installed'], 1i); -Path2 = sprintf(['..' fsep '..' fsep '..' fsep 'data' fsep], 1i); -Path3 = sprintf(['..' fsep 'supp'], 1i); -addpath(Path1); addpath(Path2); addpath(Path3); - -Im = double(imread('lena_gray_512.tif'))/255; % loading image -u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; -figure; imshow(u0, [0 1]); title('Noisy image'); - -lambda_reg = 0.03; % regularsation parameter for all methods -%% -fprintf('Denoise using the ROF-TV model (CPU) \n'); -tau_rof = 0.0025; % time-marching constant -iter_rof = 750; % number of ROF iterations -tic; u_rof = ROF_TV(single(u0), lambda_reg, iter_rof, tau_rof); toc; -energyfunc_val_rof = TV_energy(single(u_rof),single(u0),lambda_reg, 1); % get energy function value -rmseROF = (RMSE(u_rof(:),Im(:))); -fprintf('%s %f \n', 'RMSE error for ROF-TV is:', rmseROF); -figure; imshow(u_rof, [0 1]); title('ROF-TV denoised image (CPU)'); -%% -% fprintf('Denoise using the ROF-TV model (GPU) \n'); -% tau_rof = 0.0025; % time-marching constant -% iter_rof = 750; % number of ROF iterations -% tic; u_rofG = ROF_TV_GPU(single(u0), lambda_reg, iter_rof, tau_rof); toc; -% figure; imshow(u_rofG, [0 1]); title('ROF-TV denoised image (GPU)'); -%% -fprintf('Denoise using the FGP-TV model (CPU) \n'); -iter_fgp = 1000; % number of FGP iterations -epsil_tol = 1.0e-06; % tolerance -tic; u_fgp = FGP_TV(single(u0), lambda_reg, iter_fgp, epsil_tol); toc; -energyfunc_val_fgp = TV_energy(single(u_fgp),single(u0),lambda_reg, 1); % get energy function value -rmseFGP = (RMSE(u_fgp(:),Im(:))); -fprintf('%s %f \n', 'RMSE error for FGP-TV is:', rmseFGP); -figure; imshow(u_fgp, [0 1]); title('FGP-TV denoised image (CPU)'); - -%% -% fprintf('Denoise using the FGP-TV model (GPU) \n'); -% iter_fgp = 1000; % number of FGP iterations -% epsil_tol = 1.0e-05; % tolerance -% tic; u_fgpG = FGP_TV_GPU(single(u0), lambda_reg, iter_fgp, epsil_tol); toc; -% figure; imshow(u_fgpG, [0 1]); title('FGP-TV denoised image (GPU)'); -%% -fprintf('Denoise using the SB-TV model (CPU) \n'); -iter_sb = 150; % number of SB iterations -epsil_tol = 1.0e-06; % tolerance -tic; u_sb = SB_TV(single(u0), lambda_reg, iter_sb, epsil_tol); toc; -energyfunc_val_sb = TV_energy(single(u_sb),single(u0),lambda_reg, 1); % get energy function value -rmseSB = (RMSE(u_sb(:),Im(:))); -fprintf('%s %f \n', 'RMSE error for SB-TV is:', rmseSB); -figure; imshow(u_sb, [0 1]); title('SB-TV denoised image (CPU)'); -%% -% fprintf('Denoise using the SB-TV model (GPU) \n'); -% iter_sb = 150; % number of SB iterations -% epsil_tol = 1.0e-06; % tolerance -% tic; u_sbG = SB_TV_GPU(single(u0), lambda_reg, iter_sb, epsil_tol); toc; -% figure; imshow(u_sbG, [0 1]); title('SB-TV denoised image (GPU)'); -%% -fprintf('Denoise using the TGV model (CPU) \n'); -lambda_TGV = 0.045; % regularisation parameter -alpha1 = 1.0; % parameter to control the first-order term -alpha0 = 2.0; % parameter to control the second-order term -iter_TGV = 2000; % number of Primal-Dual iterations for TGV -tic; u_tgv = TGV(single(u0), lambda_TGV, alpha1, alpha0, iter_TGV); toc; -rmseTGV = (RMSE(u_tgv(:),Im(:))); -fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV); -figure; imshow(u_tgv, [0 1]); title('TGV denoised image (CPU)'); -%% -% fprintf('Denoise using the TGV model (GPU) \n'); -% lambda_TGV = 0.045; % regularisation parameter -% alpha1 = 1.0; % parameter to control the first-order term -% alpha0 = 2.0; % parameter to control the second-order term -% iter_TGV = 2000; % number of Primal-Dual iterations for TGV -% tic; u_tgv_gpu = TGV_GPU(single(u0), lambda_TGV, alpha1, alpha0, iter_TGV); toc; -% rmseTGV_gpu = (RMSE(u_tgv_gpu(:),Im(:))); -% fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV_gpu); -% figure; imshow(u_tgv_gpu, [0 1]); title('TGV denoised image (GPU)'); -%% -fprintf('Denoise using the ROF-LLT model (CPU) \n'); -lambda_ROF = lambda_reg; % ROF regularisation parameter -lambda_LLT = lambda_reg*0.45; % LLT regularisation parameter -iter_LLT = 1; % iterations -tau_rof_llt = 0.0025; % time-marching constant -tic; u_rof_llt = LLT_ROF(single(u0), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt); toc; -rmseROFLLT = (RMSE(u_rof_llt(:),Im(:))); -fprintf('%s %f \n', 'RMSE error for TGV is:', rmseROFLLT); -figure; imshow(u_rof_llt, [0 1]); title('ROF-LLT denoised image (CPU)'); -%% -% fprintf('Denoise using the ROF-LLT model (GPU) \n'); -% lambda_ROF = lambda_reg; % ROF regularisation parameter -% lambda_LLT = lambda_reg*0.45; % LLT regularisation parameter -% iter_LLT = 500; % iterations -% tau_rof_llt = 0.0025; % time-marching constant -% tic; u_rof_llt_g = LLT_ROF_GPU(single(u0), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt); toc; -% rmseROFLLT_g = (RMSE(u_rof_llt_g(:),Im(:))); -% fprintf('%s %f \n', 'RMSE error for TGV is:', rmseROFLLT_g); -% figure; imshow(u_rof_llt_g, [0 1]); title('ROF-LLT denoised image (GPU)'); -%% -fprintf('Denoise using Nonlinear-Diffusion model (CPU) \n'); -iter_diff = 800; % number of diffusion iterations -lambda_regDiff = 0.025; % regularisation for the diffusivity -sigmaPar = 0.015; % edge-preserving parameter -tau_param = 0.025; % time-marching constant -tic; u_diff = NonlDiff(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc; -rmseDiffus = (RMSE(u_diff(:),Im(:))); -fprintf('%s %f \n', 'RMSE error for Nonlinear Diffusion is:', rmseDiffus); -figure; imshow(u_diff, [0 1]); title('Diffusion denoised image (CPU)'); -%% -% fprintf('Denoise using Nonlinear-Diffusion model (GPU) \n'); -% iter_diff = 800; % number of diffusion iterations -% lambda_regDiff = 0.025; % regularisation for the diffusivity -% sigmaPar = 0.015; % edge-preserving parameter -% tau_param = 0.025; % time-marching constant -% tic; u_diff_g = NonlDiff_GPU(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc; -% figure; imshow(u_diff_g, [0 1]); title('Diffusion denoised image (GPU)'); -%% -fprintf('Denoise using Fourth-order anisotropic diffusion model (CPU) \n'); -iter_diff = 800; % number of diffusion iterations -lambda_regDiff = 3.5; % regularisation for the diffusivity -sigmaPar = 0.02; % edge-preserving parameter -tau_param = 0.0015; % time-marching constant -tic; u_diff4 = Diffusion_4thO(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc; -rmseDiffHO = (RMSE(u_diff4(:),Im(:))); -fprintf('%s %f \n', 'RMSE error for Fourth-order anisotropic diffusion is:', rmseDiffHO); -figure; imshow(u_diff4, [0 1]); title('Diffusion 4thO denoised image (CPU)'); -%% -% fprintf('Denoise using Fourth-order anisotropic diffusion model (GPU) \n'); -% iter_diff = 800; % number of diffusion iterations -% lambda_regDiff = 3.5; % regularisation for the diffusivity -% sigmaPar = 0.02; % edge-preserving parameter -% tau_param = 0.0015; % time-marching constant -% tic; u_diff4_g = Diffusion_4thO_GPU(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc; -% figure; imshow(u_diff4_g, [0 1]); title('Diffusion 4thO denoised image (GPU)'); -%% -fprintf('Weights pre-calculation for Non-local TV (takes time on CPU) \n'); -SearchingWindow = 7; -PatchWindow = 2; -NeighboursNumber = 20; % the number of neibours to include -h = 0.23; % edge related parameter for NLM -tic; [H_i, H_j, Weights] = PatchSelect(single(u0), SearchingWindow, PatchWindow, NeighboursNumber, h); toc; -%% -fprintf('Denoise using Non-local Total Variation (CPU) \n'); -iter_nltv = 3; % number of nltv iterations -lambda_nltv = 0.05; % regularisation parameter for nltv -tic; u_nltv = Nonlocal_TV(single(u0), H_i, H_j, 0, Weights, lambda_nltv, iter_nltv); toc; -rmse_nltv = (RMSE(u_nltv(:),Im(:))); -fprintf('%s %f \n', 'RMSE error for Non-local Total Variation is:', rmse_nltv); -figure; imagesc(u_nltv, [0 1]); colormap(gray); daspect([1 1 1]); title('Non-local Total Variation denoised image (CPU)'); -%% -%>>>>>>>>>>>>>> MULTI-CHANNEL priors <<<<<<<<<<<<<<< % - -fprintf('Denoise using the FGP-dTV model (CPU) \n'); -% create another image (reference) with slightly less amount of noise -u_ref = Im + .01*randn(size(Im)); u_ref(u_ref < 0) = 0; -% u_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV) - -iter_fgp = 1000; % number of FGP iterations -epsil_tol = 1.0e-06; % tolerance -eta = 0.2; % Reference image gradient smoothing constant -tic; u_fgp_dtv = FGP_dTV(single(u0), single(u_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc; -rmse_dTV= (RMSE(u_fgp_dtv(:),Im(:))); -fprintf('%s %f \n', 'RMSE error for Directional Total Variation (dTV) is:', rmse_dTV); -figure; imshow(u_fgp_dtv, [0 1]); title('FGP-dTV denoised image (CPU)'); -%% -% fprintf('Denoise using the FGP-dTV model (GPU) \n'); -% % create another image (reference) with slightly less amount of noise -% u_ref = Im + .01*randn(size(Im)); u_ref(u_ref < 0) = 0; -% % u_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV) -% -% iter_fgp = 1000; % number of FGP iterations -% epsil_tol = 1.0e-06; % tolerance -% eta = 0.2; % Reference image gradient smoothing constant -% tic; u_fgp_dtvG = FGP_dTV_GPU(single(u0), single(u_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc; -% figure; imshow(u_fgp_dtvG, [0 1]); title('FGP-dTV denoised image (GPU)'); -%% -fprintf('Denoise using the TNV prior (CPU) \n'); -slices = 5; N = 512; -vol3D = zeros(N,N,slices, 'single'); -for i = 1:slices -vol3D(:,:,i) = Im + .05*randn(size(Im)); -end -vol3D(vol3D < 0) = 0; - -iter_tnv = 200; % number of TNV iterations -tic; u_tnv = TNV(single(vol3D), lambda_reg, iter_tnv); toc; -figure; imshow(u_tnv(:,:,3), [0 1]); title('TNV denoised stack of channels (CPU)'); diff --git a/Wrappers/Matlab/demos/demoMatlab_inpaint.m b/Wrappers/Matlab/demos/demoMatlab_inpaint.m deleted file mode 100644 index 66f9c15..0000000 --- a/Wrappers/Matlab/demos/demoMatlab_inpaint.m +++ /dev/null @@ -1,35 +0,0 @@ -% Image (2D) inpainting demo using CCPi-RGL -clear; close all -Path1 = sprintf(['..' filesep 'mex_compile' filesep 'installed'], 1i); -Path2 = sprintf(['..' filesep '..' filesep '..' filesep 'data' filesep], 1i); -addpath(Path1); -addpath(Path2); - -load('SinoInpaint.mat'); -Sinogram = Sinogram./max(Sinogram(:)); -Sino_mask = Sinogram.*(1-single(Mask)); -figure; -subplot(1,2,1); imshow(Sino_mask, [0 1]); title('Missing data sinogram'); -subplot(1,2,2); imshow(Mask, [0 1]); title('Mask'); -%% -fprintf('Inpaint using Linear-Diffusion model (CPU) \n'); -iter_diff = 5000; % number of diffusion iterations -lambda_regDiff = 6000; % regularisation for the diffusivity -sigmaPar = 0.0; % edge-preserving parameter -tau_param = 0.000075; % time-marching constant -tic; u_diff = NonlDiff_Inp(single(Sino_mask), Mask, lambda_regDiff, sigmaPar, iter_diff, tau_param); toc; -figure; imshow(u_diff, [0 1]); title('Linear-Diffusion inpainted sinogram (CPU)'); -%% -fprintf('Inpaint using Nonlinear-Diffusion model (CPU) \n'); -iter_diff = 1500; % number of diffusion iterations -lambda_regDiff = 80; % regularisation for the diffusivity -sigmaPar = 0.00009; % edge-preserving parameter -tau_param = 0.000008; % time-marching constant -tic; u_diff = NonlDiff_Inp(single(Sino_mask), Mask, lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc; -figure; imshow(u_diff, [0 1]); title('Non-Linear Diffusion inpainted sinogram (CPU)'); -%% -fprintf('Inpaint using Nonlocal Vertical Marching model (CPU) \n'); -Increment = 1; % linear increment for the searching window -tic; [u_nom,maskupd] = NonlocalMarching_Inpaint(single(Sino_mask), Mask, Increment); toc; -figure; imshow(u_nom, [0 1]); title('NVM inpainted sinogram (CPU)'); -%%
