diff options
| author | Daniil Kazantsev <dkazanc3@googlemail.com> | 2019-02-18 14:51:50 +0000 | 
|---|---|---|
| committer | GitHub <noreply@github.com> | 2019-02-18 14:51:50 +0000 | 
| commit | 18aa759ad4f7052498987b98f5f1fff9207c217d (patch) | |
| tree | 8efbe1fd00a9ee8ece117e753651abd2f77afd66 /Wrappers/Python | |
| parent | 1942bbd0dca7eb37a85c7c40641643b1e1e51276 (diff) | |
| parent | 787b534643d5b4cad4e6f8d9c4b524b52d804348 (diff) | |
| download | regularization-18aa759ad4f7052498987b98f5f1fff9207c217d.tar.gz regularization-18aa759ad4f7052498987b98f5f1fff9207c217d.tar.bz2 regularization-18aa759ad4f7052498987b98f5f1fff9207c217d.tar.xz regularization-18aa759ad4f7052498987b98f5f1fff9207c217d.zip  | |
Merge pull request #98 from vais-ral/TGV3D
TGV 3D CPU/GPU
Diffstat (limited to 'Wrappers/Python')
| -rwxr-xr-x | Wrappers/Python/conda-recipe/run_test.py | 2 | ||||
| -rw-r--r-- | Wrappers/Python/demos/demo_cpu_regularisers.py | 4 | ||||
| -rw-r--r-- | Wrappers/Python/demos/demo_cpu_regularisers3D.py | 54 | ||||
| -rw-r--r-- | Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py | 4 | ||||
| -rw-r--r-- | Wrappers/Python/demos/demo_gpu_regularisers.py | 4 | ||||
| -rw-r--r-- | Wrappers/Python/demos/demo_gpu_regularisers3D.py | 51 | ||||
| -rw-r--r-- | Wrappers/Python/src/cpu_regularisers.pyx | 35 | ||||
| -rw-r--r-- | Wrappers/Python/src/gpu_regularisers.pyx | 39 | 
8 files changed, 164 insertions, 29 deletions
diff --git a/Wrappers/Python/conda-recipe/run_test.py b/Wrappers/Python/conda-recipe/run_test.py index 37b9dcc..21f3216 100755 --- a/Wrappers/Python/conda-recipe/run_test.py +++ b/Wrappers/Python/conda-recipe/run_test.py @@ -303,7 +303,7 @@ class TestRegularisers(unittest.TestCase):                  'input' : u0,\
                  'regularisation_parameter':0.04, \
                  'alpha1':1.0,\
 -                'alpha0':0.7,\
 +                'alpha0':2.0,\
                  'number_of_iterations' :250 ,\
                  'LipshitzConstant' :12 ,\
                  }
 diff --git a/Wrappers/Python/demos/demo_cpu_regularisers.py b/Wrappers/Python/demos/demo_cpu_regularisers.py index 859b633..e6befa9 100644 --- a/Wrappers/Python/demos/demo_cpu_regularisers.py +++ b/Wrappers/Python/demos/demo_cpu_regularisers.py @@ -225,8 +225,8 @@ pars = {'algorithm' : TGV, \          'input' : u0,\          'regularisation_parameter':0.04, \          'alpha1':1.0,\ -        'alpha0':0.7,\ -        'number_of_iterations' :250 ,\ +        'alpha0':2.0,\ +        'number_of_iterations' :1350 ,\          'LipshitzConstant' :12 ,\          } diff --git a/Wrappers/Python/demos/demo_cpu_regularisers3D.py b/Wrappers/Python/demos/demo_cpu_regularisers3D.py index c42c37b..2d2fc22 100644 --- a/Wrappers/Python/demos/demo_cpu_regularisers3D.py +++ b/Wrappers/Python/demos/demo_cpu_regularisers3D.py @@ -12,7 +12,7 @@ import matplotlib.pyplot as plt  import numpy as np  import os  import timeit -from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, LLT_ROF, FGP_dTV, NDF, Diff4th +from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, NDF, Diff4th  from qualitymetrics import rmse  ###############################################################################  def printParametersToString(pars): @@ -68,7 +68,7 @@ Im2[:,0:M] = Im[:,0:M]  Im = Im2  del Im2  """ -slices = 20 +slices = 15  noisyVol = np.zeros((slices,N,M),dtype='float32')  noisyRef = np.zeros((slices,N,M),dtype='float32') @@ -96,7 +96,7 @@ pars = {'algorithm': ROF_TV, \          'input' : noisyVol,\          'regularisation_parameter':0.04,\          'number_of_iterations': 500,\ -        'time_marching_parameter': 0.0025         +        'time_marching_parameter': 0.0025          }  print ("#############ROF TV CPU####################")  start_time = timeit.default_timer() @@ -264,6 +264,54 @@ plt.title('{}'.format('Recovered volume on the CPU using LLT-ROF'))  #%%  print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("_______________TGV (3D)_________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot  +fig = plt.figure() +plt.suptitle('Performance of TGV regulariser using the CPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") + +# set parameters +pars = {'algorithm' : TGV, \ +        'input' : noisyVol,\ +        'regularisation_parameter':0.04, \ +        'alpha1':1.0,\ +        'alpha0':2.0,\ +        'number_of_iterations' :250 ,\ +        'LipshitzConstant' :12 ,\ +        } + +print ("#############TGV CPU####################") +start_time = timeit.default_timer() +tgv_cpu3D = TGV(pars['input'],  +              pars['regularisation_parameter'], +              pars['alpha1'], +              pars['alpha0'], +              pars['number_of_iterations'], +              pars['LipshitzConstant'],'cpu') +              + +rms = rmse(idealVol, tgv_cpu3D) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, +         verticalalignment='top', bbox=props) +imgplot = plt.imshow(tgv_cpu3D[10,:,:], cmap="gray") +plt.title('{}'.format('Recovered volume on the CPU using TGV')) + +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")  print ("________________NDF (3D)___________________")  print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") diff --git a/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py b/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py index 275e844..230a761 100644 --- a/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py +++ b/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py @@ -323,8 +323,8 @@ pars = {'algorithm' : TGV, \          'input' : u0,\          'regularisation_parameter':0.04, \          'alpha1':1.0,\ -        'alpha0':0.7,\ -        'number_of_iterations' :250 ,\ +        'alpha0':2.0,\ +        'number_of_iterations' :400 ,\          'LipshitzConstant' :12 ,\          } diff --git a/Wrappers/Python/demos/demo_gpu_regularisers.py b/Wrappers/Python/demos/demo_gpu_regularisers.py index 9115494..e1c6575 100644 --- a/Wrappers/Python/demos/demo_gpu_regularisers.py +++ b/Wrappers/Python/demos/demo_gpu_regularisers.py @@ -223,8 +223,8 @@ pars = {'algorithm' : TGV, \          'input' : u0,\          'regularisation_parameter':0.04, \          'alpha1':1.0,\ -        'alpha0':0.7,\ -        'number_of_iterations' :250 ,\ +        'alpha0':2.0,\ +        'number_of_iterations' :1250 ,\          'LipshitzConstant' :12 ,\          } diff --git a/Wrappers/Python/demos/demo_gpu_regularisers3D.py b/Wrappers/Python/demos/demo_gpu_regularisers3D.py index cda2847..b6058d2 100644 --- a/Wrappers/Python/demos/demo_gpu_regularisers3D.py +++ b/Wrappers/Python/demos/demo_gpu_regularisers3D.py @@ -12,7 +12,7 @@ import matplotlib.pyplot as plt  import numpy as np  import os  import timeit -from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, LLT_ROF, FGP_dTV, NDF, Diff4th +from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, NDF, Diff4th  from qualitymetrics import rmse  ###############################################################################  def printParametersToString(pars): @@ -67,7 +67,7 @@ Im = Im2  del Im2  """ -#%% +  slices = 20  filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif") @@ -268,6 +268,53 @@ plt.title('{}'.format('Recovered volume on the GPU using LLT-ROF'))  #%%  print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("_______________TGV (3D)_________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot  +fig = plt.figure() +plt.suptitle('Performance of TGV regulariser using the GPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") + +# set parameters +pars = {'algorithm' : TGV, \ +        'input' : noisyVol,\ +        'regularisation_parameter':0.04, \ +        'alpha1':1.0,\ +        'alpha0':2.0,\ +        'number_of_iterations' :600 ,\ +        'LipshitzConstant' :12 ,\ +        } + +print ("#############TGV GPU####################") +start_time = timeit.default_timer() +tgv_gpu3D = TGV(pars['input'],  +              