summaryrefslogtreecommitdiffstats
path: root/Wrappers/Python/test
diff options
context:
space:
mode:
authorEdoardo Pasca <edo.paskino@gmail.com>2017-11-10 14:03:37 +0000
committerEdoardo Pasca <edo.paskino@gmail.com>2018-01-19 14:26:06 +0000
commitd8da92d590fcab561b9e65ee57851e2e402f0cd4 (patch)
tree8ff25f41a7ea4a690235fe92f79c807615f0aef2 /Wrappers/Python/test
parent2b11ca3f30580b814971fcad39110e0751161acb (diff)
downloadregularization-d8da92d590fcab561b9e65ee57851e2e402f0cd4.tar.gz
regularization-d8da92d590fcab561b9e65ee57851e2e402f0cd4.tar.bz2
regularization-d8da92d590fcab561b9e65ee57851e2e402f0cd4.tar.xz
regularization-d8da92d590fcab561b9e65ee57851e2e402f0cd4.zip
code refactoring step1
Diffstat (limited to 'Wrappers/Python/test')
-rw-r--r--Wrappers/Python/test/astra_test.py85
-rw-r--r--Wrappers/Python/test/create_phantom_projections.py49
-rw-r--r--Wrappers/Python/test/readhd5.py42
-rw-r--r--Wrappers/Python/test/simple_astra_test.py25
-rw-r--r--Wrappers/Python/test/test_reconstructor-os_phantom.py480
-rw-r--r--Wrappers/Python/test/test_reconstructor.py359
-rw-r--r--Wrappers/Python/test/test_regularizers.py412
-rw-r--r--Wrappers/Python/test/test_regularizers_3d.py425
-rw-r--r--Wrappers/Python/test/view_result.py12
9 files changed, 1889 insertions, 0 deletions
diff --git a/Wrappers/Python/test/astra_test.py b/Wrappers/Python/test/astra_test.py
new file mode 100644
index 0000000..42c375a
--- /dev/null
+++ b/Wrappers/Python/test/astra_test.py
@@ -0,0 +1,85 @@
+import astra
+import numpy
+import filefun
+
+
+# read in the same data as the DemoRD2
+angles = filefun.dlmread("DemoRD2/angles.csv")
+darks_ar = filefun.dlmread("DemoRD2/darks_ar.csv", separator=",")
+flats_ar = filefun.dlmread("DemoRD2/flats_ar.csv", separator=",")
+
+if True:
+ Sino3D = numpy.load("DemoRD2/Sino3D.npy")
+else:
+ sino = filefun.dlmread("DemoRD2/sino_01.csv", separator=",")
+ a = map (lambda x:x, numpy.shape(sino))
+ a.append(20)
+
+ Sino3D = numpy.zeros(tuple(a), dtype="float")
+
+ for i in range(1,numpy.shape(Sino3D)[2]+1):
+ print("Read file DemoRD2/sino_%02d.csv" % i)
+ sino = filefun.dlmread("DemoRD2/sino_%02d.csv" % i, separator=",")
+ Sino3D.T[i-1] = sino.T
+
+Weights3D = numpy.asarray(Sino3D, dtype="float")
+
+##angles_rad = angles*(pi/180); % conversion to radians
+##size_det = size(data_raw3D,1); % detectors dim
+##angSize = size(data_raw3D, 2); % angles dim
+##slices_tot = size(data_raw3D, 3); % no of slices
+##recon_size = 950; % reconstruction size
+
+
+angles_rad = angles * numpy.pi /180.
+size_det, angSize, slices_tot = numpy.shape(Sino3D)
+size_det, angSize, slices_tot = [int(i) for i in numpy.shape(Sino3D)]
+recon_size = 950
+Z_slices = 3;
+det_row_count = Z_slices;
+
+#proj_geom = astra_create_proj_geom('parallel3d', 1, 1,
+# det_row_count, size_det, angles_rad);
+
+detectorSpacingX = 1.0
+detectorSpacingY = detectorSpacingX
+proj_geom = astra.create_proj_geom('parallel3d',
+ detectorSpacingX,
+ detectorSpacingY,
+ det_row_count,
+ size_det,
+ angles_rad)
+
+#vol_geom = astra_create_vol_geom(recon_size,recon_size,Z_slices);
+vol_geom = astra.create_vol_geom(recon_size,recon_size,Z_slices);
+
+sino = numpy.zeros((size_det, angSize, slices_tot), dtype="float")
+
+#weights = ones(size(sino));
+weights = numpy.ones(numpy.shape(sino))
+
+#####################################################################
+## PowerMethod for Lipschitz constant
+
+N = vol_geom['GridColCount']
+x1 = numpy.random.rand(1,N,N)
+#sqweight = sqrt(weights(:,:,1));
+sqweight = numpy.sqrt(weights.T[0]).T
+##proj_geomT = proj_geom;
+proj_geomT = proj_geom.copy()
+##proj_geomT.DetectorRowCount = 1;
+proj_geomT['DetectorRowCount'] = 1
+##vol_geomT = vol_geom;
+vol_geomT = vol_geom.copy()
+##vol_geomT.GridSliceCount = 1;
+vol_geomT['GridSliceCount'] = 1
+
+##[sino_id, y] = astra_create_sino3d_cuda(x1, proj_geomT, vol_geomT);
+
+#sino_id, y = astra.create_sino3d_gpu(x1, proj_geomT, vol_geomT);
+sino_id, y = astra.create_sino(x1, proj_geomT, vol_geomT);
+
+##y = sqweight.*y;
+##astra_mex_data3d('delete', sino_id);
+
+
diff --git a/Wrappers/Python/test/create_phantom_projections.py b/Wrappers/Python/test/create_phantom_projections.py
new file mode 100644
index 0000000..20a9278
--- /dev/null
+++ b/Wrappers/Python/test/create_phantom_projections.py
@@ -0,0 +1,49 @@
+from ccpi.reconstruction.AstraDevice import AstraDevice
+from ccpi.reconstruction.DeviceModel import DeviceModel
+import h5py
+import numpy
+import matplotlib.pyplot as plt
+
+nx = h5py.File('phant3D_256.h5', "r")
+phantom = numpy.asarray(nx.get('/dataset1'))
+pX,pY,pZ = numpy.shape(phantom)
+
+filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/demos/DendrData.h5'
+nxa = h5py.File(filename, "r")
+#getEntry(nx, '/')
+# I have exported the entries as children of /
+entries = [entry for entry in nxa['/'].keys()]
+print (entries)
+
+angles_rad = numpy.asarray(nxa.get('/angles_rad'), dtype="float32")
+
+
+device = AstraDevice(
+ DeviceModel.DeviceType.PARALLEL3D.value,
+ [ pX , pY , 1., 1., angles_rad],
+ [ pX, pY, pZ ] )
+
+
+proj = device.doForwardProject(phantom)
+stack = [proj[:,i,:] for i in range(len(angles_rad))]
+stack = numpy.asarray(stack)
+
+
+fig = plt.figure()
+a=fig.add_subplot(1,2,1)
+a.set_title('proj')
+imgplot = plt.imshow(proj[:,100,:])
+a=fig.add_subplot(1,2,2)
+a.set_title('stack')
+imgplot = plt.imshow(stack[100])
+plt.show()
+
+pf = h5py.File("phantom3D256_projections.h5" , "w")
+pf.create_dataset("/projections", data=stack)
+pf.create_dataset("/sinogram", data=proj)
+pf.create_dataset("/angles", data=angles_rad)
+pf.create_dataset("/reconstruction_volume" , data=numpy.asarray([pX, pY, pZ]))
+pf.create_dataset("/camera/size" , data=numpy.asarray([pX , pY ]))
+pf.create_dataset("/camera/spacing" , data=numpy.asarray([1.,1.]))
