summaryrefslogtreecommitdiffstats
path: root/Wrappers/Python
diff options
context:
space:
mode:
authorTomas Kulhanek <tomas.kulhanek@stfc.ac.uk>2019-02-21 02:10:14 -0500
committerTomas Kulhanek <tomas.kulhanek@stfc.ac.uk>2019-02-21 02:10:14 -0500
commit3caa686662f7d937cf7eb852dde437cd66e79a6e (patch)
tree76088f5924ff9278e0a37140fce888cd89b84a7e /Wrappers/Python
parent8f2e86726669b9dadb3c788e0ea681d397a2eeb7 (diff)
downloadregularization-3caa686662f7d937cf7eb852dde437cd66e79a6e.tar.gz
regularization-3caa686662f7d937cf7eb852dde437cd66e79a6e.tar.bz2
regularization-3caa686662f7d937cf7eb852dde437cd66e79a6e.tar.xz
regularization-3caa686662f7d937cf7eb852dde437cd66e79a6e.zip
restructured sources
Diffstat (limited to 'Wrappers/Python')
-rw-r--r--Wrappers/Python/CMakeLists.txt141
-rw-r--r--Wrappers/Python/ccpi/__init__.py0
-rw-r--r--Wrappers/Python/ccpi/filters/__init__.py0
-rw-r--r--Wrappers/Python/ccpi/filters/regularisers.py214
-rw-r--r--Wrappers/Python/conda-recipe/bld.bat20
-rw-r--r--Wrappers/Python/conda-recipe/build.sh17
-rw-r--r--Wrappers/Python/conda-recipe/conda_build_config.yaml9
-rw-r--r--Wrappers/Python/conda-recipe/meta.yaml40
-rwxr-xr-xWrappers/Python/conda-recipe/run_test.py819
-rw-r--r--Wrappers/Python/demos/demo_cpu_inpainters.py192
-rw-r--r--Wrappers/Python/demos/demo_cpu_regularisers.py572
-rw-r--r--Wrappers/Python/demos/demo_cpu_regularisers3D.py458
-rw-r--r--Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py790
-rw-r--r--Wrappers/Python/demos/demo_gpu_regularisers.py518
-rw-r--r--Wrappers/Python/demos/demo_gpu_regularisers3D.py460
-rw-r--r--Wrappers/Python/demos/qualitymetrics.py18
-rw-r--r--Wrappers/Python/setup-regularisers.py.in75
-rw-r--r--Wrappers/Python/src/cpu_regularisers.pyx685
-rw-r--r--Wrappers/Python/src/gpu_regularisers.pyx640
19 files changed, 0 insertions, 5668 deletions
diff --git a/Wrappers/Python/CMakeLists.txt b/Wrappers/Python/CMakeLists.txt
deleted file mode 100644
index c2ef855..0000000
--- a/Wrappers/Python/CMakeLists.txt
+++ /dev/null
@@ -1,141 +0,0 @@
-# Copyright 2018 Edoardo Pasca
-cmake_minimum_required (VERSION 3.0)
-
-project(regulariserPython)
-#https://stackoverflow.com/questions/13298504/using-cmake-with-setup-py
-
-# The version number.
-
-#set (CIL_VERSION $ENV{CIL_VERSION} CACHE INTERNAL "Core Imaging Library version" FORCE)
-
-# conda orchestrated build
-message("CIL_VERSION: ${CIL_VERSION}")
-#include (GenerateExportHeader)
-
-find_package(PythonInterp REQUIRED)
-if (PYTHONINTERP_FOUND)
- message ("Current Python " ${PYTHON_VERSION_STRING} " found " ${PYTHON_EXECUTABLE})
-endif()
-
-
-## Build the regularisers package as a library
-message("Creating Regularisers as shared library")
-
-message("CMAKE_CXX_FLAGS ${CMAKE_CXX_FLAGS}")
-
-set(CMAKE_BUILD_TYPE "Release")
-
-if(WIN32)
- set (FLAGS "/DWIN32 /EHsc /openmp /DCCPiCore_EXPORTS")
- set (CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} /NODEFAULTLIB:MSVCRT.lib")
-
- set (EXTRA_LIBRARIES)
-
- message("library lib: ${LIBRARY_LIB}")
-
-elseif(UNIX)
- set (FLAGS "-fopenmp -O2 -funsigned-char -Wall -Wl,--no-undefined -DCCPiReconstructionIterative_EXPORTS -std=c++0x")
- set (EXTRA_LIBRARIES
- "gomp"
- )
-endif()
-
-# GPU regularisers
-if (BUILD_CUDA)
- find_package(CUDA)
- if (CUDA_FOUND)
- message("CUDA FOUND")
- set (SETUP_GPU_WRAPPERS "extra_libraries += ['cilregcuda']\n\
-setup( \n\
- name='ccpi', \n\
- description='CCPi Core Imaging Library - Image regularisers GPU',\n\
- version=cil_version,\n\
- cmdclass = {'build_ext': build_ext},\n\
- ext_modules = [Extension('ccpi.filters.gpu_regularisers',\n\
- sources=[ \n\
- os.path.join('.' , 'src', 'gpu_regularisers.pyx' ),\n\
- ],\n\
- include_dirs=extra_include_dirs, \n\
- library_dirs=extra_library_dirs, \n\
- extra_compile_args=extra_compile_args, \n\
- libraries=extra_libraries ), \n\
- ],\n\
- zip_safe = False, \n\
- packages = {'ccpi','ccpi.filters'},\n\
- )")
- else()
- message("CUDA NOT FOUND")
- set(SETUP_GPU_WRAPPERS "#CUDA NOT FOUND")
- endif()
-endif()
-configure_file("${CMAKE_CURRENT_SOURCE_DIR}/setup-regularisers.py.in" "${CMAKE_CURRENT_BINARY_DIR}/setup-regularisers.py")
-
-
-find_package(PythonInterp)
-find_package(PythonLibs)
-if (PYTHONINTERP_FOUND)
- message(STATUS "Found PYTHON_EXECUTABLE=${PYTHON_EXECUTABLE}")
- message(STATUS "Python version ${PYTHON_VERSION_STRING}")
-endif()
-if (PYTHONLIBS_FOUND)
- message(STATUS "Found PYTHON_INCLUDE_DIRS=${PYTHON_INCLUDE_DIRS}")
- message(STATUS "Found PYTHON_LIBRARIES=${PYTHON_LIBRARIES}")
-endif()
-
-if (PYTHONINTERP_FOUND)
- message("Python found " ${PYTHON_EXECUTABLE})
- set(SETUP_PY_IN "${CMAKE_CURRENT_SOURCE_DIR}/setup-regularisers.py.in")
- set(SETUP_PY "${CMAKE_CURRENT_BINARY_DIR}/setup-regularisers.py")
- #set(DEPS "${CMAKE_CURRENT_SOURCE_DIR}/module/__init__.py")
- set (DEPS "${CMAKE_BINARY_DIR}/Core/")
- set(OUTPUT "${CMAKE_CURRENT_BINARY_DIR}/build/timestamp")
-
- configure_file(${SETUP_PY_IN} ${SETUP_PY})
-
- message("Core binary dir " ${CMAKE_BINARY_DIR}/Core/${CMAKE_BUILD_TYPE})
-
- if (CONDA_BUILD)
- add_custom_command(OUTPUT ${OUTPUT}
- COMMAND ${CMAKE_COMMAND} -E copy_directory ${CMAKE_CURRENT_SOURCE_DIR}/src ${CMAKE_CURRENT_BINARY_DIR}/src
- COMMAND ${CMAKE_COMMAND} -E copy_directory ${CMAKE_CURRENT_SOURCE_DIR}/ccpi ${CMAKE_CURRENT_BINARY_DIR}/ccpi
- COMMAND ${CMAKE_COMMAND} -E env CIL_VERSION=${CIL_VERSION}
- PREFIX=${CMAKE_SOURCE_DIR}/Core
- LIBRARY_INC=${CMAKE_SOURCE_DIR}/Core
- LIBRARY_LIB=${CMAKE_BINARY_DIR}/Core
- ${PYTHON_EXECUTABLE} ${SETUP_PY} install
- COMMAND ${CMAKE_COMMAND} -E touch ${OUTPUT}
- DEPENDS cilreg)
-
- else()
- if (WIN32)
- add_custom_command(OUTPUT ${OUTPUT}
- COMMAND ${CMAKE_COMMAND} -E copy_directory ${CMAKE_CURRENT_SOURCE_DIR}/src ${CMAKE_CURRENT_BINARY_DIR}/src
- COMMAND ${CMAKE_COMMAND} -E copy_directory ${CMAKE_CURRENT_SOURCE_DIR}/ccpi ${CMAKE_CURRENT_BINARY_DIR}/ccpi
- COMMAND ${CMAKE_COMMAND} -E env CIL_VERSION=${CIL_VERSION}
- PREFIX=${CMAKE_SOURCE_DIR}/Core
- LIBRARY_INC=${CMAKE_SOURCE_DIR}/Core
- LIBRARY_LIB=${CMAKE_BINARY_DIR}/Core/${CMAKE_BUILD_TYPE}
- ${PYTHON_EXECUTABLE} ${SETUP_PY} build_ext --inplace
- COMMAND ${CMAKE_COMMAND} -E touch ${OUTPUT}
- DEPENDS cilreg)
- else()
- add_custom_command(OUTPUT ${OUTPUT}
- COMMAND ${CMAKE_COMMAND} -E copy_directory ${CMAKE_CURRENT_SOURCE_DIR}/src ${CMAKE_CURRENT_BINARY_DIR}/src
- COMMAND ${CMAKE_COMMAND} -E copy_directory ${CMAKE_CURRENT_SOURCE_DIR}/ccpi ${CMAKE_CURRENT_BINARY_DIR}/ccpi
- COMMAND ${CMAKE_COMMAND} -E env CIL_VERSION=${CIL_VERSION}
- PREFIX=${CMAKE_SOURCE_DIR}/Core
- LIBRARY_INC=${CMAKE_SOURCE_DIR}/Core
- LIBRARY_LIB=${CMAKE_BINARY_DIR}/Core
- ${PYTHON_EXECUTABLE} ${SETUP_PY} build_ext --inplace
- COMMAND ${CMAKE_COMMAND} -E touch ${OUTPUT}
- DEPENDS cilreg)
- endif()
- install(DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/ccpi
- DESTINATION ${PYTHON_DEST})
- endif()
-
-
- add_custom_target(PythonWrapper ALL DEPENDS ${OUTPUT})
-
- #install(CODE "execute_process(COMMAND ${PYTHON} ${SETUP_PY} install)")
-endif()
diff --git a/Wrappers/Python/ccpi/__init__.py b/Wrappers/Python/ccpi/__init__.py
deleted file mode 100644
index e69de29..0000000
--- a/Wrappers/Python/ccpi/__init__.py
+++ /dev/null
diff --git a/Wrappers/Python/ccpi/filters/__init__.py b/Wrappers/Python/ccpi/filters/__init__.py