\ No newline at end of file diff --git a/Wrappers/Matlab/mex_compile/compileCPU_mex_Linux.m b/Wrappers/Matlab/mex_compile/compileCPU_mex_Linux.m deleted file mode 100644 index 72a828e..0000000 --- a/Wrappers/Matlab/mex_compile/compileCPU_mex_Linux.m +++ /dev/null @@ -1,81 +0,0 @@ -% execute this mex file on Linux in Matlab once - -fsep = '/'; - -pathcopyFrom = sprintf(['..' fsep '..' fsep '..' fsep 'Core' fsep 'regularisers_CPU'], 1i); -pathcopyFrom1 = sprintf(['..' fsep '..' fsep '..' fsep 'Core' fsep 'CCPiDefines.h'], 1i); -pathcopyFrom2 = sprintf(['..' fsep '..' fsep '..' fsep 'Core' fsep 'inpainters_CPU'], 1i); - -copyfile(pathcopyFrom, 'regularisers_CPU'); -copyfile(pathcopyFrom1, 'regularisers_CPU'); -copyfile(pathcopyFrom2, 'regularisers_CPU'); - -cd regularisers_CPU - -Pathmove = sprintf(['..' fsep 'installed' fsep], 1i); - -fprintf('%s \n', '<<<<<<<<<<<Compiling CPU regularisers>>>>>>>>>>>>>'); - -fprintf('%s \n', 'Compiling ROF-TV...'); -mex ROF_TV.c ROF_TV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -movefile('ROF_TV.mex*',Pathmove); - -fprintf('%s \n', 'Compiling FGP-TV...'); -mex FGP_TV.c FGP_TV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -movefile('FGP_TV.mex*',Pathmove); - -fprintf('%s \n', 'Compiling SB-TV...'); -mex SB_TV.c SB_TV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -movefile('SB_TV.mex*',Pathmove); - -fprintf('%s \n', 'Compiling dFGP-TV...'); -mex FGP_dTV.c FGP_dTV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -movefile('FGP_dTV.mex*',Pathmove); - -fprintf('%s \n', 'Compiling TNV...'); -mex TNV.c TNV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -movefile('TNV.mex*',Pathmove); - -fprintf('%s \n', 'Compiling NonLinear Diffusion...'); -mex NonlDiff.c Diffusion_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -movefile('NonlDiff.mex*',Pathmove); - -fprintf('%s \n', 'Compiling Anisotropic diffusion of higher order...'); -mex Diffusion_4thO.c Diffus4th_order_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -movefile('Diffusion_4thO.mex*',Pathmove); - -fprintf('%s \n', 'Compiling TGV...'); -mex TGV.c TGV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -movefile('TGV.mex*',Pathmove); - -fprintf('%s \n', 'Compiling ROF-LLT...'); -mex LLT_ROF.c LLT_ROF_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -movefile('LLT_ROF.mex*',Pathmove); - -fprintf('%s \n', 'Compiling NonLocal-TV...'); -mex PatchSelect.c PatchSelect_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -mex Nonlocal_TV.c Nonlocal_TV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -movefile('Nonlocal_TV.mex*',Pathmove); -movefile('PatchSelect.mex*',Pathmove); - -fprintf('%s \n', 'Compiling additional tools...'); -mex TV_energy.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -movefile('TV_energy.mex*',Pathmove); - -%############Inpainters##############% -fprintf('%s \n', 'Compiling Nonlinear/Linear diffusion inpainting...'); -mex NonlDiff_Inp.c Diffusion_Inpaint_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -movefile('NonlDiff_Inp.mex*',Pathmove); - -fprintf('%s \n', 'Compiling Nonlocal marching method for inpainting...'); -mex NonlocalMarching_Inpaint.c NonlocalMarching_Inpaint_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -movefile('NonlocalMarching_Inpaint.mex*',Pathmove); - -delete SB_TV_core* ROF_TV_core* FGP_TV_core* FGP_dTV_core* TNV_core* utils* Diffusion_core* Diffus4th_order_core* TGV_core* LLT_ROF_core* CCPiDefines.h -delete PatchSelect_core* Nonlocal_TV_core* -delete Diffusion_Inpaint_core* NonlocalMarching_Inpaint_core* -fprintf('%s \n', '<<<<<<< Regularisers successfully compiled! >>>>>>>'); - -pathA2 = sprintf(['..' fsep '..' fsep], 1i); -cd(pathA2); -cd demos diff --git a/Wrappers/Matlab/mex_compile/compileCPU_mex_WINDOWS.m b/Wrappers/Matlab/mex_compile/compileCPU_mex_WINDOWS.m deleted file mode 100644 index 6f7541c..0000000 --- a/Wrappers/Matlab/mex_compile/compileCPU_mex_WINDOWS.m +++ /dev/null @@ -1,135 +0,0 @@ -% execute this mex file on Windows in Matlab once - -% >>>>>>>>>>>>>>>>>>>>>>>>>>>>> -% I've been able to compile on Windows 7 with MinGW and Matlab 2016b, however, -% not sure if openmp is enabled after the compilation. - -% Here I present two ways how software can be compiled, if you have some -% other suggestions/remarks please contact me at dkazanc@hotmail.com -% >>>>>>>>>>>>>>>>>>>>>>>>>>>>> - -fsep = '/'; - -pathcopyFrom = sprintf(['..' fsep '..' fsep '..' fsep 'Core' fsep 'regularisers_CPU'], 1i); -pathcopyFrom1 = sprintf(['..' fsep '..' fsep '..' fsep 'Core' fsep 'CCPiDefines.h'], 1i); -pathcopyFrom2 = sprintf(['..' fsep '..' fsep '..' fsep 'Core' fsep 'inpainters_CPU'], 1i); - -copyfile(pathcopyFrom, 'regularisers_CPU'); -copyfile(pathcopyFrom1, 'regularisers_CPU'); -copyfile(pathcopyFrom2, 'regularisers_CPU'); - -cd regularisers_CPU - -Pathmove = sprintf(['..' fsep 'installed' fsep], 1i); - -fprintf('%s \n', '<<<<<<<<<<<Compiling CPU regularisers>>>>>>>>>>>>>'); - -fprintf('%s \n', 'Compiling ROF-TV...'); -mex ROF_TV.c ROF_TV_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99" -movefile('ROF_TV.mex*',Pathmove); - -fprintf('%s \n', 'Compiling FGP-TV...'); -mex FGP_TV.c FGP_TV_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99" -movefile('FGP_TV.mex*',Pathmove); - -fprintf('%s \n', 'Compiling SB-TV...'); -mex SB_TV.c SB_TV_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99" -movefile('SB_TV.mex*',Pathmove); - -fprintf('%s \n', 'Compiling dFGP-TV...'); -mex FGP_dTV.c FGP_dTV_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99" -movefile('FGP_dTV.mex*',Pathmove); - -fprintf('%s \n', 'Compiling TNV...'); -mex TNV.c TNV_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99" -movefile('TNV.mex*',Pathmove); - -fprintf('%s \n', 'Compiling NonLinear Diffusion...'); -mex NonlDiff.c Diffusion_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99" -movefile('NonlDiff.mex*',Pathmove); - -fprintf('%s \n', 'Compiling Anisotropic diffusion of higher order...'); -mex Diffusion_4thO.c Diffus4th_order_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99" -movefile('Diffusion_4thO.mex*',Pathmove); - -fprintf('%s \n', 'Compiling TGV...'); -mex TGV.c TGV_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99" -movefile('TGV.mex*',Pathmove); - -fprintf('%s \n', 'Compiling ROF-LLT...'); -mex LLT_ROF.c LLT_ROF_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99" -movefile('LLT_ROF.mex*',Pathmove); - -fprintf('%s \n', 'Compiling NonLocal-TV...'); -mex PatchSelect.c PatchSelect_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99" -mex Nonlocal_TV.c Nonlocal_TV_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99" -movefile('Nonlocal_TV.mex*',Pathmove); -movefile('PatchSelect.mex*',Pathmove); - -fprintf('%s \n', 'Compiling additional tools...'); -mex TV_energy.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99" -movefile('TV_energy.mex*',Pathmove); - -%############Inpainters##############% -fprintf('%s \n', 'Compiling Nonlinear/Linear diffusion inpainting...'); -mex NonlDiff_Inp.c Diffusion_Inpaint_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99" -movefile('NonlDiff_Inp.mex*',Pathmove); - -fprintf('%s \n', 'Compiling Nonlocal marching method for inpaiting...'); -mex NonlocalMarching_Inpaint.c NonlocalMarching_Inpaint_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99" -movefile('NonlocalMarching_Inpaint.mex*',Pathmove); - - -%% -%%% The second approach to compile using TDM-GCC which follows this -%%% discussion: -%%% https://uk.mathworks.com/matlabcentral/answers/279171-using-mingw-compiler-and-open-mp#comment_359122 -%%% 1. Install TDM-GCC independently from http://tdm-gcc.tdragon.net/ (I installed 5.1.0) -%%% Install openmp version: http://sourceforge.net/projects/tdm-gcc/files/TDM-GCC%205%20series/5.1.0-tdm64-1/gcc-5.1.0-tdm64-1-openmp.zip/download -%%% 2. Link til libgomp.a in that installation when compilling your mex file. - -%%% assuming you unzipped TDM GCC (OpenMp) in folder TDMGCC on C drive, uncomment -%%% bellow -% fprintf('%s \n', 'Compiling CPU regularisers...'); -% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" ROF_TV.c ROF_TV_core.c utils.c -% movefile('ROF_TV.mex*',Pathmove); -% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" FGP_TV.c FGP_TV_core.c utils.c -% movefile('FGP_TV.mex*',Pathmove); -% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" SB_TV.c SB_TV_core.c utils.c -% movefile('SB_TV.mex*',Pathmove); -% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" FGP_dTV.c FGP_dTV_core.c utils.c -% movefile('FGP_dTV.mex*',Pathmove); -% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" TNV.c TNV_core.c utils.c -% movefile('TNV.mex*',Pathmove); -% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" NonlDiff.c Diffusion_core.c utils.c -% movefile('NonlDiff.mex*',Pathmove); -% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" Diffusion_4thO.c Diffus4th_order_core.c utils.c -% movefile('Diffusion_4thO.mex*',Pathmove); -% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" TGV.c TGV_core.c utils.c -% movefile('TGV.mex*',Pathmove); -% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" LLT_ROF.c LLT_ROF_core.c utils.c -% movefile('LLT_ROF.mex*',Pathmove); -% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" PatchSelect.c PatchSelect_core.c utils.c -% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" Nonlocal_TV.c Nonlocal_TV_core.c utils.c -% movefile('Nonlocal_TV.mex*',Pathmove); -% movefile('PatchSelect.mex*',Pathmove); -% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" TV_energy.c utils.c -% movefile('TV_energy.mex*',Pathmove); -% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" NonlDiff_Inp.c Diffusion_Inpaint_core.c utils.c -% movefile('NonlDiff_Inp.mex*',Pathmove); -% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" NonlocalMarching_Inpaint.c NonlocalMarching_Inpaint_core.c utils.c -% movefile('NonlocalMarching_Inpaint.mex*',Pathmove); - - -delete SB_TV_core* ROF_TV_core* FGP_TV_core* FGP_dTV_core* TNV_core* utils* Diffusion_core* Diffus4th_order_core* TGV_core* CCPiDefines.h -delete PatchSelect_core* Nonlocal_TV_core* -delete Diffusion_Inpaint_core* NonlocalMarching_Inpaint_core* -fprintf('%s \n', 'Regularisers successfully compiled!'); - - -%% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -%pathA2 = sprintf(['..' fsep '..' fsep], 1i); -%cd(pathA2); -%cd demos diff --git a/Wrappers/Matlab/mex_compile/compileGPU_mex.m b/Wrappers/Matlab/mex_compile/compileGPU_mex.m deleted file mode 100644 index dd1475c..0000000 --- a/Wrappers/Matlab/mex_compile/compileGPU_mex.m +++ /dev/null @@ -1,74 +0,0 @@ -% execute this mex file in Matlab once - -%>>>>>>>>>>>>>>>>>Important<<<<<<<<<<<<<<<<<<< -% In order to compile CUDA modules one needs to have nvcc-compiler -% installed (see CUDA SDK), check it under MATLAB with !nvcc --version - -% In the code bellow we provide a full explicit path to nvcc compiler -% ! paths to matlab and CUDA sdk can be different, modify accordingly ! - -% Tested on Ubuntu 18.04/MATLAB 2016b/cuda10.0/gcc7.3 - -% Installation HAS NOT been tested on Windows, please you Cmake build or -% modify the code bellow accordingly -fsep = '/'; - -pathcopyFrom = sprintf(['..' fsep '..' fsep '..' fsep 'Core' fsep 'regularisers_GPU'], 1i); -pathcopyFrom1 = sprintf(['..' fsep '..' fsep '..' fsep 'Core' fsep 'CCPiDefines.h'], 1i); - -copyfile(pathcopyFrom, 'regularisers_GPU'); -copyfile(pathcopyFrom1, 'regularisers_GPU'); - -cd regularisers_GPU - -Pathmove = sprintf(['..' fsep 'installed' fsep], 1i); - -fprintf('%s \n', '<<<<<<<<<<<Compiling GPU regularisers (CUDA)>>>>>>>>>>>>>'); - -fprintf('%s \n', 'Compiling ROF-TV...'); -!/usr/local/cuda/bin/nvcc -O0 -c TV_ROF_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/ -mex -g -I/usr/local/cuda-10.0/include -L/usr/local/cuda-10.0/lib64 -lcudart -lcufft -lmwgpu ROF_TV_GPU.cpp TV_ROF_GPU_core.o -movefile('ROF_TV_GPU.mex*',Pathmove); - -fprintf('%s \n', 'Compiling FGP-TV...'); -!/usr/local/cuda/bin/nvcc -O0 -c TV_FGP_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/ -mex -g -I/usr/local/cuda-10.0/include -L/usr/local/cuda-10.0/lib64 -lcudart -lcufft -lmwgpu FGP_TV_GPU.cpp TV_FGP_GPU_core.o -movefile('FGP_TV_GPU.mex*',Pathmove); - -fprintf('%s \n', 'Compiling SB-TV...'); -!