diff options
author | Daniil Kazantsev <dkazanc@hotmail.com> | 2018-04-16 13:38:40 +0100 |
---|---|---|
committer | Daniil Kazantsev <dkazanc@hotmail.com> | 2018-04-16 13:38:40 +0100 |
commit | 80c5a5e5de2aca8d5c7b96f0adc91b5738cc9025 (patch) | |
tree | ebf4da0a18f0af799ae771b52513ac59a1228e1a /Wrappers/Matlab | |
parent | 7ae26b005c5f3d9ca0181ab1cf06b6ee8df5ed69 (diff) | |
download | regularization-80c5a5e5de2aca8d5c7b96f0adc91b5738cc9025.tar.gz regularization-80c5a5e5de2aca8d5c7b96f0adc91b5738cc9025.tar.bz2 regularization-80c5a5e5de2aca8d5c7b96f0adc91b5738cc9025.tar.xz regularization-80c5a5e5de2aca8d5c7b96f0adc91b5738cc9025.zip |
SB TV method CPU/GPU added
Diffstat (limited to 'Wrappers/Matlab')
-rw-r--r-- | Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m | 34 | ||||
-rw-r--r-- | Wrappers/Matlab/demos/demoMatlab_denoise.m | 33 | ||||
-rw-r--r-- | Wrappers/Matlab/mex_compile/compileCPU_mex.m | 5 | ||||
-rw-r--r-- | Wrappers/Matlab/mex_compile/compileGPU_mex.m | 16 | ||||
-rw-r--r-- | Wrappers/Matlab/mex_compile/regularisers_CPU/SB_TV.c | 89 | ||||
-rw-r--r-- | Wrappers/Matlab/mex_compile/regularisers_GPU/SB_TV_GPU.cpp | 89 |
6 files changed, 235 insertions, 31 deletions
diff --git a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m b/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m index dc49d9c..fb55097 100644 --- a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m +++ b/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m @@ -14,35 +14,47 @@ end vol3D(vol3D < 0) = 0; figure; imshow(vol3D(:,:,15), [0 1]); title('Noisy image'); + +lambda_reg = 0.03; % regularsation parameter for all methods %% fprintf('Denoise a volume using the ROF-TV model (CPU) \n'); -lambda_rof = 0.03; % regularisation parameter tau_rof = 0.0025; % time-marching constant iter_rof = 300; % number of ROF iterations -tic; u_rof = ROF_TV(single(vol3D), lambda_rof, iter_rof, tau_rof); toc; +tic; u_rof = ROF_TV(single(vol3D), lambda_reg, iter_rof, tau_rof); toc; figure; imshow(u_rof(:,:,15), [0 1]); title('ROF-TV denoised volume (CPU)'); %% % fprintf('Denoise a volume using the ROF-TV model (GPU) \n'); -% lambda_rof = 0.03; % regularisation parameter % tau_rof = 0.0025; % time-marching constant % iter_rof = 300; % number of ROF iterations -% tic; u_rofG = ROF_TV_GPU(single(vol3D), lambda_rof, iter_rof, tau_rof); toc; +% tic; u_rofG = ROF_TV_GPU(single(vol3D), lambda_reg, iter_rof, tau_rof); toc; % figure; imshow(u_rofG(:,:,15), [0 1]); title('ROF-TV denoised volume (GPU)'); %% fprintf('Denoise a volume using the FGP-TV model (CPU) \n'); -lambda_fgp = 0.03; % regularisation parameter iter_fgp = 300; % number of FGP iterations epsil_tol = 1.0e-05; % tolerance -tic; u_fgp = FGP_TV(single(vol3D), lambda_fgp, iter_fgp, epsil_tol); toc; +tic; u_fgp = FGP_TV(single(vol3D), lambda_reg, iter_fgp, epsil_tol); toc; figure; imshow(u_fgp(:,:,15), [0 1]); title('FGP-TV denoised volume (CPU)'); %% % fprintf('Denoise a volume using the FGP-TV model (GPU) \n'); -% lambda_fgp = 0.03; % regularisation parameter % iter_fgp = 300; % number of FGP iterations % epsil_tol = 1.0e-05; % tolerance -% tic; u_fgpG = FGP_TV_GPU(single(vol3D), lambda_fgp, iter_fgp, epsil_tol); toc; +% tic; u_fgpG = FGP_TV_GPU(single(vol3D), lambda_reg, iter_fgp, epsil_tol); toc; % figure; imshow(u_fgpG(:,:,15), [0 1]); title('FGP-TV denoised volume (GPU)'); %% +fprintf('Denoise a volume using the SB-TV model (CPU) \n'); +iter_sb = 150; % number of SB iterations +epsil_tol = 1.0e-05; % tolerance +tic; u_sb = SB_TV(single(vol3D), lambda_reg, iter_sb, epsil_tol); toc; +figure; imshow(u_sb(:,:,15), [0 1]); title('SB-TV denoised volume (CPU)'); +%% +% fprintf('Denoise a volume using the SB-TV model (GPU) \n'); +% iter_sb = 150; % number of SB iterations +% epsil_tol = 1.0e-05; % tolerance +% tic; u_sbG = SB_TV_GPU(single(vol3D), lambda_reg, iter_sb, epsil_tol); toc; +% figure; imshow(u_sbG(:,:,15), [0 1]); title('SB-TV denoised volume (GPU)'); +%% + +%>>>>>>>>>>>>>> MULTI-CHANNEL priors <<<<<<<<<<<<<<< % fprintf('Denoise a volume using the FGP-dTV model (CPU) \n'); % create another volume (reference) with slightly less amount of noise @@ -53,11 +65,10 @@ end vol3D_ref(vol3D_ref < 0) = 0; % vol3D_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV) -lambda_fgp = 0.03; % regularisation parameter iter_fgp = 300; % number of FGP iterations epsil_tol = 1.0e-05; % tolerance eta = 0.2; % Reference image gradient smoothing constant -tic; u_fgp_dtv = FGP_dTV(single(vol3D), single(vol3D_ref), lambda_fgp, iter_fgp, epsil_tol, eta); toc; +tic; u_fgp_dtv = FGP_dTV(single(vol3D), single(vol3D_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc; figure; imshow(u_fgp_dtv(:,:,15), [0 1]); title('FGP-dTV denoised volume (CPU)'); %% fprintf('Denoise a volume using the FGP-dTV model (GPU) \n'); @@ -70,10 +81,9 @@ end vol3D_ref(vol3D_ref < 0) = 0; % vol3D_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV) -lambda_fgp = 0.03; % regularisation parameter iter_fgp = 300; % number of FGP iterations epsil_tol = 1.0e-05; % tolerance eta = 0.2; % Reference image gradient smoothing constant -tic; u_fgp_dtv_g = FGP_dTV_GPU(single(vol3D), single(vol3D_ref), lambda_fgp, iter_fgp, epsil_tol, eta); toc; +tic; u_fgp_dtv_g = FGP_dTV_GPU(single(vol3D), single(vol3D_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc; figure; imshow(u_fgp_dtv_g(:,:,15), [0 1]); title('FGP-dTV denoised volume (GPU)'); %%
\ No newline at end of file diff --git a/Wrappers/Matlab/demos/demoMatlab_denoise.m b/Wrappers/Matlab/demos/demoMatlab_denoise.m index 145f2ff..129bedc 100644 --- a/Wrappers/Matlab/demos/demoMatlab_denoise.m +++ b/Wrappers/Matlab/demos/demoMatlab_denoise.m @@ -8,45 +8,55 @@ Im = double(imread('lena_gray_512.tif'))/255; % loading image u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; figure; imshow(u0, [0 1]); title('Noisy image'); +lambda_reg = 0.03; % regularsation parameter for all methods %% fprintf('Denoise using the ROF-TV model (CPU) \n'); -lambda_rof = 0.03; % regularisation parameter tau_rof = 0.0025; % time-marching constant iter_rof = 2000; % number of ROF iterations -tic; u_rof = ROF_TV(single(u0), lambda_rof, iter_rof, tau_rof); toc; +tic; u_rof = ROF_TV(single(u0), lambda_reg, iter_rof, tau_rof); toc; figure; imshow(u_rof, [0 1]); title('ROF-TV denoised image (CPU)'); %% % fprintf('Denoise using the ROF-TV model (GPU) \n'); -% lambda_rof = 0.03; % regularisation parameter % tau_rof = 0.0025; % time-marching constant % iter_rof = 2000; % number of ROF iterations -% tic; u_rofG = ROF_TV_GPU(single(u0), lambda_rof, iter_rof, tau_rof); toc; +% tic; u_rofG = ROF_TV_GPU(single(u0), lambda_reg, iter_rof, tau_rof); toc; % figure; imshow(u_rofG, [0 1]); title('ROF-TV denoised image (GPU)'); %% fprintf('Denoise using the FGP-TV model (CPU) \n'); -lambda_fgp = 0.03; % regularisation parameter iter_fgp = 1000; % number of FGP iterations epsil_tol = 1.0e-06; % tolerance -tic; u_fgp = FGP_TV(single(u0), lambda_fgp, iter_fgp, epsil_tol); toc; +tic; u_fgp = FGP_TV(single(u0), lambda_reg, iter_fgp, epsil_tol); toc; figure; imshow(u_fgp, [0 1]); title('FGP-TV denoised image (CPU)'); %% % fprintf('Denoise using the FGP-TV model (GPU) \n'); -% lambda_fgp = 0.03; % regularisation parameter % iter_fgp = 1000; % number of FGP iterations % epsil_tol = 1.0e-05; % tolerance -% tic; u_fgpG = FGP_TV_GPU(single(u0), lambda_fgp, iter_fgp, epsil_tol); toc; +% tic; u_fgpG = FGP_TV_GPU(single(u0), lambda_reg, iter_fgp, epsil_tol); toc; % figure; imshow(u_fgpG, [0 1]); title('FGP-TV denoised image (GPU)'); %% +fprintf('Denoise using the SB-TV model (CPU) \n'); +iter_sb = 150; % number of SB iterations +epsil_tol = 1.0e-06; % tolerance +tic; u_sb = SB_TV(single(u0), lambda_reg, iter_sb, epsil_tol); toc; +figure; imshow(u_sb, [0 1]); title('SB-TV denoised image (CPU)'); +%% +% fprintf('Denoise using the SB-TV model (GPU) \n'); +% iter_sb = 150; % number of SB iterations +% epsil_tol = 1.0e-06; % tolerance +% tic; u_sbG = SB_TV_GPU(single(u0), lambda_reg, iter_sb, epsil_tol); toc; +% figure; imshow(u_sbG, [0 1]); title('SB-TV denoised image (GPU)'); +%% +%>>>>>>>>>>>>>> MULTI-CHANNEL priors <<<<<<<<<<<<<<< % + fprintf('Denoise using the FGP-dTV model (CPU) \n'); % create another image (reference) with slightly less amount of noise u_ref = Im + .01*randn(size(Im)); u_ref(u_ref < 0) = 0; % u_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV) -lambda_fgp = 0.03; % regularisation parameter iter_fgp = 1000; % number of FGP iterations epsil_tol = 1.0e-06; % tolerance eta = 0.2; % Reference image gradient smoothing constant -tic; u_fgp_dtv = FGP_dTV(single(u0), single(u_ref), lambda_fgp, iter_fgp, epsil_tol, eta); toc; +tic; u_fgp_dtv = FGP_dTV(single(u0), single(u_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc; figure; imshow(u_fgp_dtv, [0 1]); title('FGP-dTV denoised image (CPU)'); %% % fprintf('Denoise using the FGP-dTV model (GPU) \n'); @@ -54,10 +64,9 @@ figure; imshow(u_fgp_dtv, [0 1]); title('FGP-dTV denoised image (CPU)'); % u_ref = Im + .01*randn(size(Im)); u_ref(u_ref < 0) = 0; % % u_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV) % -% lambda_fgp = 0.03; % regularisation parameter % iter_fgp = 1000; % number of FGP iterations % epsil_tol = 1.0e-06; % tolerance % eta = 0.2; % Reference image gradient smoothing constant -% tic; u_fgp_dtvG = FGP_dTV_GPU(single(u0), single(u_ref), lambda_fgp, iter_fgp, epsil_tol, eta); toc; +% tic; u_fgp_dtvG = FGP_dTV_GPU(single(u0), single(u_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc; % figure; imshow(u_fgp_dtvG, [0 1]); title('FGP-dTV denoised image (GPU)'); %% diff --git a/Wrappers/Matlab/mex_compile/compileCPU_mex.m b/Wrappers/Matlab/mex_compile/compileCPU_mex.m index 71f345a..c3c82ff 100644 --- a/Wrappers/Matlab/mex_compile/compileCPU_mex.m +++ b/Wrappers/Matlab/mex_compile/compileCPU_mex.m @@ -11,10 +11,13 @@ movefile ROF_TV.mex* ../installed/ mex FGP_TV.c FGP_TV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" movefile FGP_TV.mex* ../installed/ +mex SB_TV.c SB_TV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" +movefile SB_TV.mex* ../installed/ + mex FGP_dTV.c FGP_dTV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" movefile FGP_dTV.mex* ../installed/ -delete ROF_TV_core* FGP_TV_core* FGP_dTV_core* utils* CCPiDefines.h +delete SB_TV_core* ROF_TV_core* FGP_TV_core* FGP_dTV_core* utils* CCPiDefines.h fprintf('%s \n', 'All successfully compiled!'); diff --git a/Wrappers/Matlab/mex_compile/compileGPU_mex.m b/Wrappers/Matlab/mex_compile/compileGPU_mex.m index f58e9bc..0143c69 100644 --- a/Wrappers/Matlab/mex_compile/compileGPU_mex.m +++ b/Wrappers/Matlab/mex_compile/compileGPU_mex.m @@ -1,13 +1,13 @@ % execute this mex file in Matlab once -%>>>>>>>>>>>>>>Important<<<<<<<<<<<<<<<<<<< +%>>>>>>>>>>>>>>>>>Important<<<<<<<<<<<<<<<<<<< % In order to compile CUDA modules one needs to have nvcc-compiler -% installed (see CUDA SDK) -% check it under MATLAB with !nvcc --version -% In the code bellow we provide a full path to nvcc compiler +% installed (see CUDA SDK), check it under MATLAB with !nvcc --version + +% In the code bellow we provide a full explicit path to nvcc compiler % ! paths to matlab and CUDA sdk can be different, modify accordingly ! -% tested on Ubuntu 16.04/MATLAB 2016b +% tested on Ubuntu 16.04/MATLAB 2016b/cuda7.5/gcc4.9 copyfile ../../../Core/regularisers_GPU/ regularisers_GPU/ copyfile ../../../Core/CCPiDefines.h regularisers_GPU/ @@ -23,11 +23,15 @@ movefile ROF_TV_GPU.mex* ../installed/ mex -g -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart -lcufft -lmwgpu FGP_TV_GPU.cpp TV_FGP_GPU_core.o movefile FGP_TV_GPU.mex* ../installed/ +!