+pf.flush()
+pf.close()
diff --git a/Wrappers/Python/test/readhd5.py b/Wrappers/Python/test/readhd5.py
new file mode 100644
index 0000000..eff6c43
--- /dev/null
+++ b/Wrappers/Python/test/readhd5.py
@@ -0,0 +1,42 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Wed Aug 23 16:34:49 2017
+
+@author: ofn77899
+"""
+
+import h5py
+import numpy
+
+def getEntry(nx, location):
+ for item in nx[location].keys():
+ print (item)
+
+filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/demos/DendrData.h5'
+nx = h5py.File(filename, "r")
+#getEntry(nx, '/')
+# I have exported the entries as children of /
+entries = [entry for entry in nx['/'].keys()]
+print (entries)
+
+Sino3D = numpy.asarray(nx.get('/Sino3D'))
+Weights3D = numpy.asarray(nx.get('/Weights3D'))
+angSize = numpy.asarray(nx.get('/angSize'), dtype=int)[0]
+angles_rad = numpy.asarray(nx.get('/angles_rad'))
+recon_size = numpy.asarray(nx.get('/recon_size'), dtype=int)[0]
+size_det = numpy.asarray(nx.get('/size_det'), dtype=int)[0]
+
+slices_tot = numpy.asarray(nx.get('/slices_tot'), dtype=int)[0]
+
+#from ccpi.viewer.CILViewer2D import CILViewer2D
+#v = CILViewer2D()
+#v.setInputAsNumpy(Weights3D)
+#v.startRenderLoop()
+
+import matplotlib.pyplot as plt
+fig = plt.figure()
+
+a=fig.add_subplot(1,1,1)
+a.set_title('noise')
+imgplot = plt.imshow(Weights3D[0].T)
+plt.show()
diff --git a/Wrappers/Python/test/simple_astra_test.py b/Wrappers/Python/test/simple_astra_test.py
new file mode 100644
index 0000000..905eeea
--- /dev/null
+++ b/Wrappers/Python/test/simple_astra_test.py
@@ -0,0 +1,25 @@
+import astra
+import numpy
+
+detectorSpacingX = 1.0
+detectorSpacingY = 1.0
+det_row_count = 128
+det_col_count = 128
+
+angles_rad = numpy.asarray([i for i in range(360)], dtype=float) / 180. * numpy.pi
+
+proj_geom = astra.creators.create_proj_geom('parallel3d',
+ detectorSpacingX,
+ detectorSpacingY,
+ det_row_count,
+ det_col_count,
+ angles_rad)
+
+image_size_x = 64
+image_size_y = 64
+image_size_z = 32
+
+vol_geom = astra.creators.create_vol_geom(image_size_x,image_size_y,image_size_z)
+
+x1 = numpy.random.rand(image_size_z,image_size_y,image_size_x)
+sino_id, y = astra.creators.create_sino3d_gpu(x1, proj_geom, vol_geom)
diff --git a/Wrappers/Python/test/test_reconstructor-os_phantom.py b/Wrappers/Python/test/test_reconstructor-os_phantom.py
new file mode 100644
index 0000000..01f1354
--- /dev/null
+++ b/Wrappers/Python/test/test_reconstructor-os_phantom.py
@@ -0,0 +1,480 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Wed Aug 23 16:34:49 2017
+
+@author: ofn77899
+Based on DemoRD2.m
+"""
+
+import h5py
+import numpy
+
+from ccpi.reconstruction.FISTAReconstructor import FISTAReconstructor
+import astra
+import matplotlib.pyplot as plt
+from ccpi.imaging.Regularizer import Regularizer
+from ccpi.reconstruction.AstraDevice import AstraDevice
+from ccpi.reconstruction.DeviceModel import DeviceModel
+
+#from ccpi.viewer.CILViewer2D import *
+
+
+def RMSE(signal1, signal2):
+ '''RMSE Root Mean Squared Error'''
+ if numpy.shape(signal1) == numpy.shape(signal2):
+ err = (signal1 - signal2)
+ err = numpy.sum( err * err )/numpy.size(signal1); # MSE
+ err = sqrt(err); # RMSE
+ return err
+ else:
+ raise Exception('Input signals must have the same shape')
+
+filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/src/Python/test/phantom3D256_projections.h5'
+nx = h5py.File(filename, "r")
+#getEntry(nx, '/')
+# I have exported the entries as children of /
+entries = [entry for entry in nx['/'].keys()]
+print (entries)
+
+projections = numpy.asarray(nx.get('/projections'), dtype="float32")
+#Weights3D = numpy.asarray(nx.get('/Weights3D'), dtype="float32")
+#angSize = numpy.asarray(nx.get('/angSize'), dtype=int)[0]
+angles_rad = numpy.asarray(nx.get('/angles'), dtype="float32")
+angSize = numpy.size(angles_rad)
+image_size_x, image_size_y, image_size_z = \
+ numpy.asarray(nx.get('/reconstruction_volume'), dtype=int)
+det_col_count, det_row_count = \
+ numpy.asarray(nx.get('/camera/size'))
+#slices_tot = numpy.asarray(nx.get('/slices_tot'), dtype=int)[0]
+detectorSpacingX, detectorSpacingY = numpy.asarray(nx.get('/camera/spacing'), dtype=int)
+
+Z_slices = 20
+#det_row_count = image_size_y
+# next definition is just for consistency of naming
+#det_col_count = image_size_x
+
+detectorSpacingX = 1.0
+detectorSpacingY = detectorSpacingX
+
+
+proj_geom = astra.creators.create_proj_geom('parallel3d',
+ detectorSpacingX,
+ detectorSpacingY,
+ det_row_count,
+ det_col_count,
+ angles_rad)
+
+#vol_geom = astra_create_vol_geom(recon_size,recon_size,Z_slices);
+##image_size_x = recon_size
+##image_size_y = recon_size
+##image_size_z = Z_slices
+vol_geom = astra.creators.create_vol_geom( image_size_x,
+ image_size_y,
+ image_size_z)
+
+## First pass the arguments to the FISTAReconstructor and test the
+## Lipschitz constant
+astradevice = AstraDevice(DeviceModel.DeviceType.PARALLEL3D.value,
+ [proj_geom['DetectorRowCount'] ,
+ proj_geom['DetectorColCount'] ,
+ proj_geom['DetectorSpacingX'] ,
+ proj_geom['DetectorSpacingY'] ,
+ proj_geom['ProjectionAngles']
+ ],
+ [
+ vol_geom['GridColCount'],
+ vol_geom['GridRowCount'],
+ vol_geom['GridSliceCount'] ] )
+## create the sinogram
+Sino3D = numpy.transpose(projections, axes=[1,0,2])
+
+fistaRecon = FISTAReconstructor(proj_geom,
+ vol_geom,
+ Sino3D ,
+ #weights=Weights3D,
+ device=astradevice)
+
+print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
+fistaRecon.setParameter(number_of_iterations = 4)
+#fistaRecon.setParameter(Lipschitz_constant = 767893952.0)
+fistaRecon.setParameter(ring_alpha = 21)
+fistaRecon.setParameter(ring_lambda_R_L1 = 0.002)
+#fistaRecon.setParameter(ring_lambda_R_L1 = 0)
+subsets = 8
+fistaRecon.setParameter(subsets=subsets)
+
+
+#reg = Regularizer(Regularizer.Algorithm.FGP_TV)
+#reg.setParameter(regularization_parameter=0.005,
+# number_of_iterations=50)
+reg = Regularizer(Regularizer.Algorithm.FGP_TV)
+reg.setParameter(regularization_parameter=5e6,
+ tolerance_constant=0.0001,
+ number_of_iterations=50)
+
+#fistaRecon.setParameter(regularizer=reg)
+#lc = fistaRecon.getParameter('Lipschitz_constant')
+#reg.setParameter(regularization_parameter=5e6/lc)
+
+## Ordered subset
+if True:
+ #subsets = 8
+ fistaRecon.setParameter(subsets=subsets)
+ fistaRecon.createOrderedSubsets()
+else:
+ angles = fistaRecon.getParameter('projector_geometry')['ProjectionAngles']
+ #binEdges = numpy.linspace(angles.min(),
+ # angles.max(),
+ # subsets + 1)
+ binsDiscr, binEdges = numpy.histogram(angles, bins=subsets)
+ # get rearranged subset indices
+ IndicesReorg = numpy.zeros((numpy.shape(angles)))
+ counterM = 0
+ for ii in range(binsDiscr.max()):
+ counter = 0
+ for jj in range(subsets):
+ curr_index = ii + jj + counter
+ #print ("{0} {1} {2}".format(binsDiscr[jj] , ii, counterM))
+ if binsDiscr[jj] > ii:
+ if (counterM < numpy.size(IndicesReorg)):
+ IndicesReorg[counterM] = curr_index
+ counterM = counterM + 1
+
+ counter = counter + binsDiscr[jj] - 1
+
+
+if True:
+ print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
+ print ("prepare for iteration")
+ fistaRecon.prepareForIteration()
+
+
+
+ print("initializing ...")