deleted file mode 100644
index e69de29..0000000
--- a/Wrappers/Python/ccpi/filters/__init__.py
+++ /dev/null
diff --git a/Wrappers/Python/ccpi/filters/regularisers.py b/Wrappers/Python/ccpi/filters/regularisers.py
deleted file mode 100644
index 588ea32..0000000
--- a/Wrappers/Python/ccpi/filters/regularisers.py
+++ /dev/null
@@ -1,214 +0,0 @@
-"""
-script which assigns a proper device core function based on a flag ('cpu' or 'gpu')
-"""
-
-from ccpi.filters.cpu_regularisers import TV_ROF_CPU, TV_FGP_CPU, TV_SB_CPU, dTV_FGP_CPU, TNV_CPU, NDF_CPU, Diff4th_CPU, TGV_CPU, LLT_ROF_CPU, PATCHSEL_CPU, NLTV_CPU
-try:
- from ccpi.filters.gpu_regularisers import TV_ROF_GPU, TV_FGP_GPU, TV_SB_GPU, dTV_FGP_GPU, NDF_GPU, Diff4th_GPU, TGV_GPU, LLT_ROF_GPU, PATCHSEL_GPU
- gpu_enabled = True
-except ImportError:
- gpu_enabled = False
-from ccpi.filters.cpu_regularisers import NDF_INPAINT_CPU, NVM_INPAINT_CPU
-
-def ROF_TV(inputData, regularisation_parameter, iterations,
- time_marching_parameter,device='cpu'):
- if device == 'cpu':
- return TV_ROF_CPU(inputData,
- regularisation_parameter,
- iterations,
- time_marching_parameter)
- elif device == 'gpu' and gpu_enabled:
- return TV_ROF_GPU(inputData,
- regularisation_parameter,
- iterations,
- time_marching_parameter)
- else:
- if not gpu_enabled and device == 'gpu':
- raise ValueError ('GPU is not available')
- raise ValueError('Unknown device {0}. Expecting gpu or cpu'\
- .format(device))
-
-def FGP_TV(inputData, regularisation_parameter,iterations,
- tolerance_param, methodTV, nonneg, printM, device='cpu'):
- if device == 'cpu':
- return TV_FGP_CPU(inputData,
- regularisation_parameter,
- iterations,
- tolerance_param,
- methodTV,
- nonneg,
- printM)
- elif device == 'gpu' and gpu_enabled:
- return TV_FGP_GPU(inputData,
- regularisation_parameter,
- iterations,
- tolerance_param,
- methodTV,
- nonneg,
- printM)
- else:
- if not gpu_enabled and device == 'gpu':
- raise ValueError ('GPU is not available')
- raise ValueError('Unknown device {0}. Expecting gpu or cpu'\
- .format(device))
-def SB_TV(inputData, regularisation_parameter, iterations,
- tolerance_param, methodTV, printM, device='cpu'):
- if device == 'cpu':
- return TV_SB_CPU(inputData,
- regularisation_parameter,
- iterations,
- tolerance_param,
- methodTV,
- printM)
- elif device == 'gpu' and gpu_enabled:
- return TV_SB_GPU(inputData,
- regularisation_parameter,
- iterations,
- tolerance_param,
- methodTV,
- printM)
- else:
- if not gpu_enabled and device == 'gpu':
- raise ValueError ('GPU is not available')
- raise ValueError('Unknown device {0}. Expecting gpu or cpu'\
- .format(device))
-def FGP_dTV(inputData, refdata, regularisation_parameter, iterations,
- tolerance_param, eta_const, methodTV, nonneg, printM, device='cpu'):
- if device == 'cpu':
- return dTV_FGP_CPU(inputData,
- refdata,
- regularisation_parameter,
- iterations,
- tolerance_param,
- eta_const,
- methodTV,
- nonneg,
- printM)
- elif device == 'gpu' and gpu_enabled:
- return dTV_FGP_GPU(inputData,
- refdata,
- regularisation_parameter,
- iterations,
- tolerance_param,
- eta_const,
- methodTV,
- nonneg,
- printM)
- else:
- if not gpu_enabled and device == 'gpu':
- raise ValueError ('GPU is not available')
- raise ValueError('Unknown device {0}. Expecting gpu or cpu'\
- .format(device))
-def TNV(inputData, regularisation_parameter, iterations, tolerance_param):
- return TNV_CPU(inputData,
- regularisation_parameter,
- iterations,
- tolerance_param)
-def NDF(inputData, regularisation_parameter, edge_parameter, iterations,
- time_marching_parameter, penalty_type, device='cpu'):
- if device == 'cpu':
- return NDF_CPU(inputData,
- regularisation_parameter,
- edge_parameter,
- iterations,
- time_marching_parameter,
- penalty_type)
- elif device == 'gpu' and gpu_enabled:
- return NDF_GPU(inputData,
- regularisation_parameter,
- edge_parameter,
- iterations,
- time_marching_parameter,
- penalty_type)
- else:
- if not gpu_enabled and device == 'gpu':
- raise ValueError ('GPU is not available')
- raise ValueError('Unknown device {0}. Expecting gpu or cpu'\
- .format(device))
-def Diff4th(inputData, regularisation_parameter, edge_parameter, iterations,
- time_marching_parameter, device='cpu'):
- if device == 'cpu':
- return Diff4th_CPU(inputData,
- regularisation_parameter,
- edge_parameter,
- iterations,
- time_marching_parameter)
- elif device == 'gpu' and gpu_enabled:
- return Diff4th_GPU(inputData,
- regularisation_parameter,
- edge_parameter,
- iterations,
- time_marching_parameter)
- else:
- if not gpu_enabled and device == 'gpu':
- raise ValueError ('GPU is not available')
- raise ValueError('Unknown device {0}. Expecting gpu or cpu'\
- .format(device))
-
-def PatchSelect(inputData, searchwindow, patchwindow, neighbours, edge_parameter, device='cpu'):
- if device == 'cpu':
- return PATCHSEL_CPU(inputData,
- searchwindow,
- patchwindow,
- neighbours,
- edge_parameter)
- elif device == 'gpu' and gpu_enabled:
- return PATCHSEL_GPU(inputData,
- searchwindow,
- patchwindow,
- neighbours,
- edge_parameter)
- else:
- if not gpu_enabled and device == 'gpu':
- raise ValueError ('GPU is not available')
- raise ValueError('Unknown device {0}. Expecting gpu or cpu'\
- .format(device))
-
-def NLTV(inputData, H_i, H_j, H_k, Weights, regularisation_parameter, iterations):
- return NLTV_CPU(inputData,
- H_i,
- H_j,
- H_k,
- Weights,
- regularisation_parameter,
- iterations)
-
-def TGV(inputData, regularisation_parameter, alpha1, alpha0, iterations,
- LipshitzConst, device='cpu'):
- if device == 'cpu':
- return TGV_CPU(inputData,
- regularisation_parameter,
- alpha1,
- alpha0,
- iterations,
- LipshitzConst)
- elif device == 'gpu' and gpu_enabled:
- return TGV_GPU(inputData,
- regularisation_parameter,
- alpha1,
- alpha0,
- iterations,
- LipshitzConst)
- else:
- if not gpu_enabled and device == 'gpu':
- raise ValueError ('GPU is not available')
- raise ValueError('Unknown device {0}. Expecting gpu or cpu'\
- .format(device))
-def LLT_ROF(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations,
- time_marching_parameter, device='cpu'):
- if device == 'cpu':
- return LLT_ROF_CPU(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter)
- elif device == 'gpu' and gpu_enabled:
- return LLT_ROF_GPU(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter)
- else:
- if not gpu_enabled and device == 'gpu':
- raise ValueError ('GPU is not available')
- raise ValueError('Unknown device {0}. Expecting gpu or cpu'\
- .format(device))
-def NDF_INP(inputData, maskData, regularisation_parameter, edge_parameter, iterations,
- time_marching_parameter, penalty_type):
- return NDF_INPAINT_CPU(inputData, maskData, regularisation_parameter,
- edge_parameter, iterations, time_marching_parameter, penalty_type)
-
-def NVM_INP(inputData, maskData, SW_increment, iterations):
- return NVM_INPAINT_CPU(inputData, maskData, SW_increment, iterations)
diff --git a/Wrappers/Python/conda-recipe/bld.bat b/Wrappers/Python/conda-recipe/bld.bat
deleted file mode 100644
index 6c84355..0000000
--- a/Wrappers/Python/conda-recipe/bld.bat
+++ /dev/null
@@ -1,20 +0,0 @@
-IF NOT DEFINED CIL_VERSION (
-ECHO CIL_VERSION Not Defined.