pars['regularisation_parameter'], +              pars['alpha1'], +              pars['alpha0'], +              pars['number_of_iterations'], +              pars['LipshitzConstant'],'gpu') +              + +rms = rmse(idealVol, tgv_gpu3D) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, +         verticalalignment='top', bbox=props) +imgplot = plt.imshow(tgv_gpu3D[10,:,:], cmap="gray") +plt.title('{}'.format('Recovered volume on the GPU using TGV')) +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")  print ("_______________NDF-TV (3D)_________________")  print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") diff --git a/Wrappers/Python/src/cpu_regularisers.pyx b/Wrappers/Python/src/cpu_regularisers.pyx index 7d57ed1..11a0617 100644 --- a/Wrappers/Python/src/cpu_regularisers.pyx +++ b/Wrappers/Python/src/cpu_regularisers.pyx @@ -22,7 +22,7 @@ cdef extern float TV_ROF_CPU_main(float *Input, float *Output, float lambdaPar,  cdef extern float TV_FGP_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ);  cdef extern float SB_TV_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int printM, int dimX, int dimY, int dimZ);  cdef extern float LLT_ROF_CPU_main(float *Input, float *Output, float lambdaROF, float lambdaLLT, int iterationsNumb, float tau, int dimX, int dimY, int dimZ); -cdef extern float TGV_main(float *Input, float *Output, float lambdaPar, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY); +cdef extern float TGV_main(float *Input, float *Output, float lambdaPar, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY, int dimZ);  cdef extern float Diffusion_CPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int dimX, int dimY, int dimZ);  cdef extern float Diffus4th_CPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int dimX, int dimY, int dimZ);  cdef extern float TNV_CPU_main(float *Input, float *u, float lambdaPar, int maxIter, float tol, int dimX, int dimY, int dimZ); @@ -202,12 +202,8 @@ def TGV_CPU(inputData, regularisation_parameter, alpha1, alpha0, iterations, Lip          return TGV_2D(inputData, regularisation_parameter, alpha1, alpha0,                         iterations, LipshitzConst)      elif inputData.ndim == 3: -        shape = inputData.shape -        out = inputData.copy() -        for i in range(shape[0]): -            out[i,:,:] = TGV_2D(inputData[i,:,:], regularisation_parameter,  -               alpha1, alpha0, iterations, LipshitzConst) -        return out +        return TGV_3D(inputData, regularisation_parameter, alpha1, alpha0,  +                      iterations, LipshitzConst)  def TGV_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,                        float regularisation_parameter, @@ -229,7 +225,30 @@ def TGV_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,                         alpha0,                         iterationsNumb,                          LipshitzConst, -                       dims[1],dims[0])                            +                       dims[1],dims[0],1) +    return outputData +def TGV_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,  +                     float regularisation_parameter, +                     float alpha1, +                     float alpha0, +                     int iterationsNumb,  +                     float LipshitzConst): +                          +    cdef long dims[3] +    dims[0] = inputData.shape[0] +    dims[1] = inputData.shape[1] +    dims[2] = inputData.shape[2] +     +    cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \ +            np.zeros([dims[0], dims[1], dims[2]], dtype='float32') +                    +    #/* Run TGV iterations for 3D data */ +    TGV_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter,  +                       alpha1, +                       alpha0, +                       iterationsNumb,  +                       LipshitzConst, +                       dims[2], dims[1], dims[0])      return outputData  #***************************************************************# diff --git a/Wrappers/Python/src/gpu_regularisers.pyx b/Wrappers/Python/src/gpu_regularisers.pyx index 47a6149..b52f669 100644 --- a/Wrappers/Python/src/gpu_regularisers.pyx +++ b/Wrappers/Python/src/gpu_regularisers.pyx @@ -23,7 +23,7 @@ CUDAErrorMessage = 'CUDA error'  cdef extern int TV_ROF_GPU_main(float* Input, float* Output, float lambdaPar, int iter, float tau, int N, int M, int Z);  cdef extern int TV_FGP_GPU_main(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int nonneg, int printM, int N, int M, int Z);  cdef extern int TV_SB_GPU_main(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int printM, int N, int M, int Z); -cdef extern int TGV_GPU_main(float *Input, float *Output, float lambdaPar, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY); +cdef extern int TGV_GPU_main(float *Input, float *Output, float lambdaPar, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY, int dimZ);  cdef extern int LLT_ROF_GPU_main(float *Input, float *Output, float lambdaROF, float lambdaLLT, int iterationsNumb, float tau, int N, int M, int Z);  cdef extern int NonlDiff_GPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int N, int M, int Z);  cdef extern int dTV_FGP_GPU_main(float *Input, float *InputRef, float *Output, float lambdaPar, int iterationsNumb, float epsil, float eta, int methodTV, int nonneg, int printM, int N, int M, int Z); @@ -102,12 +102,7 @@ def TGV_GPU(inputData, regularisation_parameter, alpha1, alpha0, iterations, Lip      if inputData.ndim == 2:          return TGV2D(inputData, regularisation_parameter, alpha1, alpha0, iterations, LipshitzConst)      elif inputData.ndim == 3: -        shape = inputData.shape -        out = inputData.copy() -        for i in range(shape[0]): -            out[i,:,:] = TGV2D(inputData[i,:,:], regularisation_parameter,  -               alpha1, alpha0, iterations, LipshitzConst) -        return out +        return TGV3D(inputData, regularisation_parameter, alpha1, alpha0, iterations, LipshitzConst)  # Directional Total-variation Fast-Gradient-Projection (FGP)  def dTV_FGP_GPU(inputData,                       refdata, @@ -393,7 +388,6 @@ def LLT_ROF_GPU3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,          raise ValueError(CUDAErrorMessage); -  #***************************************************************#  #***************** Total Generalised Variation *****************#  #***************************************************************# @@ -417,11 +411,38 @@ def TGV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,                         alpha0,                         iterationsNumb,                          LipshitzConst, -                       dims[1],dims[0])==0): +                       dims[1],dims[0], 1)==0):          return outputData      else:          raise ValueError(CUDAErrorMessage); +def TGV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,  +                     float regularisation_parameter, +                     float alpha1, +                     float alpha0, +                     int iterationsNumb,  +                     float LipshitzConst): +     +    cdef long dims[3] +    dims[0] = inputData.shape[0] +    dims[1] = inputData.shape[1] +    dims[2] = inputData.shape[2] + +    cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \ +		    np.zeros([dims[0],dims[1],dims[2]], dtype='float32') +           +    # Running CUDA code here     +    if (TGV_GPU_main( +            &inputData[0,0,0], &outputData[0,0,0], regularisation_parameter, +                       alpha1, +                       alpha0, +                       iterationsNumb,  +                       LipshitzConst, +                       dims[2], dims[1], dims[0])==0): +        return outputData; +    else: +        raise ValueError(CUDAErrorMessage); +  #****************************************************************#  #**************Directional Total-variation FGP ******************#  | 