+ if True:
+ # if X doesn't exist
+ #N = params.vol_geom.GridColCount
+ N = vol_geom['GridColCount']
+ print ("N " + str(N))
+ X = numpy.asarray(numpy.ones((image_size_x,image_size_y,image_size_z)),
+ dtype=numpy.float) * 0.001
+ X = numpy.asarray(numpy.zeros((image_size_x,image_size_y,image_size_z)),
+ dtype=numpy.float)
+ else:
+ #X = fistaRecon.initialize()
+ X = numpy.load("X.npy")
+
+ print (numpy.shape(X))
+ X_t = X.copy()
+ print ("initialized")
+ proj_geom , vol_geom, sino , \
+ SlicesZ, weights , alpha_ring = fistaRecon.getParameter(
+ ['projector_geometry' , 'output_geometry',
+ 'input_sinogram', 'SlicesZ' , 'weights', 'ring_alpha'])
+ lambdaR_L1 , alpha_ring , weights , L_const= \
+ fistaRecon.getParameter(['ring_lambda_R_L1',
+ 'ring_alpha' , 'weights',
+ 'Lipschitz_constant'])
+
+ #fistaRecon.setParameter(number_of_iterations = 3)
+ iterFISTA = fistaRecon.getParameter('number_of_iterations')
+ # errors vector (if the ground truth is given)
+ Resid_error = numpy.zeros((iterFISTA));
+ # objective function values vector
+ objective = numpy.zeros((iterFISTA));
+
+
+ t = 1
+
+
+ ## additional for
+ proj_geomSUB = proj_geom.copy()
+ fistaRecon.residual2 = numpy.zeros(numpy.shape(fistaRecon.pars['input_sinogram']))
+ residual2 = fistaRecon.residual2
+ sino_updt_FULL = fistaRecon.residual.copy()
+ r_x = fistaRecon.r.copy()
+
+ results = []
+ print ("starting iterations")
+## % Outer FISTA iterations loop
+ for i in range(fistaRecon.getParameter('number_of_iterations')):
+## % With OS approach it becomes trickier to correlate independent subsets, hence additional work is required
+## % one solution is to work with a full sinogram at times
+## if ((i >= 3) && (lambdaR_L1 > 0))
+## [sino_id2, sino_updt2] = astra_create_sino3d_cuda(X, proj_geom, vol_geom);
+## astra_mex_data3d('delete', sino_id2);
+## end
+ # With OS approach it becomes trickier to correlate independent subsets,
+ # hence additional work is required one solution is to work with a full
+ # sinogram at times
+
+
+ #t_old = t
+ SlicesZ, anglesNumb, Detectors = \
+ numpy.shape(fistaRecon.getParameter('input_sinogram'))
+ ## https://github.com/vais-ral/CCPi-FISTA_Reconstruction/issues/4
+ r_old = fistaRecon.r.copy()
+
+ if (i > 1 and lambdaR_L1 > 0) :
+ for kkk in range(anglesNumb):
+
+ residual2[:,kkk,:] = (weights[:,kkk,:]).squeeze() * \
+ ((sino_updt_FULL[:,kkk,:]).squeeze() - \
+ (sino[:,kkk,:]).squeeze() -\
+ (alpha_ring * r_x)
+ )
+ #r_old = fistaRecon.r.copy()
+ vec = fistaRecon.residual.sum(axis = 1)
+ #if SlicesZ > 1:
+ # vec = vec[:,1,:] # 1 or 0?
+ r_x = fistaRecon.r_x
+ # update ring variable
+ fistaRecon.r = (r_x - (1./L_const) * vec)
+
+ # subset loop
+ counterInd = 1
+ geometry_type = fistaRecon.getParameter('projector_geometry')['type']
+ angles = fistaRecon.getParameter('projector_geometry')['ProjectionAngles']
+
+## if geometry_type == 'parallel' or \
+## geometry_type == 'fanflat' or \
+## geometry_type == 'fanflat_vec' :
+##
+## for kkk in range(SlicesZ):
+## sino_id, sinoT[kkk] = \
+## astra.creators.create_sino3d_gpu(
+## X_t[kkk:kkk+1], proj_geomSUB, vol_geom)
+## sino_updt_Sub[kkk] = sinoT.T.copy()
+##
+## else:
+## sino_id, sino_updt_Sub = \
+## astra.creators.create_sino3d_gpu(X_t, proj_geomSUB, vol_geom)
+##
+## astra.matlab.data3d('delete', sino_id)
+
+ for ss in range(fistaRecon.getParameter('subsets')):
+ print ("Subset {0}".format(ss))
+ X_old = X.copy()
+ t_old = t
+ print ("X[0][0][0] {0} t {1}".format(X[0][0][0], t))
+
+ # the number of projections per subset
+ numProjSub = fistaRecon.getParameter('os_bins')[ss]
+ CurrSubIndices = fistaRecon.getParameter('os_indices')\
+ [counterInd:counterInd+numProjSub]
+ shape = list(numpy.shape(fistaRecon.getParameter('input_sinogram')))
+ shape[1] = numProjSub
+ sino_updt_Sub = numpy.zeros(shape)
+
+ #print ("Len CurrSubIndices {0}".format(numProjSub))
+ mask = numpy.zeros(numpy.shape(angles), dtype=bool)
+ cc = 0
+ for j in range(len(CurrSubIndices)):
+ mask[int(CurrSubIndices[j])] = True
+
+ ## this is a reduced device
+ rdev = fistaRecon.getParameter('device_model')\
+ .createReducedDevice(proj_par={'angles' : angles[mask]},
+ vol_par={})
+ proj_geomSUB['ProjectionAngles'] = angles[mask]
+
+
+
+ if geometry_type == 'parallel' or \
+ geometry_type == 'fanflat' or \
+ geometry_type == 'fanflat_vec' :
+
+ for kkk in range(SlicesZ):
+ sino_id, sinoT = astra.creators.create_sino3d_gpu (
+ X_t[kkk:kkk+1] , proj_geomSUB, vol_geom)
+ sino_updt_Sub[kkk] = sinoT.T.copy()
+ astra.matlab.data3d('delete', sino_id)
+ else:
+ # for 3D geometry (watch the GPU memory overflow in ASTRA < 1.8)
+ sino_id, sino_updt_Sub = \
+ astra.creators.create_sino3d_gpu (X_t,
+ proj_geomSUB,
+ vol_geom)
+
+ astra.matlab.data3d('delete', sino_id)
+
+
+
+
+ ## RING REMOVAL
+ residual = fistaRecon.residual
+
+
+ if lambdaR_L1 > 0 :
+ print ("ring removal")
+ residualSub = numpy.zeros(shape)
+ ## for a chosen subset
+ ## for kkk = 1:numProjSub
+ ## indC = CurrSubIndeces(kkk);
+ ## residualSub(:,kkk,:) = squeeze(weights(:,indC,:)).*(squeeze(sino_updt_Sub(:,kkk,:)) - (squeeze(sino(:,indC,:)) - alpha_ring.*r_x));
+ ## sino_updt_FULL(:,indC,:) = squeeze(sino_updt_Sub(:,kkk,:)); % filling the full sinogram
+ ## end
+ for kkk in range(numProjSub):
+ #print ("ring removal indC ... {0}".format(kkk))
+ indC = int(CurrSubIndices[kkk])
+ residualSub[:,kkk,:] = weights[:,indC,:].squeeze() * \
+ (sino_updt_Sub[:,kkk,:].squeeze() - \
+ sino[:,indC,:].squeeze() - alpha_ring * r_x)
+ # filling the full sinogram
+ sino_updt_FULL[:,indC,:] = sino_updt_Sub[:,kkk,:].squeeze()
+
+ else:
+ #PWLS model
+ # I guess we need to use mask here instead
+ residualSub = weights[:,CurrSubIndices,:] * \
+ ( sino_updt_Sub - \
+ sino[:,CurrSubIndices,:].squeeze() )
+ # it seems that in the original code the following like is not
+ # calculated in the case of ring removal
+ objective[i] = 0.5 * numpy.linalg.norm(residualSub)
+
+ #backprojection
+ if geometry_type == 'parallel' or \
+ geometry_type == 'fanflat' or \
+ geometry_type == 'fanflat_vec' :
+ # if geometry is 2D use slice-by-slice projection-backprojection
+ # routine