-exit 1
-)
-
-mkdir "%SRC_DIR%\ccpi"
-ROBOCOPY /E "%RECIPE_DIR%\..\.." "%SRC_DIR%\ccpi"
-ROBOCOPY /E "%RECIPE_DIR%\..\..\..\Core" "%SRC_DIR%\Core"
-::cd %SRC_DIR%\ccpi\Python
-cd %SRC_DIR%
-
-:: issue cmake to create setup.py
-cmake -G "NMake Makefiles" %RECIPE_DIR%\..\..\..\ -DBUILD_PYTHON_WRAPPERS=ON -DCONDA_BUILD=ON -DBUILD_CUDA=OFF -DCMAKE_BUILD_TYPE="Release" -DLIBRARY_LIB="%CONDA_PREFIX%\lib" -DLIBRARY_INC="%CONDA_PREFIX%" -DCMAKE_INSTALL_PREFIX="%PREFIX%\Library"
-
-::%PYTHON% setup-regularisers.py build_ext
-::if errorlevel 1 exit 1
-::%PYTHON% setup-regularisers.py install
-::if errorlevel 1 exit 1
-nmake install
-if errorlevel 1 exit 1 \ No newline at end of file
diff --git a/Wrappers/Python/conda-recipe/build.sh b/Wrappers/Python/conda-recipe/build.sh
deleted file mode 100644
index 39c0f2c..0000000
--- a/Wrappers/Python/conda-recipe/build.sh
+++ /dev/null
@@ -1,17 +0,0 @@
-
-mkdir "$SRC_DIR/ccpi"
-cp -rv "$RECIPE_DIR/../.." "$SRC_DIR/ccpi"
-cp -rv "$RECIPE_DIR/../../../Core" "$SRC_DIR/Core"
-
-cd $SRC_DIR
-##cuda=off
-
-cmake -G "Unix Makefiles" $RECIPE_DIR/../../../ -DBUILD_PYTHON_WRAPPER=ON -DCONDA_BUILD=ON -DBUILD_CUDA=ON -DCMAKE_BUILD_TYPE="Release" -DLIBRARY_LIB=$CONDA_PREFIX/lib -DLIBRARY_INC=$CONDA_PREFIX -DCMAKE_INSTALL_PREFIX=$PREFIX
-
-
-make install
-
-#$PYTHON setup-regularisers.py build_ext
-#$PYTHON setup-regularisers.py install
-
-
diff --git a/Wrappers/Python/conda-recipe/conda_build_config.yaml b/Wrappers/Python/conda-recipe/conda_build_config.yaml
deleted file mode 100644
index fbe82dc..0000000
--- a/Wrappers/Python/conda-recipe/conda_build_config.yaml
+++ /dev/null
@@ -1,9 +0,0 @@
-python:
- - 2.7 # [not win]
- - 3.5
- - 3.6
-# - 3.7
-numpy:
- - 1.12
- - 1.14
- - 1.15
diff --git a/Wrappers/Python/conda-recipe/meta.yaml b/Wrappers/Python/conda-recipe/meta.yaml
deleted file mode 100644
index 7435b2b..0000000
--- a/Wrappers/Python/conda-recipe/meta.yaml
+++ /dev/null
@@ -1,40 +0,0 @@
-package:
- name: ccpi-regulariser
- version: {{CIL_VERSION}}
-
-build:
- preserve_egg_dir: False
- number: 0
- script_env:
- - CIL_VERSION
-
-test:
- files:
- - lena_gray_512.tif
- requires:
- - pillow=4.1.1
-
-requirements:
- build:
- - python
- - numpy {{ numpy }}
- - setuptools
- - cython
- - vc 14 # [win and py36]
- - vc 14 # [win and py35]
- - vc 9 # [win and py27]
- - cmake
-
- run:
- - {{ pin_compatible('numpy', max_pin='x.x') }}
- - python
- - numpy
- - vc 14 # [win and py36]
- - vc 14 # [win and py35]
- - vc 9 # [win and py27]
- - libgcc-ng
-
-about:
- home: http://www.ccpi.ac.uk
- license: BSD license
- summary: 'CCPi Core Imaging Library Quantification Toolbox'
diff --git a/Wrappers/Python/conda-recipe/run_test.py b/Wrappers/Python/conda-recipe/run_test.py
deleted file mode 100755
index 21f3216..0000000
--- a/Wrappers/Python/conda-recipe/run_test.py
+++ /dev/null
@@ -1,819 +0,0 @@
-import unittest
-import numpy as np
-import os
-import timeit
-from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, NDF, Diff4th
-from PIL import Image
-
-class TiffReader(object):
- def imread(self, filename):
- return np.asarray(Image.open(filename))
-###############################################################################
-def printParametersToString(pars):
- txt = r''
- for key, value in pars.items():
- if key== 'algorithm' :
- txt += "{0} = {1}".format(key, value.__name__)
- elif key == 'input':
- txt += "{0} = {1}".format(key, np.shape(value))
- elif key == 'refdata':
- txt += "{0} = {1}".format(key, np.shape(value))
- else:
- txt += "{0} = {1}".format(key, value)
- txt += '\n'
- return txt
-def nrmse(im1, im2):
- rmse = np.sqrt(np.sum((im2 - im1) ** 2) / float(im1.size))
- max_val = max(np.max(im1), np.max(im2))
- min_val = min(np.min(im1), np.min(im2))
- return 1 - (rmse / (max_val - min_val))
-
-def rmse(im1, im2):
- rmse = np.sqrt(np.sum((im1 - im2) ** 2) / float(im1.size))
- return rmse
-###############################################################################
-
-class TestRegularisers(unittest.TestCase):
-
-
- def test_ROF_TV_CPU_vs_GPU(self):
- #print ("tomas debug test function")
- print(__name__)
- filename = os.path.join("lena_gray_512.tif")
- plt = TiffReader()
- # read image
- Im = plt.imread(filename)
- Im = np.asarray(Im, dtype='float32')
-
- Im = Im/255
- perc = 0.05
- u0 = Im + np.random.normal(loc = 0 ,
- scale = perc * Im ,
- size = np.shape(Im))
- u_ref = Im + np.random.normal(loc = 0 ,
- scale = 0.01 * Im ,
- size = np.shape(Im))
-
- # map the u0 u0->u0>0
- # f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
- u0 = u0.astype('float32')
- u_ref = u_ref.astype('float32')
-
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
- print ("____________ROF-TV bench___________________")
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
- # set parameters
- pars = {'algorithm': ROF_TV, \
- 'input' : u0,\
- 'regularisation_parameter':0.04,\
- 'number_of_iterations': 2500,\
- 'time_marching_parameter': 0.00002
- }
- print ("#############ROF TV CPU####################")
- start_time = timeit.default_timer()
- rof_cpu = ROF_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'cpu')
- rms = rmse(Im, rof_cpu)
- pars['rmse'] = rms
-
- txtstr = printParametersToString(pars)
- txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
- print (txtstr)
- print ("##############ROF TV GPU##################")
- start_time = timeit.default_timer()
- try:
- rof_gpu = ROF_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'gpu')
- except ValueError as ve:
- self.skipTest("Results not comparable. GPU computing error.")