/usr/local/cuda/bin/nvcc -O0 -c TV_SB_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/ -mex -g -I/usr/local/cuda-10.0/include -L/usr/local/cuda-10.0/lib64 -lcudart -lcufft -lmwgpu SB_TV_GPU.cpp TV_SB_GPU_core.o -movefile('SB_TV_GPU.mex*',Pathmove); - -fprintf('%s \n', 'Compiling TGV...'); -!/usr/local/cuda/bin/nvcc -O0 -c TGV_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/ -mex -g -I/usr/local/cuda-10.0/include -L/usr/local/cuda-10.0/lib64 -lcudart -lcufft -lmwgpu TGV_GPU.cpp TGV_GPU_core.o -movefile('TGV_GPU.mex*',Pathmove); - -fprintf('%s \n', 'Compiling dFGP-TV...'); -!/usr/local/cuda/bin/nvcc -O0 -c dTV_FGP_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/ -mex -g -I/usr/local/cuda-10.0/include -L/usr/local/cuda-10.0/lib64 -lcudart -lcufft -lmwgpu FGP_dTV_GPU.cpp dTV_FGP_GPU_core.o -movefile('FGP_dTV_GPU.mex*',Pathmove); - -fprintf('%s \n', 'Compiling NonLinear Diffusion...'); -!/usr/local/cuda/bin/nvcc -O0 -c NonlDiff_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/ -mex -g -I/usr/local/cuda-10.0/include -L/usr/local/cuda-10.0/lib64 -lcudart -lcufft -lmwgpu NonlDiff_GPU.cpp NonlDiff_GPU_core.o -movefile('NonlDiff_GPU.mex*',Pathmove); - -fprintf('%s \n', 'Compiling Anisotropic diffusion of higher order...'); -!/usr/local/cuda/bin/nvcc -O0 -c Diffus_4thO_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/ -mex -g -I/usr/local/cuda-10.0/include -L/usr/local/cuda-10.0/lib64 -lcudart -lcufft -lmwgpu Diffusion_4thO_GPU.cpp Diffus_4thO_GPU_core.o -movefile('Diffusion_4thO_GPU.mex*',Pathmove); - -fprintf('%s \n', 'Compiling ROF-LLT...'); -!/usr/local/cuda/bin/nvcc -O0 -c LLT_ROF_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/ -mex -g -I/usr/local/cuda-10.0/include -L/usr/local/cuda-10.0/lib64 -lcudart -lcufft -lmwgpu LLT_ROF_GPU.cpp LLT_ROF_GPU_core.o -movefile('LLT_ROF_GPU.mex*',Pathmove); - - -delete TV_ROF_GPU_core* TV_FGP_GPU_core* TV_SB_GPU_core* dTV_FGP_GPU_core* NonlDiff_GPU_core* Diffus_4thO_GPU_core* TGV_GPU_core* LLT_ROF_GPU_core* CCPiDefines.h -fprintf('%s \n', 'All successfully compiled!'); - -pathA2 = sprintf(['..' fsep '..' fsep], 1i); -cd(pathA2); -cd demos
\ No newline at end of file diff --git a/Wrappers/Matlab/mex_compile/installed/MEXed_files_location.txt b/Wrappers/Matlab/mex_compile/installed/MEXed_files_location.txt deleted file mode 100644 index e69de29..0000000 --- a/Wrappers/Matlab/mex_compile/installed/MEXed_files_location.txt +++ /dev/null diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/Diffusion_4thO.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/Diffusion_4thO.c deleted file mode 100644 index 66ea9be..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_CPU/Diffusion_4thO.c +++ /dev/null @@ -1,77 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -#include "matrix.h" -#include "mex.h" -#include "Diffus4th_order_core.h" - -/* C-OMP implementation of fourth-order diffusion scheme [1] for piecewise-smooth recovery (2D/3D case) - * The minimisation is performed using explicit scheme. - * - * Input Parameters: - * 1. Noisy image/volume [REQUIRED] - * 2. lambda - regularization parameter [REQUIRED] - * 3. Edge-preserving parameter (sigma) [REQUIRED] - * 4. Number of iterations, for explicit scheme >= 150 is recommended [OPTIONAL, default 300] - * 5. tau - time-marching step for the explicit scheme [OPTIONAL, default 0.015] - * - * Output: - * [1] Regularized image/volume - * - * This function is based on the paper by - * [1] Hajiaboli, M.R., 2011. An anisotropic fourth-order diffusion filter for image noise removal. International Journal of Computer Vision, 92(2), pp.177-191. - */ - -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iter_numb; - mwSize dimX, dimY, dimZ; - const mwSize *dim_array; - float *Input, *Output=NULL, lambda, tau, sigma; - - dim_array = mxGetDimensions(prhs[0]); - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - - /*Handling Matlab input data*/ - Input = (float *) mxGetData(prhs[0]); - lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */ - sigma = (float) mxGetScalar(prhs[2]); /* Edge-preserving parameter */ - iter_numb = 300; /* iterations number */ - tau = 0.01; /* marching step parameter */ - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - if ((nrhs < 3) || (nrhs > 5)) mexErrMsgTxt("At least 3 parameters is required, all parameters are: Image(2D/3D), Regularisation parameter, Edge-preserving parameter, iterations number, time-marching constant"); - if ((nrhs == 4) || (nrhs == 5)) iter_numb = (int) mxGetScalar(prhs[3]); /* iterations number */ - if (nrhs == 5) tau = (float) mxGetScalar(prhs[4]); /* marching step parameter */ - - /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - - /* output arrays*/ - if (number_of_dims == 2) { - dimZ = 1; /*2D case*/ - /* output image/volume */ - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - } - if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - - Diffus4th_CPU_main(Input, Output, lambda, sigma, iter_numb, tau, dimX, dimY, dimZ); -}
\ No newline at end of file diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_TV.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_TV.c deleted file mode 100644 index 642362f..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_TV.c +++ /dev/null @@ -1,97 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -#include "matrix.h" -#include "mex.h" -#include "FGP_TV_core.h" - -/* C-OMP implementation of FGP-TV [1] denoising/regularization model (2D/3D case) - * - * Input Parameters: - * 1. Noisy image/volume - * 2. lambdaPar - regularization parameter - * 3. Number of iterations - * 4. eplsilon: tolerance constant - * 5. TV-type: methodTV - 'iso' (0) or 'l1' (1) - * 6. nonneg: 'nonnegativity (0 is OFF by default) - * 7. print information: 0 (off) or 1 (on) - * - * Output: - * [1] Filtered/regularized image - * - * This function is based on the Matlab's code and paper by - * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems" - */ - - -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iter, methTV, printswitch, nonneg; - mwSize dimX, dimY, dimZ; - const mwSize *dim_array; - float *Input, *Output=NULL, lambda, epsil; - - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - dim_array = mxGetDimensions(prhs[0]); - - /*Handling Matlab input data*/ - if ((nrhs < 2) || (nrhs > 7)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D/3D), Regularization parameter, Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1'), nonnegativity switch, print switch"); - - Input = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */ - lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */ - iter = 300; /* default iterations number */ - epsil = 0.0001; /* default tolerance constant */ - methTV = 0; /* default isotropic TV penalty */ - nonneg = 0; /* default nonnegativity switch, off - 0 */ - printswitch = 0; /*default print is switched, off - 0 */ - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - - if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */ - if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7)) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */ - if ((nrhs == 5) || (nrhs == 6) || (nrhs == 7)) { - char *penalty_type; - penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */ - if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',"); - if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */ - mxFree(penalty_type); - } - if ((nrhs == 6) || (nrhs == 7)) { - nonneg = (int) mxGetScalar(prhs[5]); - if ((nonneg != 0) && (nonneg != 1)) mexErrMsgTxt("Nonnegativity constraint can be enabled by choosing 1 or off - 0"); - } - if (nrhs == 7) { - printswitch = (int) mxGetScalar(prhs[6]); - if ((printswitch != 0) && (printswitch != 1)) mexErrMsgTxt("Print can be enabled by choosing 1 or off - 0"); - } - - /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - - if (number_of_dims == 2) { - dimZ = 1; /*2D case*/ - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - } - if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - - /* running the function */ - TV_FGP_CPU_main(Input, Output, lambda, iter, epsil, methTV, nonneg, printswitch, dimX, dimY, dimZ); -}
\ No newline at end of file diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_dTV.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_dTV.c deleted file mode 100644 index 1a0c070..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_dTV.c +++ /dev/null @@ -1,114 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -#include "matrix.h" -#include "mex.h" -#include "FGP_dTV_core.h" - -/* C-OMP implementation of FGP-dTV [1,2] denoising/regularization model (2D/3D case) - * which employs structural similarity of the level sets of two images/volumes, see [1,2] - * The current implementation updates image 1 while image 2 is being fixed. - * - * Input Parameters: - * 1. Noisy image/volume [REQUIRED] - * 2. Additional reference image/volume of the same dimensions as (1) [REQUIRED] - * 3. lambdaPar - regularization parameter [REQUIRED] - * 4. Number of iterations [OPTIONAL] - * 5. eplsilon: tolerance constant [OPTIONAL] - * 6. eta: smoothing constant to calculate gradient of the reference [OPTIONAL] * - * 7. TV-type: methodTV - 'iso' (0) or 'l1' (1) [OPTIONAL] - * 8. nonneg: 'nonnegativity (0 is OFF by default) [OPTIONAL] - * 9. print information: 0 (off) or 1 (on) [OPTIONAL] - * - * Output: - * [1] Filtered/regularized image/volume - * - * This function is based on the Matlab's codes and papers by - * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems" - * [2] M. J. Ehrhardt and M. M. Betcke, Multi-Contrast MRI Reconstruction with Structure-Guided Total Variation, SIAM Journal on Imaging Sciences 9(3), pp. 1084–1106 - */ - - -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iter, methTV, printswitch, nonneg; - mwSize dimX, dimY, dimZ; - const mwSize *dim_array; - const mwSize *dim_array2; - float *Input, *InputRef, *Output=NULL, lambda, epsil, eta; - - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - dim_array = mxGetDimensions(prhs[0]); - dim_array2 = mxGetDimensions(prhs[1]); - - /*Handling Matlab input data*/ - if ((nrhs < 3) || (nrhs > 9)) mexErrMsgTxt("At least 3 parameters is required, all parameters are: Image(2D/3D), Reference(2D/3D), Regularization parameter, iterations number, tolerance, smoothing constant, penalty type ('iso' or 'l1'), nonnegativity switch, print switch"); - - Input = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */ - InputRef = (float *) mxGetData(prhs[1]); /* reference image (2D/3D) */ - lambda = (float) mxGetScalar(prhs[2]); /* regularization parameter */ - iter = 300; /* default iterations number */ - epsil = 0.0001; /* default tolerance constant */ - eta = 0.01; /* default smoothing constant */ - methTV = 0; /* default isotropic TV penalty */ - nonneg = 0; /* default nonnegativity switch, off - 0 */ - printswitch = 0; /*default print is switched, off - 0 */ - - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - if (mxGetClassID(prhs[1]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - - /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - if (number_of_dims == 2) { if ((dimX != dim_array2[0]) || (dimY != dim_array2[1])) mexErrMsgTxt("The input images have different dimensionalities");} - if (number_of_dims == 3) { if ((dimX != dim_array2[0]) || (dimY != dim_array2[1]) || (dimZ != dim_array2[2])) mexErrMsgTxt("The input volumes have different dimensionalities");} - - - if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7) || (nrhs == 8) || (nrhs == 9)) iter = (int) mxGetScalar(prhs[3]); /* iterations number */ - if ((nrhs == 5) || (nrhs == 6) || (nrhs == 7) || (nrhs == 8) || (nrhs == 9)) epsil = (float) mxGetScalar(prhs[4]); /* tolerance constant */ - if ((nrhs == 6) || (nrhs == 7) || (nrhs == 8) || (nrhs == 9)) { - eta = (float) mxGetScalar(prhs[5]); /* smoothing constant for the gradient of InputRef */ - } - if ((nrhs == 7) || (nrhs == 8) || (nrhs == 9)) { - char *penalty_type; - penalty_type = mxArrayToString(prhs[6]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */ - if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',"); - if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */ - mxFree(penalty_type); - } - if ((nrhs == 8) || (nrhs == 9)) { - nonneg = (int) mxGetScalar(prhs[7]); - if ((nonneg != 0) && (nonneg != 1)) mexErrMsgTxt("Nonnegativity constraint can be enabled by choosing 1 or off - 0"); - } - if (nrhs == 9) { - printswitch = (int) mxGetScalar(prhs[8]); - if ((printswitch != 0) && (printswitch != 1)) mexErrMsgTxt("Print can be enabled by choosing 1 or off - 0"); - } - - if (number_of_dims == 2) { - dimZ = 1; /*2D case*/ - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - } - if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - - /* running the function */ - dTV_FGP_CPU_main(Input, InputRef, Output, lambda, iter, epsil, eta, methTV, nonneg, printswitch, dimX, dimY, dimZ); -}