+ x_temp = numpy.zeros(numpy.shape(X), dtype=numpy.float32)
+ for kkk in range(SlicesZ):
+
+ x_id, x_temp[kkk] = \
+ astra.creators.create_backprojection3d_gpu(
+ residualSub[kkk:kkk+1],
+ proj_geomSUB, vol_geom)
+ astra.matlab.data3d('delete', x_id)
+
+ else:
+ x_id, x_temp = \
+ astra.creators.create_backprojection3d_gpu(
+ residualSub, proj_geomSUB, vol_geom)
+
+ astra.matlab.data3d('delete', x_id)
+
+ X = X_t - (1/L_const) * x_temp
+
+
+
+ ## REGULARIZATION
+ ## SKIPPING FOR NOW
+ ## Should be simpli
+ # regularizer = fistaRecon.getParameter('regularizer')
+ # for slices:
+ # out = regularizer(input=X)
+ print ("regularizer")
+ reg = fistaRecon.getParameter('regularizer')
+
+ if reg is not None:
+ X = reg(input=X,
+ output_all=False)
+
+ t = (1 + numpy.sqrt(1 + 4 * t **2))/2
+ X_t = X + (((t_old -1)/t) * (X-X_old))
+ counterInd = counterInd + numProjSub - 1
+ if i == 1:
+ r_old = fistaRecon.r.copy()
+
+ ## FINAL
+ print ("final")
+ lambdaR_L1 = fistaRecon.getParameter('ring_lambda_R_L1')
+ if lambdaR_L1 > 0:
+ fistaRecon.r = numpy.max(
+ numpy.abs(fistaRecon.r) - lambdaR_L1 , 0) * \
+ numpy.sign(fistaRecon.r)
+ # updating r
+ r_x = fistaRecon.r + ((t_old-1)/t) * (fistaRecon.r - r_old)
+
+
+ if fistaRecon.getParameter('region_of_interest') is None:
+ string = 'Iteration Number {0} | Objective {1} \n'
+ print (string.format( i, objective[i]))
+ else:
+ ROI , X_ideal = fistaRecon.getParameter('region_of_interest',
+ 'ideal_image')
+
+ Resid_error[i] = RMSE(X*ROI, X_ideal*ROI)
+ string = 'Iteration Number {0} | RMS Error {1} | Objective {2} \n'
+ print (string.format(i,Resid_error[i], objective[i]))
+
+ results.append(X[10])
+ numpy.save("X_out_os.npy", X)
+
+else:
+
+
+
+ astradevice = AstraDevice(DeviceModel.DeviceType.PARALLEL3D.value,
+ [proj_geom['DetectorRowCount'] ,
+ proj_geom['DetectorColCount'] ,
+ proj_geom['DetectorSpacingX'] ,
+ proj_geom['DetectorSpacingY'] ,
+ proj_geom['ProjectionAngles']
+ ],
+ [
+ vol_geom['GridColCount'],
+ vol_geom['GridRowCount'],
+ vol_geom['GridSliceCount'] ] )
+ regul = Regularizer(Regularizer.Algorithm.FGP_TV)
+ regul.setParameter(regularization_parameter=5e6,
+ number_of_iterations=50,
+ tolerance_constant=1e-4,
+ TV_penalty=Regularizer.TotalVariationPenalty.isotropic)
+
+ fistaRecon = FISTAReconstructor(proj_geom,
+ vol_geom,
+ Sino3D ,
+ weights=Weights3D,
+ device=astradevice,
+ #regularizer = regul,
+ subsets=8)
+
+ print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
+ fistaRecon.setParameter(number_of_iterations = 1)
+ fistaRecon.setParameter(Lipschitz_constant = 767893952.0)
+ fistaRecon.setParameter(ring_alpha = 21)
+ fistaRecon.setParameter(ring_lambda_R_L1 = 0.002)
+ #fistaRecon.setParameter(subsets=8)
+
+ #lc = fistaRecon.getParameter('Lipschitz_constant')
+ #fistaRecon.getParameter('regularizer').setParameter(regularization_parameter=5e6/lc)
+
+ fistaRecon.prepareForIteration()
+ X = fistaRecon.iterate(numpy.load("X.npy"))
+
+
+# plot
+fig = plt.figure()
+cols = 3
+
+## add the difference
+rd = []
+for i in range(1,len(results)):
+ rd.append(results[i-1])
+ rd.append(results[i])
+ rd.append(results[i] - results[i-1])
+
+rows = (lambda x: int(numpy.floor(x/cols) + 1) if x%cols != 0 else int(x/cols)) \
+ (len (rd))
+for i in range(len (results)):
+ a=fig.add_subplot(rows,cols,i+1)
+ imgplot = plt.imshow(results[i], vmin=0, vmax=1)
+ a.text(0.05, 0.95, "iteration {0}".format(i),
+ verticalalignment='top')
+## i = i + 1
+## a=fig.add_subplot(rows,cols,i+1)
+## imgplot = plt.imshow(results[i], vmin=0, vmax=10)
+## a.text(0.05, 0.95, "iteration {0}".format(i),
+## verticalalignment='top')
+
+## a=fig.add_subplot(rows,cols,i+2)
+## imgplot = plt.imshow(results[i]-results[i-1], vmin=0, vmax=10)
+## a.text(0.05, 0.95, "difference {0}-{1}".format(i, i-1),
+## verticalalignment='top')
+
+
+
+plt.show()
diff --git a/Wrappers/Python/test/test_reconstructor.py b/Wrappers/Python/test/test_reconstructor.py
new file mode 100644
index 0000000..40065e7
--- /dev/null
+++ b/Wrappers/Python/test/test_reconstructor.py
@@ -0,0 +1,359 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Wed Aug 23 16:34:49 2017
+
+@author: ofn77899
+Based on DemoRD2.m
+"""
+
+import h5py
+import numpy
+
+from ccpi.reconstruction.FISTAReconstructor import FISTAReconstructor
+import astra
+import matplotlib.pyplot as plt
+from ccpi.imaging.Regularizer import Regularizer
+from ccpi.reconstruction.AstraDevice import AstraDevice
+from ccpi.reconstruction.DeviceModel import DeviceModel
+
+def RMSE(signal1, signal2):
+ '''RMSE Root Mean Squared Error'''
+ if numpy.shape(signal1) == numpy.shape(signal2):
+ err = (signal1 - signal2)
+ err = numpy.sum( err * err )/numpy.size(signal1); # MSE
+ err = sqrt(err); # RMSE
+ return err
+ else:
+ raise Exception('Input signals must have the same shape')
+
+def createAstraDevice(projector_geometry, output_geometry):
+ '''TODO remove'''
+
+ device = AstraDevice(DeviceModel.DeviceType.PARALLEL3D.value,
+ [projector_geometry['DetectorRowCount'] ,
+ projector_geometry['DetectorColCount'] ,
+ projector_geometry['DetectorSpacingX'] ,
+ projector_geometry['DetectorSpacingY'] ,
+ projector_geometry['ProjectionAngles']
+ ],
+ [
+ output_geometry['GridColCount'],
+ output_geometry['GridRowCount'],
+ output_geometry['GridSliceCount'] ] )
+ return device
+
+filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/demos/DendrData.h5'
+nx = h5py.File(filename, "r")
+#getEntry(nx, '/')
+# I have exported the entries as children of /
+entries = [entry for entry in nx['/'].keys()]
+print (entries)
+
+Sino3D = numpy.asarray(nx.get('/Sino3D'), dtype="float32")
+Weights3D = numpy.asarray(nx.get('/Weights3D'), dtype="float32")
+angSize = numpy.asarray(nx.get('/angSize'), dtype=int)[0]
+angles_rad = numpy.asarray(nx.get('/angles_rad'), dtype="float32")
+recon_size = numpy.asarray(nx.get('/recon_size'), dtype=int)[0]
+size_det = numpy.asarray(nx.get('/size_det'), dtype=int)[0]
+slices_tot = numpy.asarray(nx.get('/slices_tot'), dtype=int)[0]
+
+Z_slices = 20
+det_row_count = Z_slices
+# next definition is just for consistency of naming
+det_col_count = size_det
+