-
- rms = rmse(Im, rof_gpu)
- pars['rmse'] = rms
- pars['algorithm'] = ROF_TV
- txtstr = printParametersToString(pars)
- txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
- print (txtstr)
- print ("--------Compare the results--------")
- tolerance = 1e-04
- diff_im = np.zeros(np.shape(rof_cpu))
- diff_im = abs(rof_cpu - rof_gpu)
- diff_im[diff_im > tolerance] = 1
- self.assertLessEqual(diff_im.sum() , 1)
-
- def test_FGP_TV_CPU_vs_GPU(self):
- print(__name__)
- filename = os.path.join("lena_gray_512.tif")
- plt = TiffReader()
- # read image
- Im = plt.imread(filename)
- Im = np.asarray(Im, dtype='float32')
-
- Im = Im/255
- perc = 0.05
- u0 = Im + np.random.normal(loc = 0 ,
- scale = perc * Im ,
- size = np.shape(Im))
- u_ref = Im + np.random.normal(loc = 0 ,
- scale = 0.01 * Im ,
- size = np.shape(Im))
-
- # map the u0 u0->u0>0
- # f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
- u0 = u0.astype('float32')
- u_ref = u_ref.astype('float32')
-
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
- print ("____________FGP-TV bench___________________")
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-
- # set parameters
- pars = {'algorithm' : FGP_TV, \
- 'input' : u0,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :1200 ,\
- 'tolerance_constant':0.00001,\
- 'methodTV': 0 ,\
- 'nonneg': 0 ,\
- 'printingOut': 0
- }
-
- print ("#############FGP TV CPU####################")
- start_time = timeit.default_timer()
- fgp_cpu = FGP_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['methodTV'],
- pars['nonneg'],
- pars['printingOut'],'cpu')
-
-
- rms = rmse(Im, fgp_cpu)
- pars['rmse'] = rms
-
- txtstr = printParametersToString(pars)
- txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
- print (txtstr)
-
- print ("##############FGP TV GPU##################")
- start_time = timeit.default_timer()
- try:
- fgp_gpu = FGP_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['methodTV'],
- pars['nonneg'],
- pars['printingOut'],'gpu')
-
- except ValueError as ve:
- self.skipTest("Results not comparable. GPU computing error.")
-
- rms = rmse(Im, fgp_gpu)
- pars['rmse'] = rms
- pars['algorithm'] = FGP_TV
- txtstr = printParametersToString(pars)
- txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
- print (txtstr)
-
- print ("--------Compare the results--------")
- tolerance = 1e-05
- diff_im = np.zeros(np.shape(fgp_cpu))
- diff_im = abs(fgp_cpu - fgp_gpu)
- diff_im[diff_im > tolerance] = 1
-
- self.assertLessEqual(diff_im.sum() , 1)
-
- def test_SB_TV_CPU_vs_GPU(self):
- print(__name__)
- filename = os.path.join("lena_gray_512.tif")
- plt = TiffReader()
- # read image
- Im = plt.imread(filename)
- Im = np.asarray(Im, dtype='float32')
-
- Im = Im/255
- perc = 0.05
- u0 = Im + np.random.normal(loc = 0 ,
- scale = perc * Im ,
- size = np.shape(Im))
- u_ref = Im + np.random.normal(loc = 0 ,
- scale = 0.01 * Im ,
- size = np.shape(Im))
-
- # map the u0 u0->u0>0
- # f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
- u0 = u0.astype('float32')
- u_ref = u_ref.astype('float32')
-
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
- print ("____________SB-TV bench___________________")
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-
- # set parameters
- pars = {'algorithm' : SB_TV, \
- 'input' : u0,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :150 ,\
- 'tolerance_constant':1e-05,\
- 'methodTV': 0 ,\
- 'printingOut': 0
- }
-
- print ("#############SB-TV CPU####################")
- start_time = timeit.default_timer()
- sb_cpu = SB_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['methodTV'],
- pars['printingOut'],'cpu')
-
-
- rms = rmse(Im, sb_cpu)
- pars['rmse'] = rms
-
- txtstr = printParametersToString(pars)
- txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
- print (txtstr)
-
- print ("##############SB TV GPU##################")
- start_time = timeit.default_timer()
- try:
-
- sb_gpu = SB_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['methodTV'],
- pars['printingOut'],'gpu')
-
- except ValueError as ve:
- self.skipTest("Results not comparable. GPU computing error.")
-
- rms = rmse(Im, sb_gpu)
- pars['rmse'] = rms
- pars['algorithm'] = SB_TV
- txtstr = printParametersToString(pars)
- txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
- print (txtstr)
- print ("--------Compare the results--------")
- tolerance = 1e-05
- diff_im = np.zeros(np.shape(sb_cpu))
- diff_im = abs(sb_cpu - sb_gpu)
- diff_im[diff_im > tolerance] = 1
- self.assertLessEqual(diff_im.sum(), 1)
-
- def test_TGV_CPU_vs_GPU(self):
- print(__name__)
- filename = os.path.join("lena_gray_512.tif")
- plt = TiffReader()
- # read image
- Im = plt.imread(filename)
- Im = np.asarray(Im, dtype='float32')
-
- Im = Im/255
- perc = 0.05
- u0 = Im + np.random.normal(loc = 0 ,
- scale = perc * Im ,
- size = np.shape(Im))
- u_ref = Im + np.random.normal(loc = 0 ,
- scale = 0.01 * Im ,
- size = np.shape(Im))
-
- # map the u0 u0->u0>0
- # f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
- u0 = u0.astype('float32')
- u_ref = u_ref.astype('float32')
-
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
- print ("____________TGV bench___________________")
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-
- # set parameters
- pars = {'algorithm' : TGV, \
- 'input' : u0,\
- 'regularisation_parameter':0.04, \
- 'alpha1':1.0,\
- 'alpha0':2.0,\
- 'number_of_iterations' :250 ,\
- 'LipshitzConstant' :12 ,\
- }
-
- print ("#############TGV CPU####################")
- start_time = timeit.default_timer()
- tgv_cpu = TGV(pars['input'],
- pars['regularisation_parameter'],
- pars['alpha1'],
- pars['alpha0'],
- pars['number_of_iterations'],
- pars['LipshitzConstant'],'cpu')
-
- rms = rmse(Im, tgv_cpu)
- pars['rmse'] = rms
-
- txtstr = printParametersToString(pars)
- txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
- print (txtstr)
-
- print ("##############TGV GPU##################")
- start_time = timeit.default_timer()
- try:
- tgv_gpu = TGV(pars['input'],
- pars['regularisation_parameter'],
- pars['alpha1'],
- pars['alpha0'],
- pars['number_of_iterations'],
- pars['LipshitzConstant'],'gpu')
-
- except ValueError as ve:
- self.skipTest("Results not comparable. GPU computing error.")
-
- rms = rmse(Im, tgv_gpu)
- pars['rmse'] = rms
- pars['algorithm'] = TGV
- txtstr = printParametersToString(pars)
- txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
- print (txtstr)
- print ("--------Compare the results--------")
- tolerance = 1e-05
- diff_im = np.zeros(np.shape(tgv_gpu))
- diff_im = abs(tgv_cpu - tgv_gpu)
- diff_im[diff_im > tolerance] = 1
- self.assertLessEqual(diff_im.sum() , 1)
-
- def test_LLT_ROF_CPU_vs_GPU(self):
- print(__name__)
- filename = os.path.join("lena_gray_512.tif")
- plt = TiffReader()
- # read image
- Im = plt.imread(filename)
- Im = np.asarray(Im, dtype='float32')
-
- Im = Im/255
- perc = 0.05
- u0 = Im + np.random.normal(loc = 0 ,
- scale = perc * Im ,
- size = np.shape(Im))
- u_ref = Im + np.random.normal(loc = 0 ,
- scale = 0.01 * Im ,
- size = np.shape(Im))
-
- # map the u0 u0->u0>0
- # f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
- u0 = u0.astype('float32')
- u_ref = u_ref.astype('float32')
-
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
- print ("____________LLT-ROF bench___________________")
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-
- # set parameters
- pars = {'algorithm' : LLT_ROF, \
- 'input' : u0,\
- 'regularisation_parameterROF':0.04, \
- 'regularisation_parameterLLT':0.01, \
- 'number_of_iterations' :1000 ,\
- 'time_marching_parameter' :0.0001 ,\
- }
-
- print ("#############LLT- ROF CPU####################")
- start_time = timeit.default_timer()
- lltrof_cpu = LLT_ROF(pars['input'],
- pars['regularisation_parameterROF'],
- pars['regularisation_parameterLLT'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'cpu')
-
- rms = rmse(Im, lltrof_cpu)
- pars['rmse'] = rms
-
- txtstr = printParametersToString(pars)
- txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
- print (txtstr)
- print ("#############LLT- ROF GPU####################")
- start_time = timeit.default_timer()
- try:
- lltrof_gpu = LLT_ROF(pars['input'],
- pars['regularisation_parameterROF'],
- pars['regularisation_parameterLLT'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'gpu')
-
- except ValueError as ve:
- self.skipTest("Results not comparable. GPU computing error.")