\ No newline at end of file diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/LLT_ROF.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/LLT_ROF.c deleted file mode 100644 index ab45446..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_CPU/LLT_ROF.c +++ /dev/null @@ -1,82 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -#include "matrix.h" -#include "mex.h" -#include "LLT_ROF_core.h" - -/* C-OMP implementation of Lysaker, Lundervold and Tai (LLT) model [1] combined with Rudin-Osher-Fatemi [2] TV regularisation penalty. -* -* This penalty can deliver visually pleasant piecewise-smooth recovery if regularisation parameters are selected well. -* The rule of thumb for selection is to start with lambdaLLT = 0 (just the ROF-TV model) and then proceed to increase -* lambdaLLT starting with smaller values. -* -* Input Parameters: -* 1. U0 - original noise image/volume -* 2. lambdaROF - ROF-related regularisation parameter -* 3. lambdaLLT - LLT-related regularisation parameter -* 4. tau - time-marching step -* 5. iter - iterations number (for both models) -* -* Output: -* Filtered/regularised image -* -* References: -* [1] Lysaker, M., Lundervold, A. and Tai, X.C., 2003. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Transactions on image processing, 12(12), pp.1579-1590. -* [2] Rudin, Osher, Fatemi, "Nonlinear Total Variation based noise removal algorithms" -*/ - -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iterationsNumb; - mwSize dimX, dimY, dimZ; - const mwSize *dim_array; - float *Input, *Output=NULL, lambdaROF, lambdaLLT, tau; - - dim_array = mxGetDimensions(prhs[0]); - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - - if ((nrhs < 3) || (nrhs > 5)) mexErrMsgTxt("At least 3 parameters is required, all parameters are: Image(2D/3D), Regularisation parameter (ROF), Regularisation parameter (LTT), iterations number, time-marching parameter"); - - /*Handling Matlab input data*/ - Input = (float *) mxGetData(prhs[0]); - lambdaROF = (float) mxGetScalar(prhs[1]); /* ROF regularization parameter */ - lambdaLLT = (float) mxGetScalar(prhs[2]); /* ROF regularization parameter */ - iterationsNumb = 250; - tau = 0.0025; - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - if ((nrhs == 4) || (nrhs == 5)) iterationsNumb = (int) mxGetScalar(prhs[3]); /* iterations number */ - if (nrhs == 5) tau = (float) mxGetScalar(prhs[4]); /* marching step parameter */ - - /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - - /* output arrays*/ - if (number_of_dims == 2) { - dimZ = 1; /*2D case*/ - /* output image/volume */ - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - } - if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - - LLT_ROF_CPU_main(Input, Output, lambdaROF, lambdaLLT, iterationsNumb, tau, dimX, dimY, dimZ); -}
\ No newline at end of file diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/NonlDiff.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/NonlDiff.c deleted file mode 100644 index ec35b8b..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_CPU/NonlDiff.c +++ /dev/null @@ -1,89 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -#include "matrix.h" -#include "mex.h" -#include "Diffusion_core.h" - -/* C-OMP implementation of linear and nonlinear diffusion with the regularisation model [1] (2D/3D case) - * The minimisation is performed using explicit scheme. - * - * Input Parameters: - * 1. Noisy image/volume - * 2. lambda - regularization parameter - * 3. Edge-preserving parameter (sigma), when sigma equals to zero nonlinear diffusion -> linear diffusion - * 4. Number of iterations, for explicit scheme >= 150 is recommended [OPTIONAL parameter] - * 5. tau - time-marching step for explicit scheme [OPTIONAL parameter] - * 6. Penalty type: 1 - Huber, 2 - Perona-Malik, 3 - Tukey Biweight [OPTIONAL parameter] - * - * Output: - * [1] Regularized image/volume - * - * This function is based on the paper by - * [1] Perona, P. and Malik, J., 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on pattern analysis and machine intelligence, 12(7), pp.629-639. - */ - -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iter_numb, penaltytype; - mwSize dimX, dimY, dimZ; - const mwSize *dim_array; - - float *Input, *Output=NULL, lambda, tau, sigma; - - dim_array = mxGetDimensions(prhs[0]); - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - - /*Handling Matlab input data*/ - Input = (float *) mxGetData(prhs[0]); - lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */ - sigma = (float) mxGetScalar(prhs[2]); /* Edge-preserving parameter */ - iter_numb = 300; /* iterations number */ - tau = 0.025; /* marching step parameter */ - penaltytype = 1; /* Huber penalty by default */ - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - if ((nrhs < 3) || (nrhs > 6)) mexErrMsgTxt("At least 3 parameters is required, all parameters are: Image(2D/3D), Regularisation parameter, Edge-preserving parameter, iterations number, time-marching constant, penalty type - Huber, PM or Tukey"); - if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6)) iter_numb = (int) mxGetScalar(prhs[3]); /* iterations number */ - if ((nrhs == 5) || (nrhs == 6)) tau = (float) mxGetScalar(prhs[4]); /* marching step parameter */ - if (nrhs == 6) { - char *penalty_type; - penalty_type = mxArrayToString(prhs[5]); /* Huber, PM or Tukey 'Huber' is the default */ - if ((strcmp(penalty_type, "Huber") != 0) && (strcmp(penalty_type, "PM") != 0) && (strcmp(penalty_type, "Tukey") != 0)) mexErrMsgTxt("Choose penalty: 'Huber', 'PM' or 'Tukey',"); - if (strcmp(penalty_type, "Huber") == 0) penaltytype = 1; /* enable 'Huber' penalty */ - if (strcmp(penalty_type, "PM") == 0) penaltytype = 2; /* enable Perona-Malik penalty */ - if (strcmp(penalty_type, "Tukey") == 0) penaltytype = 3; /* enable Tikey Biweight penalty */ - mxFree(penalty_type); - } - - /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - - /* output arrays*/ - if (number_of_dims == 2) { - dimZ = 1; /*2D case*/ - /* output image/volume */ - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - } - if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - - Diffusion_CPU_main(Input, Output, lambda, sigma, iter_numb, tau, penaltytype, dimX, dimY, dimZ); -}
\ No newline at end of file diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/NonlDiff_Inp.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/NonlDiff_Inp.c deleted file mode 100644 index 9833392..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_CPU/NonlDiff_Inp.c +++ /dev/null @@ -1,103 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -#include "matrix.h" -#include "mex.h" -#include "Diffusion_Inpaint_core.h" - -/* C-OMP implementation of linear and nonlinear diffusion [1,2] for inpainting task (2D/3D case) - * The minimisation is performed using explicit scheme. - * - * Input Parameters: - * 1. Image/volume to inpaint - * 2. Inpainting Mask of the same size as (1) in 'unsigned char' format (ones mark the region to inpaint, zeros belong to the data) - * 3. lambda - regularization parameter - * 4. Edge-preserving parameter (sigma), when sigma equals to zero nonlinear diffusion -> linear diffusion - * 5. Number of iterations, for explicit scheme >= 150 is recommended - * 6. tau - time-marching step for explicit scheme - * 7. Penalty type: 1 - Huber, 2 - Perona-Malik, 3 - Tukey Biweight - * - * Output: - * [1] Inpainted image/volume - * - * This function is based on the paper by - * [1] Perona, P. and Malik, J., 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on pattern analysis and machine intelligence, 12(7), pp.629-639. - * [2] Black, M.J., Sapiro, G., Marimont, D.H. and Heeger, D., 1998. Robust anisotropic diffusion. IEEE Transactions on image processing, 7(3), pp.421-432. - */ - -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iter_numb, penaltytype, i, inpaint_elements; - mwSize dimX, dimY, dimZ; - const mwSize *dim_array; - const mwSize *dim_array2; - - float *Input, *Output=NULL, lambda, tau, sigma; - unsigned char *Mask; - - dim_array = mxGetDimensions(prhs[0]); - dim_array2 = mxGetDimensions(prhs[1]); - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - - /*Handling Matlab input data*/ - Input = (float *) mxGetData(prhs[0]); - Mask = (unsigned char *) mxGetData(prhs[1]); /* MASK */ - lambda = (float) mxGetScalar(prhs[2]); /* regularization parameter */ - sigma = (float) mxGetScalar(prhs[3]); /* Edge-preserving parameter */ - iter_numb = 300; /* iterations number */ - tau = 0.025; /* marching step parameter */ - penaltytype = 1; /* Huber penalty by default */ - - if ((nrhs < 4) || (nrhs > 7)) mexErrMsgTxt("At least 4 parameters is required, all parameters are: Image(2D/3D), Mask(2D/3D), Regularisation parameter, Edge-preserving parameter, iterations number, time-marching constant, penalty type - Huber, PM or Tukey"); - if ((nrhs == 5) || (nrhs == 6) || (nrhs == 7)) iter_numb = (int) mxGetScalar(prhs[4]); /* iterations number */ - if ((nrhs == 6) || (nrhs == 7)) tau = (float) mxGetScalar(prhs[5]); /* marching step parameter */ - if (nrhs == 7) { - char *penalty_type; - penalty_type = mxArrayToString(prhs[6]); /* Huber, PM or Tukey 'Huber' is the default */ - if ((strcmp(penalty_type, "Huber") != 0) && (strcmp(penalty_type, "PM") != 0) && (strcmp(penalty_type, "Tukey") != 0)) mexErrMsgTxt("Choose penalty: 'Huber', 'PM' or 'Tukey',"); - if (strcmp(penalty_type, "Huber") == 0) penaltytype = 1; /* enable 'Huber' penalty */ - if (strcmp(penalty_type, "PM") == 0) penaltytype = 2; /* enable Perona-Malik penalty */ - if (strcmp(penalty_type, "Tukey") == 0) penaltytype = 3; /* enable Tikey Biweight penalty */ - mxFree(penalty_type); - } - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - if (mxGetClassID(prhs[1]) != mxUINT8_CLASS) {mexErrMsgTxt("The mask must be in uint8 precision");} - - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - - /* output arrays*/ - if (number_of_dims == 2) { - dimZ = 1; /*2D case*/ - /* output image/volume */ - if ((dimX != dim_array2[0]) || (dimY != dim_array2[1])) mexErrMsgTxt("Input image and the provided mask are of different dimensions!"); - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - } - if (number_of_dims == 3) { - if ((dimX != dim_array2[0]) || (dimY != dim_array2[1]) || (dimZ != dim_array2[2])) mexErrMsgTxt("Input image and the provided mask are of different dimensions!"); - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - } - - inpaint_elements = 0; - for (i=0; i<(int)(dimY*dimX*dimZ); i++) if (Mask[i] == 1) inpaint_elements++; - if (inpaint_elements == 0) mexErrMsgTxt("The mask is full of zeros, nothing to inpaint"); - Diffusion_Inpaint_CPU_main(Input, Mask, Output, lambda, sigma, iter_numb, tau, penaltytype, dimX, dimY, dimZ); -}