+detectorSpacingX = 1.0
+detectorSpacingY = detectorSpacingX
+
+
+proj_geom = astra.creators.create_proj_geom('parallel3d',
+ detectorSpacingX,
+ detectorSpacingY,
+ det_row_count,
+ det_col_count,
+ angles_rad)
+
+#vol_geom = astra_create_vol_geom(recon_size,recon_size,Z_slices);
+image_size_x = recon_size
+image_size_y = recon_size
+image_size_z = Z_slices
+vol_geom = astra.creators.create_vol_geom( image_size_x,
+ image_size_y,
+ image_size_z)
+
+## First pass the arguments to the FISTAReconstructor and test the
+## Lipschitz constant
+
+##fistaRecon = FISTAReconstructor(proj_geom,
+## vol_geom,
+## Sino3D ,
+## weights=Weights3D)
+##
+##print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
+##fistaRecon.setParameter(number_of_iterations = 12)
+##fistaRecon.setParameter(Lipschitz_constant = 767893952.0)
+##fistaRecon.setParameter(ring_alpha = 21)
+##fistaRecon.setParameter(ring_lambda_R_L1 = 0.002)
+##
+##reg = Regularizer(Regularizer.Algorithm.LLT_model)
+##reg.setParameter(regularization_parameter=25,
+## time_step=0.0003,
+## tolerance_constant=0.0001,
+## number_of_iterations=300)
+##fistaRecon.setParameter(regularizer=reg)
+
+## Ordered subset
+if False:
+ subsets = 16
+ angles = fistaRecon.getParameter('projector_geometry')['ProjectionAngles']
+ #binEdges = numpy.linspace(angles.min(),
+ # angles.max(),
+ # subsets + 1)
+ binsDiscr, binEdges = numpy.histogram(angles, bins=subsets)
+ # get rearranged subset indices
+ IndicesReorg = numpy.zeros((numpy.shape(angles)))
+ counterM = 0
+ for ii in range(binsDiscr.max()):
+ counter = 0
+ for jj in range(subsets):
+ curr_index = ii + jj + counter
+ #print ("{0} {1} {2}".format(binsDiscr[jj] , ii, counterM))
+ if binsDiscr[jj] > ii:
+ if (counterM < numpy.size(IndicesReorg)):
+ IndicesReorg[counterM] = curr_index
+ counterM = counterM + 1
+
+ counter = counter + binsDiscr[jj] - 1
+
+
+if False:
+ print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
+ print ("prepare for iteration")
+ fistaRecon.prepareForIteration()
+
+
+
+ print("initializing ...")
+ if False:
+ # if X doesn't exist
+ #N = params.vol_geom.GridColCount
+ N = vol_geom['GridColCount']
+ print ("N " + str(N))
+ X = numpy.zeros((N,N,SlicesZ), dtype=numpy.float)
+ else:
+ #X = fistaRecon.initialize()
+ X = numpy.load("X.npy")
+
+ print (numpy.shape(X))
+ X_t = X.copy()
+ print ("initialized")
+ proj_geom , vol_geom, sino , \
+ SlicesZ = fistaRecon.getParameter(['projector_geometry' ,
+ 'output_geometry',
+ 'input_sinogram',
+ 'SlicesZ'])
+
+ #fistaRecon.setParameter(number_of_iterations = 3)
+ iterFISTA = fistaRecon.getParameter('number_of_iterations')
+ # errors vector (if the ground truth is given)
+ Resid_error = numpy.zeros((iterFISTA));
+ # objective function values vector
+ objective = numpy.zeros((iterFISTA));
+
+
+ t = 1
+
+
+ print ("starting iterations")
+## % Outer FISTA iterations loop
+ for i in range(fistaRecon.getParameter('number_of_iterations')):
+ X_old = X.copy()
+ t_old = t
+ r_old = fistaRecon.r.copy()
+ if fistaRecon.getParameter('projector_geometry')['type'] == 'parallel' or \
+ fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat' or \
+ fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat_vec' :
+ # if the geometry is parallel use slice-by-slice
+ # projection-backprojection routine
+ #sino_updt = zeros(size(sino),'single');
+ proj_geomT = proj_geom.copy()
+ proj_geomT['DetectorRowCount'] = 1
+ vol_geomT = vol_geom.copy()
+ vol_geomT['GridSliceCount'] = 1;
+ sino_updt = numpy.zeros(numpy.shape(sino), dtype=numpy.float)
+ for kkk in range(SlicesZ):
+ sino_id, sino_updt[kkk] = \
+ astra.creators.create_sino3d_gpu(
+ X_t[kkk:kkk+1], proj_geom, vol_geom)
+ astra.matlab.data3d('delete', sino_id)
+ else:
+ # for divergent 3D geometry (watch the GPU memory overflow in
+ # ASTRA versions < 1.8)
+ #[sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom);
+ sino_id, sino_updt = astra.creators.create_sino3d_gpu(
+ X_t, proj_geom, vol_geom)
+
+ ## RING REMOVAL
+ residual = fistaRecon.residual
+ lambdaR_L1 , alpha_ring , weights , L_const= \
+ fistaRecon.getParameter(['ring_lambda_R_L1',
+ 'ring_alpha' , 'weights',
+ 'Lipschitz_constant'])
+ r_x = fistaRecon.r_x
+ SlicesZ, anglesNumb, Detectors = \
+ numpy.shape(fistaRecon.getParameter('input_sinogram'))
+ if lambdaR_L1 > 0 :
+ print ("ring removal")
+ for kkk in range(anglesNumb):
+
+ residual[:,kkk,:] = (weights[:,kkk,:]).squeeze() * \
+ ((sino_updt[:,kkk,:]).squeeze() - \
+ (sino[:,kkk,:]).squeeze() -\
+ (alpha_ring * r_x)
+ )
+ vec = residual.sum(axis = 1)
+ #if SlicesZ > 1:
+ # vec = vec[:,1,:].squeeze()
+ fistaRecon.r = (r_x - (1./L_const) * vec).copy()
+ objective[i] = (0.5 * (residual ** 2).sum())
+## % the ring removal part (Group-Huber fidelity)
+## for kkk = 1:anglesNumb
+## residual(:,kkk,:) = squeeze(weights(:,kkk,:)).*
+## (squeeze(sino_updt(:,kkk,:)) -
+## (squeeze(sino(:,kkk,:)) - alpha_ring.*r_x));
+## end
+## vec = sum(residual,2);
+## if (SlicesZ > 1)
+## vec = squeeze(vec(:,1,:));
+## end
+## r = r_x - (1./L_const).*vec;
+## objective(i) = (0.5*sum(residual(:).^2)); % for the objective function output
+
+
+
+ # Projection/Backprojection Routine
+ if fistaRecon.getParameter('projector_geometry')['type'] == 'parallel' or \
+ fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat' or\
+ fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat_vec':
+ x_temp = numpy.zeros(numpy.shape(X),dtype=numpy.float32)
+ print ("Projection/Backprojection Routine")
+ for kkk in range(SlicesZ):
+
+ x_id, x_temp[kkk] = \
+ astra.creators.create_backprojection3d_gpu(
+ residual[kkk:kkk+1],
+ proj_geomT, vol_geomT)
+ astra.matlab.data3d('delete', x_id)
+ else:
+ x_id, x_temp = \
+ astra.creators.create_backprojection3d_gpu(
+ residual, proj_geom, vol_geom)
+
+ X = X_t - (1/L_const) * x_temp
+ astra.matlab.data3d('delete', sino_id)
+ astra.matlab.data3d('delete', x_id)
+
+
+ ## REGULARIZATION
+ ## SKIPPING FOR NOW
+ ## Should be simpli
+ # regularizer = fistaRecon.getParameter('regularizer')
+ # for slices:
+ # out = regularizer(input=X)
+ print ("skipping regularizer")
+
+
+ ## FINAL
+ print ("final")