-
- rms = rmse(Im, lltrof_gpu)
- pars['rmse'] = rms
- pars['algorithm'] = LLT_ROF
- txtstr = printParametersToString(pars)
- txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
- print (txtstr)
- print ("--------Compare the results--------")
- tolerance = 1e-04
- diff_im = np.zeros(np.shape(lltrof_gpu))
- diff_im = abs(lltrof_cpu - lltrof_gpu)
- diff_im[diff_im > tolerance] = 1
- self.assertLessEqual(diff_im.sum(), 1)
-
- def test_NDF_CPU_vs_GPU(self):
- print(__name__)
- filename = os.path.join("lena_gray_512.tif")
- plt = TiffReader()
- # read image
- Im = plt.imread(filename)
- Im = np.asarray(Im, dtype='float32')
-
- Im = Im/255
- perc = 0.05
- u0 = Im + np.random.normal(loc = 0 ,
- scale = perc * Im ,
- size = np.shape(Im))
- u_ref = Im + np.random.normal(loc = 0 ,
- scale = 0.01 * Im ,
- size = np.shape(Im))
-
- # map the u0 u0->u0>0
- # f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
- u0 = u0.astype('float32')
- u_ref = u_ref.astype('float32')
-
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
- print ("_______________NDF bench___________________")
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-
- # set parameters
- pars = {'algorithm' : NDF, \
- 'input' : u0,\
- 'regularisation_parameter':0.06, \
- 'edge_parameter':0.04,\
- 'number_of_iterations' :1000 ,\
- 'time_marching_parameter':0.025,\
- 'penalty_type': 1
- }
-
- print ("#############NDF CPU####################")
- start_time = timeit.default_timer()
- ndf_cpu = NDF(pars['input'],
- pars['regularisation_parameter'],
- pars['edge_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],
- pars['penalty_type'],'cpu')
-
- rms = rmse(Im, ndf_cpu)
- pars['rmse'] = rms
-
- txtstr = printParametersToString(pars)
- txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
- print (txtstr)
-
- print ("##############NDF GPU##################")
- start_time = timeit.default_timer()
- try:
- ndf_gpu = NDF(pars['input'],
- pars['regularisation_parameter'],
- pars['edge_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],
- pars['penalty_type'],'gpu')
-
- except ValueError as ve:
- self.skipTest("Results not comparable. GPU computing error.")
- rms = rmse(Im, ndf_gpu)
- pars['rmse'] = rms
- pars['algorithm'] = NDF
- txtstr = printParametersToString(pars)
- txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
- print (txtstr)
- print ("--------Compare the results--------")
- tolerance = 1e-05
- diff_im = np.zeros(np.shape(ndf_cpu))
- diff_im = abs(ndf_cpu - ndf_gpu)
- diff_im[diff_im > tolerance] = 1
- self.assertLessEqual(diff_im.sum(), 1)
-
-
- def test_Diff4th_CPU_vs_GPU(self):
- filename = os.path.join("lena_gray_512.tif")
- plt = TiffReader()
- # read image
- Im = plt.imread(filename)
- Im = np.asarray(Im, dtype='float32')
-
- Im = Im/255
- perc = 0.05
- u0 = Im + np.random.normal(loc = 0 ,
- scale = perc * Im ,
- size = np.shape(Im))
- u_ref = Im + np.random.normal(loc = 0 ,
- scale = 0.01 * Im ,
- size = np.shape(Im))
-
- # map the u0 u0->u0>0
- # f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
- u0 = u0.astype('float32')
- u_ref = u_ref.astype('float32')
-
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
- print ("___Anisotropic Diffusion 4th Order (2D)____")
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
- # set parameters
- pars = {'algorithm' : Diff4th, \
- 'input' : u0,\
- 'regularisation_parameter':3.5, \
- 'edge_parameter':0.02,\
- 'number_of_iterations' :500 ,\
- 'time_marching_parameter':0.001
- }
-
- print ("#############Diff4th CPU####################")
- start_time = timeit.default_timer()
- diff4th_cpu = Diff4th(pars['input'],
- pars['regularisation_parameter'],
- pars['edge_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'cpu')
-
- rms = rmse(Im, diff4th_cpu)
- pars['rmse'] = rms
-
- txtstr = printParametersToString(pars)
- txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
- print (txtstr)
- print ("##############Diff4th GPU##################")
- start_time = timeit.default_timer()
- try:
- diff4th_gpu = Diff4th(pars['input'],
- pars['regularisation_parameter'],
- pars['edge_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'], 'gpu')
-
- except ValueError as ve:
- self.skipTest("Results not comparable. GPU computing error.")
- rms = rmse(Im, diff4th_gpu)
- pars['rmse'] = rms
- pars['algorithm'] = Diff4th
- txtstr = printParametersToString(pars)
- txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
- print (txtstr)
- print ("--------Compare the results--------")
- tolerance = 1e-05
- diff_im = np.zeros(np.shape(diff4th_cpu))
- diff_im = abs(diff4th_cpu - diff4th_gpu)
- diff_im[diff_im > tolerance] = 1
- self.assertLessEqual(diff_im.sum() , 1)
-
- def test_FDGdTV_CPU_vs_GPU(self):
- filename = os.path.join("lena_gray_512.tif")
- plt = TiffReader()
- # read image
- Im = plt.imread(filename)
- Im = np.asarray(Im, dtype='float32')
-
- Im = Im/255
- perc = 0.05
- u0 = Im + np.random.normal(loc = 0 ,
- scale = perc * Im ,
- size = np.shape(Im))
- u_ref = Im + np.random.normal(loc = 0 ,
- scale = 0.01 * Im ,
- size = np.shape(Im))
-
- # map the u0 u0->u0>0
- # f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
- u0 = u0.astype('float32')
- u_ref = u_ref.astype('float32')
-
-
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
- print ("____________FGP-dTV bench___________________")
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
- # set parameters
- pars = {'algorithm' : FGP_dTV, \
- 'input' : u0,\
- 'refdata' : u_ref,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :1000 ,\
- 'tolerance_constant':1e-07,\
- 'eta_const':0.2,\
- 'methodTV': 0 ,\
- 'nonneg': 0 ,\
- 'printingOut': 0
- }
-
- print ("#############FGP dTV CPU####################")
- start_time = timeit.default_timer()
- fgp_dtv_cpu = FGP_dTV(pars['input'],
- pars['refdata'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['eta_const'],
- pars['methodTV'],
- pars['nonneg'],
- pars['printingOut'],'cpu')
-
-
- rms = rmse(Im, fgp_dtv_cpu)
- pars['rmse'] = rms
-
- txtstr = printParametersToString(pars)
- txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
- print (txtstr)
- print ("##############FGP dTV GPU##################")
- start_time = timeit.default_timer()
- try:
- fgp_dtv_gpu = FGP_dTV(pars['input'],
- pars['refdata'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['eta_const'],
- pars['methodTV'],
- pars['nonneg'],
- pars['printingOut'],'gpu')
- except ValueError as ve:
- self.skipTest("Results not comparable. GPU computing error.")