\ No newline at end of file diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/NonlocalMarching_Inpaint.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/NonlocalMarching_Inpaint.c deleted file mode 100644 index b3f2c98..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_CPU/NonlocalMarching_Inpaint.c +++ /dev/null @@ -1,84 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -#include "matrix.h" -#include "mex.h" -#include "NonlocalMarching_Inpaint_core.h" - -/* C-OMP implementation of Nonlocal Vertical Marching inpainting method (2D case) - * The method is heuristic but computationally efficent (especially for larger images). - * It developed specifically to smoothly inpaint horizontal or inclined missing data regions in sinograms - * The method WILL not work satisfactory if you have lengthy vertical stripes of missing data - * - * Input: - * 1. 2D image or sinogram [REQUIRED] - * 2. Mask of the same size as A in 'unsigned char' format (ones mark the region to inpaint, zeros belong to the data) [REQUIRED] - * 3. Linear increment to increase searching window size in iterations, values from 1-3 is a good choice [OPTIONAL, default 1] - * 4. Number of iterations [OPTIONAL, default - calculate based on the mask] - * - * Output: - * 1. Inpainted sinogram - * 2. updated mask - * Reference: TBA - */ - -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iterations, SW_increment; - mwSize dimX, dimY, dimZ; - const mwSize *dim_array; - const mwSize *dim_array2; - - float *Input, *Output=NULL; - unsigned char *Mask, *Mask_upd=NULL; - - dim_array = mxGetDimensions(prhs[0]); - dim_array2 = mxGetDimensions(prhs[1]); - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - - /*Handling Matlab input data*/ - Input = (float *) mxGetData(prhs[0]); - Mask = (unsigned char *) mxGetData(prhs[1]); /* MASK */ - SW_increment = 1; - iterations = 0; - - if ((nrhs < 2) || (nrhs > 4)) mexErrMsgTxt("At least 4 parameters is required, all parameters are: Image(2D/3D), Mask(2D/3D), Linear increment, Iterations number"); - if ((nrhs == 3) || (nrhs == 4)) SW_increment = (int) mxGetScalar(prhs[2]); /* linear increment */ - if ((nrhs == 4)) iterations = (int) mxGetScalar(prhs[3]); /* iterations number */ - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - if (mxGetClassID(prhs[1]) != mxUINT8_CLASS) {mexErrMsgTxt("The mask must be in uint8 precision");} - - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - - /* output arrays*/ - if (number_of_dims == 2) { - dimZ = 1; /*2D case*/ - /* output image/volume */ - if ((dimX != dim_array2[0]) || (dimY != dim_array2[1])) mexErrMsgTxt("Input image and the provided mask are of different dimensions!"); - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - Mask_upd = (unsigned char*)mxGetPr(plhs[1] = mxCreateNumericArray(2, dim_array, mxUINT8_CLASS, mxREAL)); - } - if (number_of_dims == 3) { - mexErrMsgTxt("Currently 2D supported only"); - } - NonlocalMarching_Inpaint_main(Input, Mask, Output, Mask_upd, SW_increment, iterations, 0, dimX, dimY, dimZ); -}
\ No newline at end of file diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/Nonlocal_TV.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/Nonlocal_TV.c deleted file mode 100644 index 014c0a0..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_CPU/Nonlocal_TV.c +++ /dev/null @@ -1,88 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC and Diamond Light Source Ltd. - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * Copyright 2018 Diamond Light Source Ltd. - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#include "matrix.h" -#include "mex.h" -#include "Nonlocal_TV_core.h" - -#define EPS 1.0000e-9 - -/* Matlab wrapper for C-OMP implementation of non-local regulariser - * Weights and associated indices must be given as an input. - * Gauss-Seidel fixed point iteration requires ~ 3 iterations, so the main effort - * goes in pre-calculation of weights and selection of patches - * - * - * Input Parameters: - * 1. 2D/3D grayscale image/volume - * 2. AR_i - indeces of i neighbours - * 3. AR_j - indeces of j neighbours - * 4. AR_k - indeces of k neighbours (0 - for 2D case) - * 5. Weights_ij(k) - associated weights - * 6. regularisation parameter - * 7. iterations number - - * Output: - * 1. denoised image/volume - * Elmoataz, Abderrahim, Olivier Lezoray, and Sébastien Bougleux. "Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing." IEEE Trans. Image Processing 17, no. 7 (2008): 1047-1060. - */ - -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) -{ - long number_of_dims, dimX, dimY, dimZ; - int IterNumb, NumNeighb = 0; - unsigned short *H_i, *H_j, *H_k; - const int *dim_array; - const int *dim_array2; - float *A_orig, *Output=NULL, *Weights, lambda; - - dim_array = mxGetDimensions(prhs[0]); - dim_array2 = mxGetDimensions(prhs[1]); - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - - /*Handling Matlab input data*/ - A_orig = (float *) mxGetData(prhs[0]); /* a 2D image or a set of 2D images (3D stack) */ - H_i = (unsigned short *) mxGetData(prhs[1]); /* indeces of i neighbours */ - H_j = (unsigned short *) mxGetData(prhs[2]); /* indeces of j neighbours */ - H_k = (unsigned short *) mxGetData(prhs[3]); /* indeces of k neighbours */ - Weights = (float *) mxGetData(prhs[4]); /* weights for patches */ - lambda = (float) mxGetScalar(prhs[5]); /* regularisation parameter */ - IterNumb = (int) mxGetScalar(prhs[6]); /* the number of iterations */ - - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - - /*****2D INPUT *****/ - if (number_of_dims == 2) { - dimZ = 0; - NumNeighb = dim_array2[2]; - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - } - /*****3D INPUT *****/ - /****************************************************/ - if (number_of_dims == 3) { - NumNeighb = dim_array2[3]; - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - } - - /* run the main function here */ - Nonlocal_TV_CPU_main(A_orig, Output, H_i, H_j, H_k, Weights, dimX, dimY, dimZ, NumNeighb, lambda, IterNumb); -} diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/PatchSelect.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/PatchSelect.c deleted file mode 100644 index f942539..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_CPU/PatchSelect.c +++ /dev/null @@ -1,92 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC and Diamond Light Source Ltd. - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * Copyright 2018 Diamond Light Source Ltd. - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#include "matrix.h" -#include "mex.h" -#include "PatchSelect_core.h" - -/* C-OMP implementation of non-local weight pre-calculation for non-local priors - * Weights and associated indices are stored into pre-allocated arrays and passed - * to the regulariser - * - * - * Input Parameters: - * 1. 2D/3D grayscale image/volume - * 2. Searching window (half-size of the main bigger searching window, e.g. 11) - * 3. Similarity window (half-size of the patch window, e.g. 2) - * 4. The number of neighbours to take (the most prominent after sorting neighbours will be taken) - * 5. noise-related parameter to calculate non-local weights - * - * Output [2D]: - * 1. AR_i - indeces of i neighbours - * 2. AR_j - indeces of j neighbours - * 3. Weights_ij - associated weights - * - * Output [3D]: - * 1. AR_i - indeces of i neighbours - * 2. AR_j - indeces of j neighbours - * 3. AR_k - indeces of j neighbours - * 4. Weights_ijk - associated weights - */ -/**************************************************/ -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) -{ - int number_of_dims, SearchWindow, SimilarWin, NumNeighb; - mwSize dimX, dimY, dimZ; - unsigned short *H_i=NULL, *H_j=NULL, *H_k=NULL; - const int *dim_array; - float *A, *Weights = NULL, h; - int dim_array2[3]; /* for 2D data */ - int dim_array3[4]; /* for 3D data */ - - dim_array = mxGetDimensions(prhs[0]); - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - - /*Handling Matlab input data*/ - A = (float *) mxGetData(prhs[0]); /* a 2D or 3D image/volume */ - SearchWindow = (int) mxGetScalar(prhs[1]); /* Large Searching window */ - SimilarWin = (int) mxGetScalar(prhs[2]); /* Similarity window (patch-search)*/ - NumNeighb = (int) mxGetScalar(prhs[3]); /* the total number of neighbours to take */ - h = (float) mxGetScalar(prhs[4]); /* NLM parameter */ - - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - dim_array2[0] = dimX; dim_array2[1] = dimY; dim_array2[2] = NumNeighb; /* 2D case */ - dim_array3[0] = dimX; dim_array3[1] = dimY; dim_array3[2] = dimZ; dim_array3[3] = NumNeighb; /* 3D case */ - - /****************2D INPUT ***************/ - if (number_of_dims == 2) { - dimZ = 0; - H_i = (unsigned short*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array2, mxUINT16_CLASS, mxREAL)); - H_j = (unsigned short*)mxGetPr(plhs[1] = mxCreateNumericArray(3, dim_array2, mxUINT16_CLASS, mxREAL)); - Weights = (float*)mxGetPr(plhs[2] = mxCreateNumericArray(3, dim_array2, mxSINGLE_CLASS, mxREAL)); - } - /****************3D INPUT ***************/ - if (number_of_dims == 3) { - H_i = (unsigned short*)mxGetPr(plhs[0] = mxCreateNumericArray(4, dim_array3, mxUINT16_CLASS, mxREAL)); - H_j = (unsigned short*)mxGetPr(plhs[1] = mxCreateNumericArray(4, dim_array3, mxUINT16_CLASS, mxREAL)); - H_k = (unsigned short*)mxGetPr(plhs[2] = mxCreateNumericArray(4, dim_array3, mxUINT16_CLASS, mxREAL)); - Weights = (float*)mxGetPr(plhs[3] = mxCreateNumericArray(4, dim_array3, mxSINGLE_CLASS, mxREAL)); - } - - PatchSelect_CPU_main(A, H_i, H_j, H_k, Weights, (long)(dimX), (long)(dimY), (long)(dimZ), SearchWindow, SimilarWin, NumNeighb, h, 0); - - } diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/ROF_TV.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/ROF_TV.c deleted file mode 100644 index 55ef2b1..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_CPU/ROF_TV.c +++ /dev/null @@ -1,77 +0,0 @@ - -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -#include "matrix.h" -#include "mex.h" -#include "ROF_TV_core.h" - -/* ROF-TV denoising/regularization model [1] (2D/3D case) - * (MEX wrapper for MATLAB) - * - * Input Parameters: - * 1. Noisy image/volume [REQUIRED] - * 2. lambda - regularization parameter [REQUIRED] - * 3. Number of iterations, for explicit scheme >= 150 is recommended [REQUIRED] - * 4. tau - marching step for explicit scheme, ~1 is recommended [REQUIRED] - * - * Output: - * [1] Regularized image/volume - * - * This function is based on the paper by - * [1] Rudin, Osher, Fatemi, "Nonlinear Total Variation based noise removal algorithms" - * - * D. Kazantsev, 2016-18 - */ - -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iter_numb; - mwSize dimX, dimY, dimZ; - const mwSize *dim_array_i; - float *Input, *Output=NULL, lambda, tau; - - dim_array_i = mxGetDimensions(prhs[0]); - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - - /*Handling Matlab input data*/ - Input = (float *) mxGetData(prhs[0]); - lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */ - iter_numb = (int) mxGetScalar(prhs[2]); /* iterations number */ - tau = (float) mxGetScalar(prhs[3]); /* marching step parameter */ - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - if(nrhs != 4) mexErrMsgTxt("Four inputs reqired: Image(2D,3D), regularization parameter, iterations number, marching step constant"); - /*Handling Matlab output data*/ - dimX = dim_array_i[0]; dimY = dim_array_i[1]; dimZ = dim_array_i[2]; - - /* output arrays*/ - if (number_of_dims == 2) { - dimZ = 1; /*2D case*/ - /* output image/volume */ - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array_i, mxSINGLE_CLASS, mxREAL)); - } - if (number_of_dims == 3) { - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array_i, mxSINGLE_CLASS, mxREAL)); - } - - TV_ROF_CPU_main(Input, Output, lambda, iter_numb, tau, dimX, dimY, dimZ); -}