+ lambdaR_L1 = fistaRecon.getParameter('ring_lambda_R_L1')
+ if lambdaR_L1 > 0:
+ fistaRecon.r = numpy.max(
+ numpy.abs(fistaRecon.r) - lambdaR_L1 , 0) * \
+ numpy.sign(fistaRecon.r)
+ t = (1 + numpy.sqrt(1 + 4 * t**2))/2
+ X_t = X + (((t_old -1)/t) * (X - X_old))
+
+ if lambdaR_L1 > 0:
+ fistaRecon.r_x = fistaRecon.r + \
+ (((t_old-1)/t) * (fistaRecon.r - r_old))
+
+ if fistaRecon.getParameter('region_of_interest') is None:
+ string = 'Iteration Number {0} | Objective {1} \n'
+ print (string.format( i, objective[i]))
+ else:
+ ROI , X_ideal = fistaRecon.getParameter('region_of_interest',
+ 'ideal_image')
+
+ Resid_error[i] = RMSE(X*ROI, X_ideal*ROI)
+ string = 'Iteration Number {0} | RMS Error {1} | Objective {2} \n'
+ print (string.format(i,Resid_error[i], objective[i]))
+
+## if (lambdaR_L1 > 0)
+## r = max(abs(r)-lambdaR_L1, 0).*sign(r); % soft-thresholding operator for ring vector
+## end
+##
+## t = (1 + sqrt(1 + 4*t^2))/2; % updating t
+## X_t = X + ((t_old-1)/t).*(X - X_old); % updating X
+##
+## if (lambdaR_L1 > 0)
+## r_x = r + ((t_old-1)/t).*(r - r_old); % updating r
+## end
+##
+## if (show == 1)
+## figure(10); imshow(X(:,:,slice), [0 maxvalplot]);
+## if (lambdaR_L1 > 0)
+## figure(11); plot(r); title('Rings offset vector')
+## end
+## pause(0.01);
+## end
+## if (strcmp(X_ideal, 'none' ) == 0)
+## Resid_error(i) = RMSE(X(ROI), X_ideal(ROI));
+## fprintf('%s %i %s %s %.4f %s %s %f \n', 'Iteration Number:', i, '|', 'Error RMSE:', Resid_error(i), '|', 'Objective:', objective(i));
+## else
+## fprintf('%s %i %s %s %f \n', 'Iteration Number:', i, '|', 'Objective:', objective(i));
+## end
+else:
+
+ # create a device for forward/backprojection
+ #astradevice = createAstraDevice(proj_geom, vol_geom)
+
+ astradevice = AstraDevice(DeviceModel.DeviceType.PARALLEL3D.value,
+ [proj_geom['DetectorRowCount'] ,
+ proj_geom['DetectorColCount'] ,
+ proj_geom['DetectorSpacingX'] ,
+ proj_geom['DetectorSpacingY'] ,
+ proj_geom['ProjectionAngles']
+ ],
+ [
+ vol_geom['GridColCount'],
+ vol_geom['GridRowCount'],
+ vol_geom['GridSliceCount'] ] )
+
+ regul = Regularizer(Regularizer.Algorithm.FGP_TV)
+ regul.setParameter(regularization_parameter=5e6,
+ number_of_iterations=50,
+ tolerance_constant=1e-4,
+ TV_penalty=Regularizer.TotalVariationPenalty.isotropic)
+
+ fistaRecon = FISTAReconstructor(proj_geom,
+ vol_geom,
+ Sino3D ,
+ device = astradevice,
+ weights=Weights3D,
+ regularizer = regul
+ )
+
+ print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
+ fistaRecon.setParameter(number_of_iterations = 18)
+ fistaRecon.setParameter(Lipschitz_constant = 767893952.0)
+ fistaRecon.setParameter(ring_alpha = 21)
+ fistaRecon.setParameter(ring_lambda_R_L1 = 0.002)
+
+
+
+ fistaRecon.prepareForIteration()
+ X = numpy.load("X.npy")
+
+
+ X = fistaRecon.iterate(X)
+ #numpy.save("X_out.npy", X)
diff --git a/Wrappers/Python/test/test_regularizers.py b/Wrappers/Python/test/test_regularizers.py
new file mode 100644
index 0000000..27e4ed3
--- /dev/null
+++ b/Wrappers/Python/test/test_regularizers.py
@@ -0,0 +1,412 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Fri Aug 4 11:10:05 2017
+
+@author: ofn77899
+"""
+
+#from ccpi.viewer.CILViewer2D import Converter
+#import vtk
+
+import matplotlib.pyplot as plt
+import numpy as np
+import os
+from enum import Enum
+import timeit
+#from PIL import Image
+#from Regularizer import Regularizer
+from ccpi.imaging.Regularizer import Regularizer
+
+###############################################################################
+#https://stackoverflow.com/questions/13875989/comparing-image-in-url-to-image-in-filesystem-in-python/13884956#13884956
+#NRMSE a normalization of the root of the mean squared error
+#NRMSE is simply 1 - [RMSE / (maxval - minval)]. Where maxval is the maximum
+# intensity from the two images being compared, and respectively the same for
+# minval. RMSE is given by the square root of MSE:
+# sqrt[(sum(A - B) ** 2) / |A|],
+# where |A| means the number of elements in A. By doing this, the maximum value
+# given by RMSE is maxval.
+
+def nrmse(im1, im2):
+ a, b = im1.shape
+ rmse = np.sqrt(np.sum((im2 - im1) ** 2) / float(a * b))
+ max_val = max(np.max(im1), np.max(im2))
+ min_val = min(np.min(im1), np.min(im2))
+ return 1 - (rmse / (max_val - min_val))
+###############################################################################
+
+###############################################################################
+#
+# 2D Regularizers
+#
+###############################################################################
+#Example:
+# figure;
+# Im = double(imread('lena_gray_256.tif'))/255; % loading image
+# u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
+# u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+
+
+#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\lena_gray_512.tif"
+filename = r"/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/data/lena_gray_512.tif"
+#filename = r'/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif'
+
+#reader = vtk.vtkTIFFReader()
+#reader.SetFileName(os.path.normpath(filename))
+#reader.Update()
+Im = plt.imread(filename)
+#Im = Image.open('/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif')/255
+#img.show()
+Im = np.asarray(Im, dtype='float32')
+
+
+
+
+#imgplot = plt.imshow(Im)
+perc = 0.05
+u0 = Im + (perc* np.random.normal(size=np.shape(Im)))
+# map the u0 u0->u0>0
+f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
+u0 = f(u0).astype('float32')
+
+## plot
+fig = plt.figure()
+#a=fig.add_subplot(3,3,1)
+#a.set_title('Original')
+#imgplot = plt.imshow(Im)
+
+a=fig.add_subplot(2,3,1)
+a.set_title('noise')
+imgplot = plt.imshow(u0,cmap="gray")
+
+reg_output = []
+##############################################################################
+# Call regularizer
+
+####################### SplitBregman_TV #####################################
+# u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+
+use_object = True
+if use_object:
+ reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV)
+ print (reg.pars)
+ reg.setParameter(input=u0)
+ reg.setParameter(regularization_parameter=10.)