- rms = rmse(Im, fgp_dtv_gpu)
- pars['rmse'] = rms
- pars['algorithm'] = FGP_dTV
- txtstr = printParametersToString(pars)
- txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
- print (txtstr)
- print ("--------Compare the results--------")
- tolerance = 1e-05
- diff_im = np.zeros(np.shape(fgp_dtv_cpu))
- diff_im = abs(fgp_dtv_cpu - fgp_dtv_gpu)
- diff_im[diff_im > tolerance] = 1
- self.assertLessEqual(diff_im.sum(), 1)
-
- def test_cpu_ROF_TV(self):
- #filename = os.path.join(".." , ".." , ".." , "data" ,"testLena.npy")
-
- filename = os.path.join("lena_gray_512.tif")
-
- plt = TiffReader()
- # read image
- Im = plt.imread(filename)
- Im = np.asarray(Im, dtype='float32')
- Im = Im/255
-
- """
- # read noiseless image
- Im = plt.imread(filename)
- Im = np.asarray(Im, dtype='float32')
- """
- tolerance = 1e-05
- rms_rof_exp = 8.313131464999238e-05 #expected value for ROF model
-
- # set parameters for ROF-TV
- pars_rof_tv = {'algorithm': ROF_TV, \
- 'input' : Im,\
- 'regularisation_parameter':0.04,\
- 'number_of_iterations': 50,\
- 'time_marching_parameter': 0.00001
- }
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
- print ("_________testing ROF-TV (2D, CPU)__________")
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
- rof_cpu = ROF_TV(pars_rof_tv['input'],
- pars_rof_tv['regularisation_parameter'],
- pars_rof_tv['number_of_iterations'],
- pars_rof_tv['time_marching_parameter'],'cpu')
- rms_rof = rmse(Im, rof_cpu)
-
- # now compare obtained rms with the expected value
- self.assertLess(abs(rms_rof-rms_rof_exp) , tolerance)
- def test_cpu_FGP_TV(self):
- #filename = os.path.join(".." , ".." , ".." , "data" ,"testLena.npy")
-
- filename = os.path.join("lena_gray_512.tif")
-
- plt = TiffReader()
- # read image
- Im = plt.imread(filename)
- Im = np.asarray(Im, dtype='float32')
- Im = Im/255
- """
- # read noiseless image
- Im = plt.imread(filename)
- Im = np.asarray(Im, dtype='float32')
- """
- tolerance = 1e-05
- rms_fgp_exp = 0.019152347 #expected value for FGP model
-
- pars_fgp_tv = {'algorithm' : FGP_TV, \
- 'input' : Im,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :50 ,\
- 'tolerance_constant':1e-06,\
- 'methodTV': 0 ,\
- 'nonneg': 0 ,\
- 'printingOut': 0
- }
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
- print ("_________testing FGP-TV (2D, CPU)__________")
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
- fgp_cpu = FGP_TV(pars_fgp_tv['input'],
- pars_fgp_tv['regularisation_parameter'],
- pars_fgp_tv['number_of_iterations'],
- pars_fgp_tv['tolerance_constant'],
- pars_fgp_tv['methodTV'],
- pars_fgp_tv['nonneg'],
- pars_fgp_tv['printingOut'],'cpu')
- rms_fgp = rmse(Im, fgp_cpu)
- # now compare obtained rms with the expected value
- self.assertLess(abs(rms_fgp-rms_fgp_exp) , tolerance)
-
- def test_gpu_ROF(self):
- #filename = os.path.join(".." , ".." , ".." , "data" ,"testLena.npy")
- filename = os.path.join("lena_gray_512.tif")
-
- plt = TiffReader()
- # read image
- Im = plt.imread(filename)
- Im = np.asarray(Im, dtype='float32')
- Im = Im/255
-
- tolerance = 1e-05
- rms_rof_exp = 8.313131464999238e-05 #expected value for ROF model
-
- # set parameters for ROF-TV
- pars_rof_tv = {'algorithm': ROF_TV, \
- 'input' : Im,\
- 'regularisation_parameter':0.04,\
- 'number_of_iterations': 50,\
- 'time_marching_parameter': 0.00001
- }
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
- print ("_________testing ROF-TV (2D, GPU)__________")
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
- try:
- rof_gpu = ROF_TV(pars_rof_tv['input'],
- pars_rof_tv['regularisation_parameter'],
- pars_rof_tv['number_of_iterations'],
- pars_rof_tv['time_marching_parameter'],'gpu')
- except ValueError as ve:
- self.skipTest("Results not comparable. GPU computing error.")
-
- rms_rof = rmse(Im, rof_gpu)
- # now compare obtained rms with the expected value
- self.assertLess(abs(rms_rof-rms_rof_exp) , tolerance)
-
- def test_gpu_FGP(self):
- #filename = os.path.join(".." , ".." , ".." , "data" ,"testLena.npy")
- filename = os.path.join("lena_gray_512.tif")
-
- plt = TiffReader()
- # read image
- Im = plt.imread(filename)
- Im = np.asarray(Im, dtype='float32')
- Im = Im/255
- tolerance = 1e-05
-
- rms_fgp_exp = 0.019152347 #expected value for FGP model
-
- # set parameters for FGP-TV
- pars_fgp_tv = {'algorithm' : FGP_TV, \
- 'input' : Im,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :50 ,\
- 'tolerance_constant':1e-06,\
- 'methodTV': 0 ,\
- 'nonneg': 0 ,\
- 'printingOut': 0
- }
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
- print ("_________testing FGP-TV (2D, GPU)__________")
- print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
- try:
- fgp_gpu = FGP_TV(pars_fgp_tv['input'],
- pars_fgp_tv['regularisation_parameter'],
- pars_fgp_tv['number_of_iterations'],
- pars_fgp_tv['tolerance_constant'],
- pars_fgp_tv['methodTV'],
- pars_fgp_tv['nonneg'],
- pars_fgp_tv['printingOut'],'gpu')
- except ValueError as ve:
- self.skipTest("Results not comparable. GPU computing error.")
- rms_fgp = rmse(Im, fgp_gpu)
- # now compare obtained rms with the expected value
-
- self.assertLess(abs(rms_fgp-rms_fgp_exp) , tolerance)
-
-if __name__ == '__main__':
- unittest.main()
diff --git a/Wrappers/Python/demos/demo_cpu_inpainters.py b/Wrappers/Python/demos/demo_cpu_inpainters.py
deleted file mode 100644
index 3b4191b..0000000
--- a/Wrappers/Python/demos/demo_cpu_inpainters.py
+++ /dev/null
@@ -1,192 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-"""
-Demonstration of CPU inpainters
-@authors: Daniil Kazantsev, Edoardo Pasca
-"""
-
-import matplotlib.pyplot as plt
-import numpy as np
-import os
-import timeit
-from scipy import io
-from ccpi.filters.regularisers import NDF_INP, NVM_INP
-from qualitymetrics import rmse
-###############################################################################
-def printParametersToString(pars):
- txt = r''
- for key, value in pars.items():
- if key== 'algorithm' :
- txt += "{0} = {1}".format(key, value.__name__)
- elif key == 'input':
- txt += "{0} = {1}".format(key, np.shape(value))
- elif key == 'maskData':
- txt += "{0} = {1}".format(key, np.shape(value))
- else:
- txt += "{0} = {1}".format(key, value)
- txt += '\n'
- return txt
-###############################################################################
-
-# read sinogram and the mask
-filename = os.path.join(".." , ".." , ".." , "data" ,"SinoInpaint.mat")
-sino = io.loadmat(filename)
-sino_full = sino.get('Sinogram')
-Mask = sino.get('Mask')
-[angles_dim,detectors_dim] = sino_full.shape
-sino_full = sino_full/np.max(sino_full)
-#apply mask to sinogram
-sino_cut = sino_full*(1-Mask)
-#sino_cut_new = np.zeros((angles_dim,detectors_dim),'float32')
-#sino_cut_new = sino_cut.copy(order='c')
-#sino_cut_new[:] = sino_cut[:]
-sino_cut_new = np.ascontiguousarray(sino_cut, dtype=np.float32);
-#mask = np.zeros((angles_dim,detectors_dim),'uint8')
-#mask =Mask.copy(order='c')
-#mask[:] = Mask[:]
-mask = np.ascontiguousarray(Mask, dtype=np.uint8);
-
-plt.figure(1)
-plt.subplot(121)
-plt.imshow(sino_cut_new,vmin=0.0, vmax=1)
-plt.title('Missing Data sinogram')
-plt.subplot(122)
-plt.imshow(mask)
-plt.title('Mask')
-plt.show()
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("___Inpainting using linear diffusion (2D)__")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure(2)
-plt.suptitle('Performance of linear inpainting using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Missing data sinogram')
-imgplot = plt.imshow(sino_cut_new,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : NDF_INP, \
- 'input' : sino_cut_new,\
- 'maskData' : mask,\
- 'regularisation_parameter':5000,\
- 'edge_parameter':0,\
- 'number_of_iterations' :5000 ,\
- 'time_marching_parameter':0.000075,\
- 'penalty_type':0
- }
-
-start_time = timeit.default_timer()
-ndf_inp_linear = NDF_INP(pars['input'],
- pars['maskData'],
- pars['regularisation_parameter'],
- pars['edge_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],
- pars['penalty_type'])
-
-rms = rmse(sino_full, ndf_inp_linear)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(ndf_inp_linear, cmap="gray")
-plt.title('{}'.format('Linear diffusion inpainting results'))
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_Inpainting using nonlinear diffusion (2D)_")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure(3)
-plt.suptitle('Performance of nonlinear diffusion inpainting using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Missing data sinogram')
-imgplot = plt.imshow(sino_cut_new,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : NDF_INP, \
- 'input' : sino_cut_new,\
- 'maskData' : mask,\