\ No newline at end of file diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/SB_TV.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/SB_TV.c deleted file mode 100644 index 8636322..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_CPU/SB_TV.c +++ /dev/null @@ -1,91 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -#include "matrix.h" -#include "mex.h" -#include "SB_TV_core.h" - -/* C-OMP implementation of Split Bregman - TV denoising-regularisation model (2D/3D) [1] -* -* Input Parameters: -* 1. Noisy image/volume -* 2. lambda - regularisation parameter -* 3. Number of iterations [OPTIONAL parameter] -* 4. eplsilon - tolerance constant [OPTIONAL parameter] -* 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter] -* 6. print information: 0 (off) or 1 (on) [OPTIONAL parameter] -* -* Output: -* 1. Filtered/regularized image -* -* This function is based on the Matlab's code and paper by -* [1]. Goldstein, T. and Osher, S., 2009. The split Bregman method for L1-regularized problems. SIAM journal on imaging sciences, 2(2), pp.323-343. -*/ - -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iter, methTV, printswitch; - mwSize dimX, dimY, dimZ; - const mwSize *dim_array; - - float *Input, *Output=NULL, lambda, epsil; - - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - dim_array = mxGetDimensions(prhs[0]); - - /*Handling Matlab input data*/ - if ((nrhs < 2) || (nrhs > 6)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D/3D), Regularization parameter, Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1'), print switch"); - - Input = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */ - lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */ - iter = 100; /* default iterations number */ - epsil = 0.0001; /* default tolerance constant */ - methTV = 0; /* default isotropic TV penalty */ - printswitch = 0; /*default print is switched, off - 0 */ - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - - if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5) || (nrhs == 6)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */ - if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6)) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */ - if ((nrhs == 5) || (nrhs == 6)) { - char *penalty_type; - penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */ - if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',"); - if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */ - mxFree(penalty_type); - } - if (nrhs == 6) { - printswitch = (int) mxGetScalar(prhs[5]); - if ((printswitch != 0) && (printswitch != 1)) mexErrMsgTxt("Print can be enabled by choosing 1 or off - 0"); - } - - /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - - if (number_of_dims == 2) { - dimZ = 1; /*2D case*/ - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - } - if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - - /* running the function */ - SB_TV_CPU_main(Input, Output, lambda, iter, epsil, methTV, printswitch, dimX, dimY, dimZ); -} diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/TGV.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/TGV.c deleted file mode 100644 index aa4eed4..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_CPU/TGV.c +++ /dev/null @@ -1,83 +0,0 @@ -/* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Daniil Kazantsev -Copyright 2017 Srikanth Nagella, Edoardo Pasca - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ - -#include "mex.h" -#include "TGV_core.h" - -/* C-OMP implementation of Primal-Dual denoising method for - * Total Generilized Variation (TGV)-L2 model [1] (2D/3D) - * - * Input Parameters: - * 1. Noisy image/volume (2D/3D) - * 2. lambda - regularisation parameter - * 3. parameter to control the first-order term (alpha1) - * 4. parameter to control the second-order term (alpha0) - * 5. Number of Chambolle-Pock (Primal-Dual) iterations - * 6. Lipshitz constant (default is 12) - * - * Output: - * Filtered/regulariaed image - * - * References: - * [1] K. Bredies "Total Generalized Variation" - */ - -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iter; - mwSize dimX, dimY, dimZ; - const mwSize *dim_array; - - float *Input, *Output=NULL, lambda, alpha0, alpha1, L2; - - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - dim_array = mxGetDimensions(prhs[0]); - - /*Handling Matlab input data*/ - if ((nrhs < 2) || (nrhs > 6)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D), Regularisation parameter, alpha0, alpha1, iterations number, Lipshitz Constant"); - - Input = (float *) mxGetData(prhs[0]); /*noisy image/volume */ - lambda = (float) mxGetScalar(prhs[1]); /* regularisation parameter */ - alpha1 = 1.0f; /* parameter to control the first-order term */ - alpha0 = 0.5f; /* parameter to control the second-order term */ - iter = 300; /* Iterations number */ - L2 = 12.0f; /* Lipshitz constant */ - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5) || (nrhs == 6)) alpha1 = (float) mxGetScalar(prhs[2]); /* parameter to control the first-order term */ - if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6)) alpha0 = (float) mxGetScalar(prhs[3]); /* parameter to control the second-order term */ - if ((nrhs == 5) || (nrhs == 6)) iter = (int) mxGetScalar(prhs[4]); /* Iterations number */ - if (nrhs == 6) L2 = (float) mxGetScalar(prhs[5]); /* Lipshitz constant */ - - /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - - if (number_of_dims == 2) { - dimZ = 1; /*2D case*/ - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - } - if (number_of_dims == 3) { - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - } - /* running the function */ - TGV_main(Input, Output, lambda, alpha1, alpha0, iter, L2, dimX, dimY, dimZ); -} diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/TNV.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/TNV.c deleted file mode 100644 index acea75d..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_CPU/TNV.c +++ /dev/null @@ -1,74 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -#include "matrix.h" -#include "mex.h" -#include "TNV_core.h" -/* - * C-OMP implementation of Total Nuclear Variation regularisation model (2D + channels) [1] - * The code is modified from the implementation by Joan Duran <joan.duran@uib.es> see - * "denoisingPDHG_ipol.cpp" in Joans Collaborative Total Variation package - * - * Input Parameters: - * 1. Noisy volume of 2D + channel dimension, i.e. 3D volume - * 2. lambda - regularisation parameter - * 3. Number of iterations [OPTIONAL parameter] - * 4. eplsilon - tolerance constant [OPTIONAL parameter] - * 5. print information: 0 (off) or 1 (on) [OPTIONAL parameter] - * - * Output: - * 1. Filtered/regularized image - * - * [1]. Duran, J., Moeller, M., Sbert, C. and Cremers, D., 2016. Collaborative total variation: a general framework for vectorial TV models. SIAM Journal on Imaging Sciences, 9(1), pp.116-151. - */ -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iter; - mwSize dimX, dimY, dimZ; - const mwSize *dim_array; - float *Input, *Output=NULL, lambda, epsil; - - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - dim_array = mxGetDimensions(prhs[0]); - - /*Handling Matlab input data*/ - if ((nrhs < 2) || (nrhs > 4)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D + channels), Regularisation parameter, Regularization parameter, iterations number, tolerance"); - - Input = (float *) mxGetData(prhs[0]); /* noisy sequence of channels (2D + channels) */ - lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */ - iter = 1000; /* default iterations number */ - epsil = 1.00e-05; /* default tolerance constant */ - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - - if ((nrhs == 3) || (nrhs == 4)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */ - if (nrhs == 4) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */ - - /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - - if (number_of_dims == 2) mexErrMsgTxt("The input must be 3D: [X,Y,Channels]"); - if (number_of_dims == 3) { - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - /* running the function */ - TNV_CPU_main(Input, Output, lambda, iter, epsil, dimX, dimY, dimZ); - } -}
\ No newline at end of file diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/TV_energy.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/TV_energy.c deleted file mode 100644 index d457f46..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_CPU/TV_energy.c +++ /dev/null @@ -1,72 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -#include "matrix.h" -#include "mex.h" -#include "utils.h" -/* - * Function to calculate TV energy value with respect to the denoising variational problem - * - * Input: - * 1. Denoised Image/volume - * 2. Original (noisy) Image/volume - * 3. lambda - regularisation parameter - * - * Output: - * 1. Energy function value - * - */ -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, type; - - mwSize dimX, dimY, dimZ; - const mwSize *dim_array; - float *Input, *Input0, lambda; - - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - dim_array = mxGetDimensions(prhs[0]); - - /*Handling Matlab input data*/ - if ((nrhs != 4)) mexErrMsgTxt("4 inputs: Two images or volumes of the same size required, estimated and the original (noisy), regularisation parameter, type"); - - Input = (float *) mxGetData(prhs[0]); /* Denoised Image/volume */ - Input0 = (float *) mxGetData(prhs[1]); /* Original (noisy) Image/volume */ - lambda = (float) mxGetScalar(prhs[2]); /* regularisation parameter */ - type = (int) mxGetScalar(prhs[3]); /* type of energy */ - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - if (mxGetClassID(prhs[1]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - - /*output energy function value */ - plhs[0] = mxCreateNumericMatrix(1, 1, mxSINGLE_CLASS, mxREAL); - float *funcvalA = (float *) mxGetData(plhs[0]); - - /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - - if (number_of_dims == 2) { - TV_energy2D(Input, Input0, funcvalA, lambda, type, dimX, dimY); - } - if (number_of_dims == 3) { - TV_energy3D(Input, Input0, funcvalA, lambda, type, dimX, dimY, dimZ); - } -} diff --git a/Wrappers/Matlab/mex_compile/regularisers_GPU/Diffusion_4thO_GPU.cpp b/Wrappers/Matlab/mex_compile/regularisers_GPU/Diffusion_4thO_GPU.cpp deleted file mode 100644 index 0cc042b..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_GPU/Diffusion_4thO_GPU.cpp +++ /dev/null @@ -1,77 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -#include "matrix.h" -#include "mex.h" -#include "Diffus_4thO_GPU_core.h" - -/* CUDA implementation of fourth-order diffusion scheme [1] for piecewise-smooth recovery (2D/3D case) - * The minimisation is performed using explicit scheme. - * - * Input Parameters: - * 1. Noisy image/volume [REQUIRED] - * 2. lambda - regularization parameter [REQUIRED] - * 3. Edge-preserving parameter (sigma) [REQUIRED] - * 4. Number of iterations, for explicit scheme >= 150 is recommended [OPTIONAL, default 300] - * 5. tau - time-marching step for the explicit scheme [OPTIONAL, default 0.015] - * - * Output: - * [1] Regularized image/volume - * - * This function is based on the paper by - * [1] Hajiaboli, M.R., 2011. An anisotropic fourth-order diffusion filter for image noise removal. International Journal of Computer Vision, 92(2), pp.177-191. - */ - -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iter_numb; - mwSize dimX, dimY, dimZ; - const mwSize *dim_array; - float *Input, *Output=NULL, lambda, tau, sigma; - - dim_array = mxGetDimensions(prhs[0]); - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - - /*Handling Matlab input data*/ - Input = (float *) mxGetData(prhs[0]); - lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */ - sigma = (float) mxGetScalar(prhs[2]); /* Edge-preserving parameter */ - iter_numb = 300; /* iterations number */ - tau = 0.01; /* marching step parameter */ - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - if ((nrhs < 3) || (nrhs > 5)) mexErrMsgTxt("At least 3 parameters is required, all parameters are: Image(2D/3D), Regularisation parameter, Edge-preserving parameter, iterations number, time-marching constant"); - if ((nrhs == 4) || (nrhs == 5)) iter_numb = (int) mxGetScalar(prhs[3]); /* iterations number */ - if (nrhs == 5) tau = (float) mxGetScalar(prhs[4]); /* marching step parameter */ - - /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - - /* output arrays*/ - if (number_of_dims == 2) { - dimZ = 1; /*2D case*/ - /* output image/volume */ - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - } - if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - - Diffus4th_GPU_main(Input, Output, lambda, sigma, iter_numb, tau, dimX, dimY, dimZ); -}