+ # or
+ # reg.setParameter(input=u0, regularization_parameter=10., #number_of_iterations=30,
+ #tolerance_constant=1e-4,
+ #TV_Penalty=Regularizer.TotalVariationPenalty.l1)
+ plotme = reg() [0]
+ pars = reg.pars
+ textstr = reg.printParametersToString()
+
+ #out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30,
+ #tolerance_constant=1e-4,
+ # TV_Penalty=Regularizer.TotalVariationPenalty.l1)
+
+#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30,
+# tolerance_constant=1e-4,
+# TV_Penalty=Regularizer.TotalVariationPenalty.l1)
+
+else:
+ out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10. )
+ pars = out2[2]
+ reg_output.append(out2)
+ plotme = reg_output[-1][0]
+ textstr = out2[-1]
+
+a=fig.add_subplot(2,3,2)
+
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(plotme,cmap="gray")
+
+###################### FGP_TV #########################################
+# u = FGP_TV(single(u0), 0.05, 100, 1e-04);
+out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.0005,
+ number_of_iterations=50)
+pars = out2[-2]
+
+reg_output.append(out2)
+
+a=fig.add_subplot(2,3,3)
+
+textstr = out2[-1]
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(reg_output[-1][0])
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(reg_output[-1][0],cmap="gray")
+
+###################### LLT_model #########################################
+# * u0 = Im + .03*randn(size(Im)); % adding noise
+# [Den] = LLT_model(single(u0), 10, 0.1, 1);
+#Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0);
+#input, regularization_parameter , time_step, number_of_iterations,
+# tolerance_constant, restrictive_Z_smoothing=0
+out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25,
+ time_step=0.0003,
+ tolerance_constant=0.0001,
+ number_of_iterations=300)
+pars = out2[-2]
+
+reg_output.append(out2)
+
+a=fig.add_subplot(2,3,4)
+
+textstr = out2[-1]
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(reg_output[-1][0],cmap="gray")
+
+
+# ###################### PatchBased_Regul #########################################
+# # Quick 2D denoising example in Matlab:
+# # Im = double(imread('lena_gray_256.tif'))/255; % loading image
+# # u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+# # ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05);
+
+out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05,
+ searching_window_ratio=3,
+ similarity_window_ratio=1,
+ PB_filtering_parameter=0.08)
+pars = out2[-2]
+reg_output.append(out2)
+
+a=fig.add_subplot(2,3,5)
+
+
+textstr = out2[-1]
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(reg_output[-1][0],cmap="gray")
+
+
+# ###################### TGV_PD #########################################
+# # Quick 2D denoising example in Matlab:
+# # Im = double(imread('lena_gray_256.tif'))/255; % loading image
+# # u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+# # u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550);
+
+
+out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05,
+ first_order_term=1.3,
+ second_order_term=1,
+ number_of_iterations=550)
+pars = out2[-2]
+reg_output.append(out2)
+
+a=fig.add_subplot(2,3,6)
+
+
+textstr = out2[-1]
+
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(reg_output[-1][0],cmap="gray")
+
+
+plt.show()
+
+################################################################################
+##
+## 3D Regularizers
+##
+################################################################################
+##Example:
+## figure;
+## Im = double(imread('lena_gray_256.tif'))/255; % loading image
+## u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
+## u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+#
+##filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Reconstruction\python\test\reconstruction_example.mha"
+#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Simpleflex\data\head.mha"
+#
+#reader = vtk.vtkMetaImageReader()
+#reader.SetFileName(os.path.normpath(filename))
+#reader.Update()
+##vtk returns 3D images, let's take just the one slice there is as 2D
+#Im = Converter.vtk2numpy(reader.GetOutput())
+#Im = Im.astype('float32')
+##imgplot = plt.imshow(Im)
+#perc = 0.05
+#u0 = Im + (perc* np.random.normal(size=np.shape(Im)))
+## map the u0 u0->u0>0
+#f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
+#u0 = f(u0).astype('float32')
+#converter = Converter.numpy2vtkImporter(u0, reader.GetOutput().GetSpacing(),
+# reader.GetOutput().GetOrigin())
+#converter.Update()
+#writer = vtk.vtkMetaImageWriter()
+#writer.SetInputData(converter.GetOutput())
+#writer.SetFileName(r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\noisy_head.mha")
+##writer.Write()
+#
+#
+### plot
+#fig3D = plt.figure()
+##a=fig.add_subplot(3,3,1)
+##a.set_title('Original')
+##imgplot = plt.imshow(Im)
+#sliceNo = 32
+#
+#a=fig3D.add_subplot(2,3,1)
+#a.set_title('noise')
+#imgplot = plt.imshow(u0.T[sliceNo])
+#
+#reg_output3d = []
+#
+###############################################################################
+## Call regularizer
+#
+######################## SplitBregman_TV #####################################
+## u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+#
+##reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV)
+#
+##out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30,
+## #tolerance_constant=1e-4,
+## TV_Penalty=Regularizer.TotalVariationPenalty.l1)
+#
+#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30,
+# tolerance_constant=1e-4,
+# TV_Penalty=Regularizer.TotalVariationPenalty.l1)
+#
+#
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+# verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
+#
+####################### FGP_TV #########################################
+## u = FGP_TV(single(u0), 0.05, 100, 1e-04);
+#out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.005,
+# number_of_iterations=200)
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+# verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
+#
+####################### LLT_model #########################################
+## * u0 = Im + .03*randn(size(Im)); % adding noise
+## [Den] = LLT_model(single(u0), 10, 0.1, 1);
+##Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0);
+##input, regularization_parameter , time_step, number_of_iterations,
+## tolerance_constant, restrictive_Z_smoothing=0
+#out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25,
+# time_step=0.0003,
+# tolerance_constant=0.0001,
+# number_of_iterations=300)
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+# verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
+#
+####################### PatchBased_Regul #########################################
+## Quick 2D denoising example in Matlab:
+## Im = double(imread('lena_gray_256.tif'))/255; % loading image
+## u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+## ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05);
+#
+#out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05,
+# searching_window_ratio=3,
+# similarity_window_ratio=1,
+# PB_filtering_parameter=0.08)
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+# verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
+#
+
+###################### TGV_PD #########################################
+# Quick 2D denoising example in Matlab:
+# Im = double(imread('lena_gray_256.tif'))/255; % loading image
+# u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+# u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550);
+
+
+#out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05,
+# first_order_term=1.3,
+# second_order_term=1,
+# number_of_iterations=550)
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+# verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
diff --git a/Wrappers/Python/test/test_regularizers_3d.py b/Wrappers/Python/test/test_regularizers_3d.py
new file mode 100644
index 0000000..2d11a7e
--- /dev/null
+++ b/Wrappers/Python/test/test_regularizers_3d.py
@@ -0,0 +1,425 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Fri Aug 4 11:10:05 2017
+
+@author: ofn77899
+"""
+
+#from ccpi.viewer.CILViewer2D import Converter
+#import vtk
+
+import matplotlib.pyplot as plt
+import numpy as np
+import os
+from enum import Enum
+import timeit
+#from PIL import Image
+#from Regularizer import Regularizer
+from ccpi.imaging.Regularizer import Regularizer
+
+###############################################################################
+#https://stackoverflow.com/questions/13875989/comparing-image-in-url-to-image-in-filesystem-in-python/13884956#13884956
+#NRMSE a normalization of the root of the mean squared error
+#NRMSE is simply 1 - [RMSE / (maxval - minval)]. Where maxval is the maximum
+# intensity from the two images being compared, and respectively the same for
+# minval. RMSE is given by the square root of MSE:
+# sqrt[(sum(A - B) ** 2) / |A|],
+# where |A| means the number of elements in A. By doing this, the maximum value
+# given by RMSE is maxval.
+
+def nrmse(im1, im2):
+ a, b = im1.shape
+ rmse = np.sqrt(np.sum((im2 - im1) ** 2) / float(a * b))
+ max_val = max(np.max(im1), np.max(im2))
+ min_val = min(np.min(im1), np.min(im2))
+ return 1 - (rmse / (max_val - min_val))
+###############################################################################
+
+###############################################################################
+#
+# 2D Regularizers
+#
+###############################################################################
+#Example:
+# figure;
+# Im = double(imread('lena_gray_256.tif'))/255; % loading image
+# u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
+# u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+
+
+#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\lena_gray_512.tif"
+filename = r"/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/data/lena_gray_512.tif"
+#filename = r'/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif'
+
+#reader = vtk.vtkTIFFReader()
+#reader.SetFileName(os.path.normpath(filename))
+#reader.Update()
+Im = plt.imread(filename)
+#Im = Image.open('/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif')/255
+#img.show()
+Im = np.asarray(Im, dtype='float32')
+
+# create a 3D image by stacking N of this images
+
+
+#imgplot = plt.imshow(Im)
+perc = 0.05
+u_n = Im + (perc* np.random.normal(size=np.shape(Im)))
+y,z = np.shape(u_n)
+u_n = np.reshape(u_n , (1,y,z))
+
+u0 = u_n.copy()
+for i in range (19):
+ u_n = Im + (perc* np.random.normal(size=np.shape(Im)))
+ u_n = np.reshape(u_n , (1,y,z))
+
+ u0 = np.vstack ( (u0, u_n) )
+
+# map the u0 u0->u0>0
+f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
+u0 = f(u0).astype('float32')
+
+print ("Passed image shape {0}".format(np.shape(u0)))
+
+## plot
+fig = plt.figure()
+#a=fig.add_subplot(3,3,1)
+#a.set_title('Original')
+#imgplot = plt.imshow(Im)
+sliceno = 10
+
+a=fig.add_subplot(2,3,1)
+a.set_title('noise')
+imgplot = plt.imshow(u0[sliceno],cmap="gray")
+
+reg_output = []
+##############################################################################
+# Call regularizer
+
+####################### SplitBregman_TV #####################################
+# u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+
+use_object = True
+if use_object:
+ reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV)
+ print (reg.pars)
+ reg.setParameter(input=u0)
+ reg.setParameter(regularization_parameter=10.)