- 'regularisation_parameter':80,\
- 'edge_parameter':0.00009,\
- 'number_of_iterations' :1500 ,\
- 'time_marching_parameter':0.000008,\
- 'penalty_type':1
- }
-
-start_time = timeit.default_timer()
-ndf_inp_nonlinear = NDF_INP(pars['input'],
- pars['maskData'],
- pars['regularisation_parameter'],
- pars['edge_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],
- pars['penalty_type'])
-
-rms = rmse(sino_full, ndf_inp_nonlinear)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(ndf_inp_nonlinear, cmap="gray")
-plt.title('{}'.format('Nonlinear diffusion inpainting results'))
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("Inpainting using nonlocal vertical marching")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure(4)
-plt.suptitle('Performance of NVM inpainting using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Missing data sinogram')
-imgplot = plt.imshow(sino_cut,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : NVM_INP, \
- 'input' : sino_cut_new,\
- 'maskData' : mask,\
- 'SW_increment': 1,\
- 'number_of_iterations' : 150
- }
-
-start_time = timeit.default_timer()
-(nvm_inp, mask_upd) = NVM_INP(pars['input'],
- pars['maskData'],
- pars['SW_increment'],
- pars['number_of_iterations'])
-
-rms = rmse(sino_full, nvm_inp)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(nvm_inp, cmap="gray")
-plt.title('{}'.format('Nonlocal Vertical Marching inpainting results'))
-#%%
diff --git a/Wrappers/Python/demos/demo_cpu_regularisers.py b/Wrappers/Python/demos/demo_cpu_regularisers.py
deleted file mode 100644
index e6befa9..0000000
--- a/Wrappers/Python/demos/demo_cpu_regularisers.py
+++ /dev/null
@@ -1,572 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-"""
-Created on Thu Feb 22 11:39:43 2018
-
-Demonstration of CPU regularisers
-
-@authors: Daniil Kazantsev, Edoardo Pasca
-"""
-
-import matplotlib.pyplot as plt
-import numpy as np
-import os
-import timeit
-from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, TNV, NDF, Diff4th
-from ccpi.filters.regularisers import PatchSelect, NLTV
-from qualitymetrics import rmse
-###############################################################################
-def printParametersToString(pars):
- txt = r''
- for key, value in pars.items():
- if key== 'algorithm' :
- txt += "{0} = {1}".format(key, value.__name__)
- elif key == 'input':
- txt += "{0} = {1}".format(key, np.shape(value))
- elif key == 'refdata':
- txt += "{0} = {1}".format(key, np.shape(value))
- else:
- txt += "{0} = {1}".format(key, value)
- txt += '\n'
- return txt
-###############################################################################
-#%%
-filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif")
-
-# read image
-Im = plt.imread(filename)
-Im = np.asarray(Im, dtype='float32')
-
-Im = Im/255.0
-perc = 0.05
-u0 = Im + np.random.normal(loc = 0 ,
- scale = perc * Im ,
- size = np.shape(Im))
-u_ref = Im + np.random.normal(loc = 0 ,
- scale = 0.01 * Im ,
- size = np.shape(Im))
-(N,M) = np.shape(u0)
-# map the u0 u0->u0>0
-# f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
-u0 = u0.astype('float32')
-u_ref = u_ref.astype('float32')
-
-# change dims to check that modules work with non-squared images
-"""
-M = M-100
-u_ref2 = np.zeros([N,M],dtype='float32')
-u_ref2[:,0:M] = u_ref[:,0:M]
-u_ref = u_ref2
-del u_ref2
-
-u02 = np.zeros([N,M],dtype='float32')
-u02[:,0:M] = u0[:,0:M]
-u0 = u02
-del u02
-
-Im2 = np.zeros([N,M],dtype='float32')
-Im2[:,0:M] = Im[:,0:M]
-Im = Im2
-del Im2
-"""
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_______________ROF-TV (2D)_________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of ROF-TV regulariser using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm': ROF_TV, \
- 'input' : u0,\
- 'regularisation_parameter':0.04,\
- 'number_of_iterations': 1200,\
- 'time_marching_parameter': 0.0025
- }
-print ("#############ROF TV CPU####################")
-start_time = timeit.default_timer()
-rof_cpu = ROF_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'cpu')
-rms = rmse(Im, rof_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(rof_cpu, cmap="gray")
-plt.title('{}'.format('CPU results'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_______________FGP-TV (2D)__________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of FGP-TV regulariser using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : FGP_TV, \
- 'input' : u0,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :2000 ,\
- 'tolerance_constant':1e-06,\
- 'methodTV': 0 ,\
- 'nonneg': 0 ,\
- 'printingOut': 0
- }
-
-print ("#############FGP TV CPU####################")
-start_time = timeit.default_timer()
-fgp_cpu = FGP_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['methodTV'],
- pars['nonneg'],
- pars['printingOut'],'cpu')
-
-
-rms = rmse(Im, fgp_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(fgp_cpu, cmap="gray")
-plt.title('{}'.format('CPU results'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_______________SB-TV (2D)__________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of SB-TV regulariser using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : SB_TV, \
- 'input' : u0,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :150 ,\
- 'tolerance_constant':1e-06,\
- 'methodTV': 0 ,\
- 'printingOut': 0
- }
-
-print ("#############SB TV CPU####################")
-start_time = timeit.default_timer()
-sb_cpu = SB_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['methodTV'],
- pars['printingOut'],'cpu')
-
-
-rms = rmse(Im, sb_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(sb_cpu, cmap="gray")
-plt.title('{}'.format('CPU results'))
-#%%
-
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_____Total Generalised Variation (2D)______")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of TGV regulariser using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : TGV, \
- 'input' : u0,\
- 'regularisation_parameter':0.04, \
- 'alpha1':1.0,\
- 'alpha0':2.0,\
- 'number_of_iterations' :1350 ,\
- 'LipshitzConstant' :12 ,\
- }
-
-print ("#############TGV CPU####################")
-start_time = timeit.default_timer()
-tgv_cpu = TGV(pars['input'],
- pars['regularisation_parameter'],
- pars['alpha1'],
- pars['alpha0'],
- pars['number_of_iterations'],
- pars['LipshitzConstant'],'cpu')
-
-
-rms = rmse(Im, tgv_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(tgv_cpu, cmap="gray")
-plt.title('{}'.format('CPU results'))
-
-#%%
-
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("______________LLT- ROF (2D)________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of LLT-ROF regulariser using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : LLT_ROF, \
- 'input' : u0,\
- 'regularisation_parameterROF':0.04, \
- 'regularisation_parameterLLT':0.01, \
- 'number_of_iterations' :500 ,\
- 'time_marching_parameter' :0.0025 ,\
- }
-
-print ("#############LLT- ROF CPU####################")
-start_time = timeit.default_timer()
-lltrof_cpu = LLT_ROF(pars['input'],
- pars['regularisation_parameterROF'],
- pars['regularisation_parameterLLT'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'cpu')
-
-rms = rmse(Im, lltrof_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(lltrof_cpu, cmap="gray")
-plt.title('{}'.format('CPU results'))
-
-#%%
-
-
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("________________NDF (2D)___________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of NDF regulariser using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : NDF, \
- 'input' : u0,\
- 'regularisation_parameter':0.025, \
- 'edge_parameter':0.015,\
- 'number_of_iterations' :500 ,\
- 'time_marching_parameter':0.025,\
- 'penalty_type':1
- }
-
-print ("#############NDF CPU################")
-start_time = timeit.default_timer()
-ndf_cpu = NDF(pars['input'],
- pars['regularisation_parameter'],
- pars['edge_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],
- pars['penalty_type'],'cpu')
-
-rms = rmse(Im, ndf_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(ndf_cpu, cmap="gray")
-plt.title('{}'.format('CPU results'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("___Anisotropic Diffusion 4th Order (2D)____")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of Diff4th regulariser using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : Diff4th, \
- 'input' : u0,\
- 'regularisation_parameter':3.5, \
- 'edge_parameter':0.02,\
- 'number_of_iterations' :500 ,\
- 'time_marching_parameter':0.0015
- }
-
-print ("#############Diff4th CPU################")
-start_time = timeit.default_timer()
-diff4_cpu = Diff4th(pars['input'],
- pars['regularisation_parameter'],