\ No newline at end of file diff --git a/Wrappers/Matlab/mex_compile/regularisers_GPU/FGP_TV_GPU.cpp b/Wrappers/Matlab/mex_compile/regularisers_GPU/FGP_TV_GPU.cpp deleted file mode 100644 index c174e75..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_GPU/FGP_TV_GPU.cpp +++ /dev/null @@ -1,97 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -#include "matrix.h" -#include "mex.h" -#include "TV_FGP_GPU_core.h" - -/* GPU (CUDA) implementation of FGP-TV [1] denoising/regularization model (2D/3D case) - * - * Input Parameters: - * 1. Noisy image/volume - * 2. lambdaPar - regularization parameter - * 3. Number of iterations - * 4. eplsilon: tolerance constant - * 5. TV-type: methodTV - 'iso' (0) or 'l1' (1) - * 6. nonneg: 'nonnegativity (0 is OFF by default) - * 7. print information: 0 (off) or 1 (on) - * - * Output: - * [1] Filtered/regularized image - * - * This function is based on the Matlab's code and paper by - * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems" - */ - -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iter, methTV, printswitch, nonneg; - mwSize dimX, dimY, dimZ; - const mwSize *dim_array; - - float *Input, *Output=NULL, lambda, epsil; - - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - dim_array = mxGetDimensions(prhs[0]); - - /*Handling Matlab input data*/ - if ((nrhs < 2) || (nrhs > 7)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1'), nonnegativity switch, print switch"); - - Input = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */ - lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */ - iter = 300; /* default iterations number */ - epsil = 0.0001; /* default tolerance constant */ - methTV = 0; /* default isotropic TV penalty */ - nonneg = 0; /* default nonnegativity switch, off - 0 */ - printswitch = 0; /*default print is switched, off - 0 */ - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - - if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */ - if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7)) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */ - if ((nrhs == 5) || (nrhs == 6) || (nrhs == 7)) { - char *penalty_type; - penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */ - if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',"); - if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */ - mxFree(penalty_type); - } - if ((nrhs == 6) || (nrhs == 7)) { - nonneg = (int) mxGetScalar(prhs[5]); - if ((nonneg != 0) && (nonneg != 1)) mexErrMsgTxt("Nonnegativity constraint can be enabled by choosing 1 or off - 0"); - } - if (nrhs == 7) { - printswitch = (int) mxGetScalar(prhs[6]); - if ((printswitch != 0) && (printswitch != 1)) mexErrMsgTxt("Print can be enabled by choosing 1 or off - 0"); - } - - /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - - if (number_of_dims == 2) { - dimZ = 1; /*2D case*/ - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - } - if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - - /* running the function */ - TV_FGP_GPU_main(Input, Output, lambda, iter, epsil, methTV, nonneg, printswitch, dimX, dimY, dimZ); -}
\ No newline at end of file diff --git a/Wrappers/Matlab/mex_compile/regularisers_GPU/FGP_dTV_GPU.cpp b/Wrappers/Matlab/mex_compile/regularisers_GPU/FGP_dTV_GPU.cpp deleted file mode 100644 index 3f5a4b3..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_GPU/FGP_dTV_GPU.cpp +++ /dev/null @@ -1,113 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -#include "matrix.h" -#include "mex.h" -#include "dTV_FGP_GPU_core.h" - -/* CUDA implementation of FGP-dTV [1,2] denoising/regularization model (2D/3D case) - * which employs structural similarity of the level sets of two images/volumes, see [1,2] - * The current implementation updates image 1 while image 2 is being fixed. - * - * Input Parameters: - * 1. Noisy image/volume [REQUIRED] - * 2. Additional reference image/volume of the same dimensions as (1) [REQUIRED] - * 3. lambdaPar - regularization parameter [REQUIRED] - * 4. Number of iterations [OPTIONAL] - * 5. eplsilon: tolerance constant [OPTIONAL] - * 6. eta: smoothing constant to calculate gradient of the reference [OPTIONAL] * - * 7. TV-type: methodTV - 'iso' (0) or 'l1' (1) [OPTIONAL] - * 8. nonneg: 'nonnegativity (0 is OFF by default) [OPTIONAL] - * 9. print information: 0 (off) or 1 (on) [OPTIONAL] - * - * Output: - * [1] Filtered/regularized image/volume - * - * This function is based on the Matlab's codes and papers by - * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems" - * [2] M. J. Ehrhardt and M. M. Betcke, Multi-Contrast MRI Reconstruction with Structure-Guided Total Variation, SIAM Journal on Imaging Sciences 9(3), pp. 1084–1106 - */ -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iter, methTV, printswitch, nonneg; - mwSize dimX, dimY, dimZ; - const mwSize *dim_array; - const mwSize *dim_array2; - - float *Input, *InputRef, *Output=NULL, lambda, epsil, eta; - - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - dim_array = mxGetDimensions(prhs[0]); - dim_array2 = mxGetDimensions(prhs[1]); - - /*Handling Matlab input data*/ - if ((nrhs < 3) || (nrhs > 9)) mexErrMsgTxt("At least 3 parameters is required, all parameters are: Image(2D/3D), Reference(2D/3D), Regularization parameter, iterations number, tolerance, smoothing constant, penalty type ('iso' or 'l1'), nonnegativity switch, print switch"); - - Input = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */ - InputRef = (float *) mxGetData(prhs[1]); /* reference image (2D/3D) */ - lambda = (float) mxGetScalar(prhs[2]); /* regularization parameter */ - iter = 300; /* default iterations number */ - epsil = 0.0001; /* default tolerance constant */ - eta = 0.01; /* default smoothing constant */ - methTV = 0; /* default isotropic TV penalty */ - nonneg = 0; /* default nonnegativity switch, off - 0 */ - printswitch = 0; /*default print is switched, off - 0 */ - - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - if (mxGetClassID(prhs[1]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - - /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - if (number_of_dims == 2) { if ((dimX != dim_array2[0]) || (dimY != dim_array2[1])) mexErrMsgTxt("The input images have different dimensionalities");} - if (number_of_dims == 3) { if ((dimX != dim_array2[0]) || (dimY != dim_array2[1]) || (dimZ != dim_array2[2])) mexErrMsgTxt("The input volumes have different dimensionalities");} - - - if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7) || (nrhs == 8) || (nrhs == 9)) iter = (int) mxGetScalar(prhs[3]); /* iterations number */ - if ((nrhs == 5) || (nrhs == 6) || (nrhs == 7) || (nrhs == 8) || (nrhs == 9)) epsil = (float) mxGetScalar(prhs[4]); /* tolerance constant */ - if ((nrhs == 6) || (nrhs == 7) || (nrhs == 8) || (nrhs == 9)) { - eta = (float) mxGetScalar(prhs[5]); /* smoothing constant for the gradient of InputRef */ - } - if ((nrhs == 7) || (nrhs == 8) || (nrhs == 9)) { - char *penalty_type; - penalty_type = mxArrayToString(prhs[6]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */ - if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',"); - if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */ - mxFree(penalty_type); - } - if ((nrhs == 8) || (nrhs == 9)) { - nonneg = (int) mxGetScalar(prhs[7]); - if ((nonneg != 0) && (nonneg != 1)) mexErrMsgTxt("Nonnegativity constraint can be enabled by choosing 1 or off - 0"); - } - if (nrhs == 9) { - printswitch = (int) mxGetScalar(prhs[8]); - if ((printswitch != 0) && (printswitch != 1)) mexErrMsgTxt("Print can be enabled by choosing 1 or off - 0"); - } - - if (number_of_dims == 2) { - dimZ = 1; /*2D case*/ - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - } - if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - - /* running the function */ - dTV_FGP_GPU_main(Input, InputRef, Output, lambda, iter, epsil, eta, methTV, nonneg, printswitch, dimX, dimY, dimZ); -}
\ No newline at end of file diff --git a/Wrappers/Matlab/mex_compile/regularisers_GPU/LLT_ROF_GPU.cpp b/Wrappers/Matlab/mex_compile/regularisers_GPU/LLT_ROF_GPU.cpp deleted file mode 100644 index e8da4ce..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_GPU/LLT_ROF_GPU.cpp +++ /dev/null @@ -1,83 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -#include "matrix.h" -#include "mex.h" -#include "LLT_ROF_GPU_core.h" - -/* CUDA implementation of Lysaker, Lundervold and Tai (LLT) model [1] combined with Rudin-Osher-Fatemi [2] TV regularisation penalty. -* -* This penalty can deliver visually pleasant piecewise-smooth recovery if regularisation parameters are selected well. -* The rule of thumb for selection is to start with lambdaLLT = 0 (just the ROF-TV model) and then proceed to increase -* lambdaLLT starting with smaller values. -* -* Input Parameters: -* 1. U0 - original noise image/volume -* 2. lambdaROF - ROF-related regularisation parameter -* 3. lambdaLLT - LLT-related regularisation parameter -* 4. tau - time-marching step -* 5. iter - iterations number (for both models) -* -* Output: -* Filtered/regularised image -* -* References: -* [1] Lysaker, M., Lundervold, A. and Tai, X.C., 2003. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Transactions on image processing, 12(12), pp.1579-1590. -* [2] Rudin, Osher, Fatemi, "Nonlinear Total Variation based noise removal algorithms" -*/ - -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iterationsNumb; - mwSize dimX, dimY, dimZ; - const mwSize *dim_array; - - float *Input, *Output=NULL, lambdaROF, lambdaLLT, tau; - - dim_array = mxGetDimensions(prhs[0]); - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - - if ((nrhs < 3) || (nrhs > 5)) mexErrMsgTxt("At least 3 parameters is required, all parameters are: Image(2D/3D), Regularisation parameter (ROF), Regularisation parameter (LTT), iterations number, time-marching parameter"); - - /*Handling Matlab input data*/ - Input = (float *) mxGetData(prhs[0]); - lambdaROF = (float) mxGetScalar(prhs[1]); /* ROF regularization parameter */ - lambdaLLT = (float) mxGetScalar(prhs[2]); /* ROF regularization parameter */ - iterationsNumb = 250; - tau = 0.0025; - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - if ((nrhs == 4) || (nrhs == 5)) iterationsNumb = (int) mxGetScalar(prhs[3]); /* iterations number */ - if (nrhs == 5) tau = (float) mxGetScalar(prhs[4]); /* marching step parameter */ - - /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - - /* output arrays*/ - if (number_of_dims == 2) { - dimZ = 1; /*2D case*/ - /* output image/volume */ - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - } - if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - - LLT_ROF_GPU_main(Input, Output, lambdaROF, lambdaLLT, iterationsNumb, tau, dimX, dimY, dimZ); -}