/usr/local/cuda/bin/nvcc -O0 -c TV_SB_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/ +mex -g -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart -lcufft -lmwgpu SB_TV_GPU.cpp TV_SB_GPU_core.o +movefile SB_TV_GPU.mex* ../installed/ + !/usr/local/cuda/bin/nvcc -O0 -c dTV_FGP_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/ mex -g -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart -lcufft -lmwgpu FGP_dTV_GPU.cpp dTV_FGP_GPU_core.o movefile FGP_dTV_GPU.mex* ../installed/ -delete TV_ROF_GPU_core* TV_FGP_GPU_core* dTV_FGP_GPU_core* CCPiDefines.h +delete TV_ROF_GPU_core* TV_FGP_GPU_core* TV_SB_GPU_core* dTV_FGP_GPU_core* CCPiDefines.h utils_cu.h fprintf('%s \n', 'All successfully compiled!'); cd ../../ diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/SB_TV.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/SB_TV.c new file mode 100644 index 0000000..d284cac --- /dev/null +++ b/Wrappers/Matlab/mex_compile/regularisers_CPU/SB_TV.c @@ -0,0 +1,89 @@ +/* + * This work is part of the Core Imaging Library developed by + * Visual Analytics and Imaging System Group of the Science Technology + * Facilities Council, STFC + * + * Copyright 2017 Daniil Kazantsev + * Copyright 2017 Srikanth Nagella, Edoardo Pasca + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * http://www.apache.org/licenses/LICENSE-2.0 + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#include "matrix.h" +#include "mex.h" +#include "SB_TV_core.h" + +/* C-OMP implementation of Split Bregman - TV denoising-regularisation model (2D/3D) [1] +* +* Input Parameters: +* 1. Noisy image/volume +* 2. lambda - regularisation parameter +* 3. Number of iterations [OPTIONAL parameter] +* 4. eplsilon - tolerance constant [OPTIONAL parameter] +* 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter] +* 6. print information: 0 (off) or 1 (on) [OPTIONAL parameter] +* +* Output: +* 1. Filtered/regularized image +* +* This function is based on the Matlab's code and paper by +* [1]. Goldstein, T. and Osher, S., 2009. The split Bregman method for L1-regularized problems. SIAM journal on imaging sciences, 2(2), pp.323-343. +*/ + +void mexFunction( + int nlhs, mxArray *plhs[], + int nrhs, const mxArray *prhs[]) + +{ + int number_of_dims, iter, dimX, dimY, dimZ, methTV, printswitch; + const int *dim_array; + float *Input, *Output=NULL, lambda, epsil; + + number_of_dims = mxGetNumberOfDimensions(prhs[0]); + dim_array = mxGetDimensions(prhs[0]); + + /*Handling Matlab input data*/ + if ((nrhs < 2) || (nrhs > 6)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D/3D), Regularization parameter, Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1'), print switch"); + + Input = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */ + lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */ + iter = 100; /* default iterations number */ + epsil = 0.0001; /* default tolerance constant */ + methTV = 0; /* default isotropic TV penalty */ + printswitch = 0; /*default print is switched, off - 0 */ + + if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } + + if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5) || (nrhs == 6)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */ + if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6)) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */ + if ((nrhs == 5) || (nrhs == 6)) { + char *penalty_type; + penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */ + if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',"); + if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */ + mxFree(penalty_type); + } + if (nrhs == 6) { + printswitch = (int) mxGetScalar(prhs[5]); + if ((printswitch != 0) && (printswitch != 1)) mexErrMsgTxt("Print can be enabled by choosing 1 or off - 