+ # or
+ # reg.setParameter(input=u0, regularization_parameter=10., #number_of_iterations=30,
+ #tolerance_constant=1e-4,
+ #TV_Penalty=Regularizer.TotalVariationPenalty.l1)
+ plotme = reg() [0]
+ pars = reg.pars
+ textstr = reg.printParametersToString()
+
+ #out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30,
+ #tolerance_constant=1e-4,
+ # TV_Penalty=Regularizer.TotalVariationPenalty.l1)
+
+#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30,
+# tolerance_constant=1e-4,
+# TV_Penalty=Regularizer.TotalVariationPenalty.l1)
+
+else:
+ out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10. )
+ pars = out2[2]
+ reg_output.append(out2)
+ plotme = reg_output[-1][0]
+ textstr = out2[-1]
+
+a=fig.add_subplot(2,3,2)
+
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(plotme[sliceno],cmap="gray")
+
+###################### FGP_TV #########################################
+# u = FGP_TV(single(u0), 0.05, 100, 1e-04);
+out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.0005,
+ number_of_iterations=50)
+pars = out2[-2]
+
+reg_output.append(out2)
+
+a=fig.add_subplot(2,3,3)
+
+textstr = out2[-1]
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(reg_output[-1][0][sliceno])
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(reg_output[-1][0][sliceno],cmap="gray")
+
+###################### LLT_model #########################################
+# * u0 = Im + .03*randn(size(Im)); % adding noise
+# [Den] = LLT_model(single(u0), 10, 0.1, 1);
+#Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0);
+#input, regularization_parameter , time_step, number_of_iterations,
+# tolerance_constant, restrictive_Z_smoothing=0
+out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25,
+ time_step=0.0003,
+ tolerance_constant=0.0001,
+ number_of_iterations=300)
+pars = out2[-2]
+
+reg_output.append(out2)
+
+a=fig.add_subplot(2,3,4)
+
+textstr = out2[-1]
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(reg_output[-1][0][sliceno],cmap="gray")
+
+
+# ###################### PatchBased_Regul #########################################
+# # Quick 2D denoising example in Matlab:
+# # Im = double(imread('lena_gray_256.tif'))/255; % loading image
+# # u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+# # ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05);
+
+out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05,
+ searching_window_ratio=3,
+ similarity_window_ratio=1,
+ PB_filtering_parameter=0.08)
+pars = out2[-2]
+reg_output.append(out2)
+
+a=fig.add_subplot(2,3,5)
+
+
+textstr = out2[-1]
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(reg_output[-1][0][sliceno],cmap="gray")
+
+
+# ###################### TGV_PD #########################################
+# # Quick 2D denoising example in Matlab:
+# # Im = double(imread('lena_gray_256.tif'))/255; % loading image
+# # u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+# # u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550);
+
+
+out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05,
+ first_order_term=1.3,
+ second_order_term=1,
+ number_of_iterations=550)
+pars = out2[-2]
+reg_output.append(out2)
+
+a=fig.add_subplot(2,3,6)
+
+
+textstr = out2[-1]
+
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(reg_output[-1][0][sliceno],cmap="gray")
+
+
+plt.show()
+
+################################################################################
+##
+## 3D Regularizers
+##
+################################################################################
+##Example:
+## figure;
+## Im = double(imread('lena_gray_256.tif'))/255; % loading image
+## u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
+## u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+#
+##filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Reconstruction\python\test\reconstruction_example.mha"
+#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Simpleflex\data\head.mha"
+#
+#reader = vtk.vtkMetaImageReader()
+#reader.SetFileName(os.path.normpath(filename))
+#reader.Update()
+##vtk returns 3D images, let's take just the one slice there is as 2D
+#Im = Converter.vtk2numpy(reader.GetOutput())
+#Im = Im.astype('float32')
+##imgplot = plt.imshow(Im)
+#perc = 0.05
+#u0 = Im + (perc* np.random.normal(size=np.shape(Im)))
+## map the u0 u0->u0>0
+#f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
+#u0 = f(u0).astype('float32')
+#converter = Converter.numpy2vtkImporter(u0, reader.GetOutput().GetSpacing(),
+# reader.GetOutput().GetOrigin())
+#converter.Update()
+#writer = vtk.vtkMetaImageWriter()
+#writer.SetInputData(converter.GetOutput())
+#writer.SetFileName(r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\noisy_head.mha")
+##writer.Write()
+#
+#
+### plot
+#fig3D = plt.figure()
+##a=fig.add_subplot(3,3,1)
+##a.set_title('Original')
+##imgplot = plt.imshow(Im)
+#sliceNo = 32
+#
+#a=fig3D.add_subplot(2,3,1)
+#a.set_title('noise')
+#imgplot = plt.imshow(u0.T[sliceNo])
+#
+#reg_output3d = []
+#
+###############################################################################
+## Call regularizer
+#
+######################## SplitBregman_TV #####################################
+## u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+#
+##reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV)
+#
+##out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30,
+## #tolerance_constant=1e-4,
+## TV_Penalty=Regularizer.TotalVariationPenalty.l1)
+#
+#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30,
+# tolerance_constant=1e-4,
+# TV_Penalty=Regularizer.TotalVariationPenalty.l1)
+#
+#
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+# verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
+#
+####################### FGP_TV #########################################
+## u = FGP_TV(single(u0), 0.05, 100, 1e-04);
+#out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.005,
+# number_of_iterations=200)
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+# verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
+#
+####################### LLT_model #########################################
+## * u0 = Im + .03*randn(size(Im)); % adding noise
+## [Den] = LLT_model(single(u0), 10, 0.1, 1);
+##Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0);
+##input, regularization_parameter , time_step, number_of_iterations,
+## tolerance_constant, restrictive_Z_smoothing=0
+#out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25,
+# time_step=0.0003,
+# tolerance_constant=0.0001,
+# number_of_iterations=300)
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+# verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
+#
+####################### PatchBased_Regul #########################################
+## Quick 2D denoising example in Matlab:
+## Im = double(imread('lena_gray_256.tif'))/255; % loading image
+## u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+## ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05);
+#
+#out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05,
+# searching_window_ratio=3,
+# similarity_window_ratio=1,
+# PB_filtering_parameter=0.08)
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+# verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
+#
+
+###################### TGV_PD #########################################
+# Quick 2D denoising example in Matlab:
+# Im = double(imread('lena_gray_256.tif'))/255; % loading image
+# u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+# u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550);
+
+
+#out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05,
+# first_order_term=1.3,
+# second_order_term=1,
+# number_of_iterations=550)
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+# verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
diff --git a/Wrappers/Python/test/view_result.py b/Wrappers/Python/test/view_result.py
new file mode 100644
index 0000000..f89a90c
--- /dev/null
+++ b/Wrappers/Python/test/view_result.py
@@ -0,0 +1,12 @@
+import numpy
+from ccpi.viewer.CILViewer2D import *
+import sys
+#reader = vtk.vtkMetaImageReader()
+#reader.SetFileName("X_out_os_s.mhd")
+#reader.Update()
+
+X = numpy.load(sys.argv[1])
+
+v = CILViewer2D()
+v.setInputAsNumpy(X)
+v.startRenderLoop()