\ No newline at end of file diff --git a/Wrappers/Matlab/mex_compile/regularisers_GPU/NonlDiff_GPU.cpp b/Wrappers/Matlab/mex_compile/regularisers_GPU/NonlDiff_GPU.cpp deleted file mode 100644 index 1cd0cdc..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_GPU/NonlDiff_GPU.cpp +++ /dev/null @@ -1,92 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -#include "matrix.h" -#include "mex.h" -#include <stdio.h> -#include <string.h> -#include "NonlDiff_GPU_core.h" - -/* CUDA implementation of linear and nonlinear diffusion with the regularisation model [1,2] (2D/3D case) - * The minimisation is performed using explicit scheme. - * - * Input Parameters: - * 1. Noisy image/volume - * 2. lambda - regularization parameter - * 3. Edge-preserving parameter (sigma), when sigma equals to zero nonlinear diffusion -> linear diffusion - * 4. Number of iterations, for explicit scheme >= 150 is recommended - * 5. tau - time-marching step for explicit scheme - * 6. Penalty type: 1 - Huber, 2 - Perona-Malik, 3 - Tukey Biweight - * - * Output: - * [1] Regularized image/volume - * - * This function is based on the paper by - * [1] Perona, P. and Malik, J., 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on pattern analysis and machine intelligence, 12(7), pp.629-639. - * [2] Black, M.J., Sapiro, G., Marimont, D.H. and Heeger, D., 1998. Robust anisotropic diffusion. IEEE Transactions on image processing, 7(3), pp.421-432. - */ - -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iter_numb, penaltytype; - mwSize dimX, dimY, dimZ; - const mwSize *dim_array; - - float *Input, *Output=NULL, lambda, tau, sigma; - - dim_array = mxGetDimensions(prhs[0]); - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - - /*Handling Matlab input data*/ - Input = (float *) mxGetData(prhs[0]); - lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */ - sigma = (float) mxGetScalar(prhs[2]); /* Edge-preserving parameter */ - iter_numb = 300; /* iterations number */ - tau = 0.025; /* marching step parameter */ - penaltytype = 1; /* Huber penalty by default */ - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - if ((nrhs < 3) || (nrhs > 6)) mexErrMsgTxt("At least 3 parameters is required, all parameters are: Image(2D/3D), Regularisation parameter, Edge-preserving parameter, iterations number, time-marching constant, penalty type - Huber, PM or Tukey"); - if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6)) iter_numb = (int) mxGetScalar(prhs[3]); /* iterations number */ - if ((nrhs == 5) || (nrhs == 6)) tau = (float) mxGetScalar(prhs[4]); /* marching step parameter */ - if (nrhs == 6) { - char *penalty_type; - penalty_type = mxArrayToString(prhs[5]); /* Huber, PM or Tukey 'Huber' is the default */ - if ((strcmp(penalty_type, "Huber") != 0) && (strcmp(penalty_type, "PM") != 0) && (strcmp(penalty_type, "Tukey") != 0)) mexErrMsgTxt("Choose penalty: 'Huber', 'PM' or 'Tukey',"); - if (strcmp(penalty_type, "Huber") == 0) penaltytype = 1; /* enable 'Huber' penalty */ - if (strcmp(penalty_type, "PM") == 0) penaltytype = 2; /* enable Perona-Malik penalty */ - if (strcmp(penalty_type, "Tukey") == 0) penaltytype = 3; /* enable Tikey Biweight penalty */ - mxFree(penalty_type); - } - - /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - - /* output arrays*/ - if (number_of_dims == 2) { - dimZ = 1; /*2D case*/ - /* output image/volume */ - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - } - if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - - NonlDiff_GPU_main(Input, Output, lambda, sigma, iter_numb, tau, penaltytype, dimX, dimY, dimZ); -}
\ No newline at end of file diff --git a/Wrappers/Matlab/mex_compile/regularisers_GPU/ROF_TV_GPU.cpp b/Wrappers/Matlab/mex_compile/regularisers_GPU/ROF_TV_GPU.cpp deleted file mode 100644 index bd01d55..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_GPU/ROF_TV_GPU.cpp +++ /dev/null @@ -1,74 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -#include "matrix.h" -#include "mex.h" -#include "TV_ROF_GPU_core.h" - -/* ROF-TV denoising/regularization model [1] (2D/3D case) - * (MEX wrapper for MATLAB) - * - * Input Parameters: - * 1. Noisy image/volume [REQUIRED] - * 2. lambda - regularization parameter [REQUIRED] - * 3. Number of iterations, for explicit scheme >= 150 is recommended [REQUIRED] - * 4. tau - marching step for explicit scheme, ~1 is recommended [REQUIRED] - * - * Output: - * [1] Regularized image/volume - * - * This function is based on the paper by - * [1] Rudin, Osher, Fatemi, "Nonlinear Total Variation based noise removal algorithms" - * - * D. Kazantsev, 2016-18 - */ -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iter_numb; - mwSize dimX, dimY, dimZ; - const mwSize *dim_array; - - float *Input, *Output=NULL, lambda, tau; - - dim_array = mxGetDimensions(prhs[0]); - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - - /*Handling Matlab input data*/ - Input = (float *) mxGetData(prhs[0]); - lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */ - iter_numb = (int) mxGetScalar(prhs[2]); /* iterations number */ - tau = (float) mxGetScalar(prhs[3]); /* marching step parameter */ - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - if(nrhs != 4) mexErrMsgTxt("Four inputs reqired: Image(2D,3D), regularization parameter, iterations number, marching step constant"); - /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - - /* output arrays*/ - if (number_of_dims == 2) { - dimZ = 1; /*2D case*/ - /* output image/volume */ - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - } - if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - - TV_ROF_GPU_main(Input, Output, lambda, iter_numb, tau, dimX, dimY, dimZ); -}
\ No newline at end of file diff --git a/Wrappers/Matlab/mex_compile/regularisers_GPU/SB_TV_GPU.cpp b/Wrappers/Matlab/mex_compile/regularisers_GPU/SB_TV_GPU.cpp deleted file mode 100644 index 9d1328f..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_GPU/SB_TV_GPU.cpp +++ /dev/null @@ -1,91 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -#include "matrix.h" -#include "mex.h" -#include "TV_SB_GPU_core.h" - -/* CUDA mex-file for implementation of Split Bregman - TV denoising-regularisation model (2D/3D) [1] -* -* Input Parameters: -* 1. Noisy image/volume -* 2. lambda - regularisation parameter -* 3. Number of iterations [OPTIONAL parameter] -* 4. eplsilon - tolerance constant [OPTIONAL parameter] -* 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter] -* 6. print information: 0 (off) or 1 (on) [OPTIONAL parameter] -* -* Output: -* 1. Filtered/regularized image -* -* This function is based on the Matlab's code and paper by -* [1]. Goldstein, T. and Osher, S., 2009. The split Bregman method for L1-regularized problems. SIAM journal on imaging sciences, 2(2), pp.323-343. -*/ - -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iter, methTV, printswitch; - mwSize dimX, dimY, dimZ; - const mwSize *dim_array; - - float *Input, *Output=NULL, lambda, epsil; - - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - dim_array = mxGetDimensions(prhs[0]); - - /*Handling Matlab input data*/ - if ((nrhs < 2) || (nrhs > 6)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D/3D), Regularization parameter, Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1'), print switch"); - - Input = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */ - lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */ - iter = 100; /* default iterations number */ - epsil = 0.0001; /* default tolerance constant */ - methTV = 0; /* default isotropic TV penalty */ - printswitch = 0; /*default print is switched, off - 0 */ - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - - if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5) || (nrhs == 6)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */ - if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6)) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */ - if ((nrhs == 5) || (nrhs == 6)) { - char *penalty_type; - penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */ - if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',"); - if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */ - mxFree(penalty_type); - } - if (nrhs == 6) { - printswitch = (int) mxGetScalar(prhs[5]); - if ((printswitch != 0) && (printswitch != 1)) mexErrMsgTxt("Print can be enabled by choosing 1 or off - 0"); - } - - /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - - if (number_of_dims == 2) { - dimZ = 1; /*2D case*/ - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - } - if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - - /* running the function */ - TV_SB_GPU_main(Input, Output, lambda, iter, epsil, methTV, printswitch, dimX, dimY, dimZ); -} diff --git a/Wrappers/Matlab/mex_compile/regularisers_GPU/TGV_GPU.cpp b/Wrappers/Matlab/mex_compile/regularisers_GPU/TGV_GPU.cpp deleted file mode 100644 index edb551d..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_GPU/TGV_GPU.cpp +++ /dev/null @@ -1,79 +0,0 @@ -/* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Daniil Kazantsev -Copyright 2017 Srikanth Nagella, Edoardo Pasca - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ - -#include "mex.h" -#include "TGV_GPU_core.h" - -/* CUDA implementation of Primal-Dual denoising method for - * Total Generilized Variation (TGV)-L2 model [1] (2D case only) - * - * Input Parameters: - * 1. Noisy image (2D) (required) - * 2. lambda - regularisation parameter (required) - * 3. parameter to control the first-order term (alpha1) (default - 1) - * 4. parameter to control the second-order term (alpha0) (default - 0.5) - * 5. Number of Chambolle-Pock (Primal-Dual) iterations (default is 300) - * 6. Lipshitz constant (default is 12) - * - * Output: - * Filtered/regulariaed image - * - * References: - * [1] K. Bredies "Total Generalized Variation" - */ - -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iter; - mwSize dimX, dimY; - const mwSize *dim_array; - float *Input, *Output=NULL, lambda, alpha0, alpha1, L2; - - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - dim_array = mxGetDimensions(prhs[0]); - - /*Handling Matlab input data*/ - if ((nrhs < 2) || (nrhs > 6)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D), Regularisation parameter, alpha0, alpha1, iterations number, Lipshitz Constant"); - - Input = (float *) mxGetData(prhs[0]); /*noisy image (2D) */ - lambda = (float) mxGetScalar(prhs[1]); /* regularisation parameter */ - alpha1 = 1.0f; /* parameter to control the first-order term */ - alpha0 = 0.5f; /* parameter to control the second-order term */ - iter = 300; /* Iterations number */ - L2 = 12.0f; /* Lipshitz constant */ - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5) || (nrhs == 6)) alpha1 = (float) mxGetScalar(prhs[2]); /* parameter to control the first-order term */ - if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6)) alpha0 = (float) mxGetScalar(prhs[3]); /* parameter to control the second-order term */ - if ((nrhs == 5) || (nrhs == 6)) iter = (int) mxGetScalar(prhs[4]); /* Iterations number */ - if (nrhs == 6) L2 = (float) mxGetScalar(prhs[5]); /* Lipshitz constant */ - - /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; - - if (number_of_dims == 2) { - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - /* running the function */ - TGV_GPU_main(Input, Output, lambda, alpha1, alpha0, iter, L2, dimX, dimY); - } - if (number_of_dims == 3) {mexErrMsgTxt("Only 2D images accepted");} -} diff --git a/Wrappers/Matlab/supp/RMSE.m b/Wrappers/Matlab/supp/RMSE.m deleted file mode 100644 index 002f776..0000000 --- a/Wrappers/Matlab/supp/RMSE.m +++ /dev/null @@ -1,7 +0,0 @@ -function err = RMSE(signal1, signal2)
-%RMSE Root Mean Squared Error
-
-err = sum((signal1 - signal2).^2)/length(signal1); % MSE
-err = sqrt(err); % RMSE
-
-end
\ No newline at end of file diff --git a/Wrappers/Matlab/supp/my_red_yellowMAP.mat b/Wrappers/Matlab/supp/my_red_yellowMAP.mat Binary files differdeleted file mode 100644 index c2a5b87..0000000 --- a/Wrappers/Matlab/supp/my_red_yellowMAP.mat +++ /dev/null |