0"); + } + + /*Handling Matlab output data*/ + dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; + + if (number_of_dims == 2) { + dimZ = 1; /*2D case*/ + Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + } + if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + + /* running the function */ + SB_TV_CPU_main(Input, Output, lambda, iter, epsil, methTV, printswitch, dimX, dimY, dimZ); +} diff --git a/Wrappers/Matlab/mex_compile/regularisers_GPU/SB_TV_GPU.cpp b/Wrappers/Matlab/mex_compile/regularisers_GPU/SB_TV_GPU.cpp new file mode 100644 index 0000000..60847d9 --- /dev/null +++ b/Wrappers/Matlab/mex_compile/regularisers_GPU/SB_TV_GPU.cpp @@ -0,0 +1,89 @@ +/* + * This work is part of the Core Imaging Library developed by + * Visual Analytics and Imaging System Group of the Science Technology + * Facilities Council, STFC + * + * Copyright 2017 Daniil Kazantsev + * Copyright 2017 Srikanth Nagella, Edoardo Pasca + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * http://www.apache.org/licenses/LICENSE-2.0 + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#include "matrix.h" +#include "mex.h" +#include "TV_SB_GPU_core.h" + +/* CUDA mex-file for implementation of Split Bregman - TV denoising-regularisation model (2D/3D) [1] +* +* Input Parameters: +* 1. Noisy image/volume +* 2. lambda - regularisation parameter +* 3. Number of iterations [OPTIONAL parameter] +* 4. eplsilon - tolerance constant [OPTIONAL parameter] +* 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter] +* 6. print information: 0 (off) or 1 (on) [OPTIONAL parameter] +* +* Output: +* 1. Filtered/regularized image +* +* This function is based on the Matlab's code and paper by +* [1]. Goldstein, T. and Osher, S., 2009. The split Bregman method for L1-regularized problems. SIAM journal on imaging sciences, 2(2), pp.323-343. +*/ + +void mexFunction( + int nlhs, mxArray *plhs[], + int nrhs, const mxArray *prhs[]) + +{ + int number_of_dims, iter, dimX, dimY, dimZ, methTV, printswitch; + const int *dim_array; + float *Input, *Output=NULL, lambda, epsil; + + number_of_dims = mxGetNumberOfDimensions(prhs[0]); + dim_array = mxGetDimensions(prhs[0]); + + /*Handling Matlab input data*/ + if ((nrhs < 2) || (nrhs > 6)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D/3D), Regularization parameter, Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1'), print switch"); + + Input = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */ + lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */ + iter = 100; /* default iterations number */ + epsil = 0.0001; /* default tolerance constant */ + methTV = 0; /* default isotropic TV penalty */ + printswitch = 0; /*default print is switched, off - 0 */ + + if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } + + if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5) || (nrhs == 6)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */ + if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6)) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */ + if ((nrhs == 5) || (nrhs == 6)) { + char *penalty_type; + penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */ + if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',"); + if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */ + mxFree(penalty_type); + } + if (nrhs == 6) { + printswitch = (int) mxGetScalar(prhs[5]); + if ((printswitch != 0) && (printswitch != 1)) mexErrMsgTxt("Print can be enabled by choosing 1 or off - 0"); + } + + /*Handling Matlab output data*/ + dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; + + if (number_of_dims == 2) { + dimZ = 1; /*2D case*/ + Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + } + if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + + /* running the function */ + TV_SB_GPU_main(Input, Output, lambda, iter, epsil, methTV, printswitch, dimX, dimY, dimZ); +} |