- pars['edge_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'cpu')
-
-rms = rmse(Im, diff4_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(diff4_cpu, cmap="gray")
-plt.title('{}'.format('CPU results'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("___Nonlocal patches pre-calculation____")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-start_time = timeit.default_timer()
-# set parameters
-pars = {'algorithm' : PatchSelect, \
- 'input' : u0,\
- 'searchwindow': 7, \
- 'patchwindow': 2,\
- 'neighbours' : 15 ,\
- 'edge_parameter':0.18}
-
-H_i, H_j, Weights = PatchSelect(pars['input'],
- pars['searchwindow'],
- pars['patchwindow'],
- pars['neighbours'],
- pars['edge_parameter'],'cpu')
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-"""
-plt.figure()
-plt.imshow(Weights[0,:,:],cmap="gray",interpolation="nearest",vmin=0, vmax=1)
-plt.show()
-"""
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("___Nonlocal Total Variation penalty____")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of NLTV regulariser using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-pars2 = {'algorithm' : NLTV, \
- 'input' : u0,\
- 'H_i': H_i, \
- 'H_j': H_j,\
- 'H_k' : 0,\
- 'Weights' : Weights,\
- 'regularisation_parameter': 0.04,\
- 'iterations': 3
- }
-start_time = timeit.default_timer()
-nltv_cpu = NLTV(pars2['input'],
- pars2['H_i'],
- pars2['H_j'],
- pars2['H_k'],
- pars2['Weights'],
- pars2['regularisation_parameter'],
- pars2['iterations'])
-
-rms = rmse(Im, nltv_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(nltv_cpu, cmap="gray")
-plt.title('{}'.format('CPU results'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_____________FGP-dTV (2D)__________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of FGP-dTV regulariser using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : FGP_dTV, \
- 'input' : u0,\
- 'refdata' : u_ref,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :2000 ,\
- 'tolerance_constant':1e-06,\
- 'eta_const':0.2,\
- 'methodTV': 0 ,\
- 'nonneg': 0 ,\
- 'printingOut': 0
- }
-
-print ("#############FGP dTV CPU####################")
-start_time = timeit.default_timer()
-fgp_dtv_cpu = FGP_dTV(pars['input'],
- pars['refdata'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['eta_const'],
- pars['methodTV'],
- pars['nonneg'],
- pars['printingOut'],'cpu')
-
-rms = rmse(Im, fgp_dtv_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(fgp_dtv_cpu, cmap="gray")
-plt.title('{}'.format('CPU results'))
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("__________Total nuclear Variation__________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of TNV regulariser using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-channelsNo = 5
-noisyVol = np.zeros((channelsNo,N,M),dtype='float32')
-idealVol = np.zeros((channelsNo,N,M),dtype='float32')
-
-for i in range (channelsNo):
- noisyVol[i,:,:] = Im + np.random.normal(loc = 0 , scale = perc * Im , size = np.shape(Im))
- idealVol[i,:,:] = Im
-
-# set parameters
-pars = {'algorithm' : TNV, \
- 'input' : noisyVol,\
- 'regularisation_parameter': 0.04, \
- 'number_of_iterations' : 200 ,\
- 'tolerance_constant':1e-05
- }
-
-print ("#############TNV CPU#################")
-start_time = timeit.default_timer()
-tnv_cpu = TNV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'])
-
-rms = rmse(idealVol, tnv_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(tnv_cpu[3,:,:], cmap="gray")
-plt.title('{}'.format('CPU results'))
diff --git a/Wrappers/Python/demos/demo_cpu_regularisers3D.py b/Wrappers/Python/demos/demo_cpu_regularisers3D.py
deleted file mode 100644
index 2d2fc22..0000000
--- a/Wrappers/Python/demos/demo_cpu_regularisers3D.py
+++ /dev/null
@@ -1,458 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-"""
-Created on Thu Feb 22 11:39:43 2018
-
-Demonstration of 3D CPU regularisers
-
-@authors: Daniil Kazantsev, Edoardo Pasca
-"""
-
-import matplotlib.pyplot as plt
-import numpy as np
-import os
-import timeit
-from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, NDF, Diff4th
-from qualitymetrics import rmse
-###############################################################################
-def printParametersToString(pars):
- txt = r''
- for key, value in pars.items():
- if key== 'algorithm' :
- txt += "{0} = {1}".format(key, value.__name__)
- elif key == 'input':
- txt += "{0} = {1}".format(key, np.shape(value))
- elif key == 'refdata':
- txt += "{0} = {1}".format(key, np.shape(value))
- else:
- txt += "{0} = {1}".format(key, value)
- txt += '\n'
- return txt
-###############################################################################
-#%%
-filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif")
-
-# read image
-Im = plt.imread(filename)
-Im = np.asarray(Im, dtype='float32')
-
-Im = Im/255
-perc = 0.05
-u0 = Im + np.random.normal(loc = 0 ,
- scale = perc * Im ,
- size = np.shape(Im))
-u_ref = Im + np.random.normal(loc = 0 ,
- scale = 0.01 * Im ,
- size = np.shape(Im))
-(N,M) = np.shape(u0)
-# map the u0 u0->u0>0
-# f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
-u0 = u0.astype('float32')
-u_ref = u_ref.astype('float32')
-
-# change dims to check that modules work with non-squared images
-"""
-M = M-100
-u_ref2 = np.zeros([N,M],dtype='float32')
-u_ref2[:,0:M] = u_ref[:,0:M]
-u_ref = u_ref2
-del u_ref2
-
-u02 = np.zeros([N,M],dtype='float32')
-u02[:,0:M] = u0[:,0:M]
-u0 = u02
-del u02
-
-Im2 = np.zeros([N,M],dtype='float32')
-Im2[:,0:M] = Im[:,0:M]
-Im = Im2
-del Im2
-"""
-slices = 15
-
-noisyVol = np.zeros((slices,N,M),dtype='float32')
-noisyRef = np.zeros((slices,N,M),dtype='float32')
-idealVol = np.zeros((slices,N,M),dtype='float32')
-
-for i in range (slices):
- noisyVol[i,:,:] = Im + np.random.normal(loc = 0 , scale = perc * Im , size = np.shape(Im))
- noisyRef[i,:,:] = Im + np.random.normal(loc = 0 , scale = 0.01 * Im , size = np.shape(Im))
- idealVol[i,:,:] = Im
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_______________ROF-TV (3D)_________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of ROF-TV regulariser using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy 15th slice of a volume')
-imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
-
-# set parameters
-pars = {'algorithm': ROF_TV, \
- 'input' : noisyVol,\
- 'regularisation_parameter':0.04,\
- 'number_of_iterations': 500,\
- 'time_marching_parameter': 0.0025
- }
-print ("#############ROF TV CPU####################")
-start_time = timeit.default_timer()
-rof_cpu3D = ROF_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'cpu')
-rms = rmse(idealVol, rof_cpu3D)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(rof_cpu3D[10,:,:], cmap="gray")
-plt.title('{}'.format('Recovered volume on the CPU using ROF-TV'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_______________FGP-TV (3D)__________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of FGP-TV regulariser using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
-
-# set parameters
-pars = {'algorithm' : FGP_TV, \
- 'input' : noisyVol,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :300 ,\
- 'tolerance_constant':0.00001,\
- 'methodTV': 0 ,\
- 'nonneg': 0 ,\
- 'printingOut': 0
- }
-
-print ("#############FGP TV CPU####################")
-start_time = timeit.default_timer()
-fgp_cpu3D = FGP_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['methodTV'],
- pars['nonneg'],
- pars['printingOut'],'cpu')
-
-
-rms = rmse(idealVol, fgp_cpu3D)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(fgp_cpu3D[10,:,:], cmap="gray")
-plt.title('{}'.format('Recovered volume on the CPU using FGP-TV'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_______________SB-TV (3D)_________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of SB-TV regulariser using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
-
-# set parameters
-pars = {'algorithm' : SB_TV, \
- 'input' : noisyVol,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :150 ,\
- 'tolerance_constant':0.00001,\
- 'methodTV': 0 ,\
- 'printingOut': 0
- }
-
-print ("#############SB TV CPU####################")
-start_time = timeit.default_timer()
-sb_cpu3D = SB_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['methodTV'],
- pars['printingOut'],'cpu')
-
-rms = rmse(idealVol, sb_cpu3D)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(sb_cpu3D[10,:,:], cmap="gray")
-plt.title('{}'.format('Recovered volume on the CPU using SB-TV'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_______________LLT-ROF (3D)_________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of LLT-ROF regulariser using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
-
-# set parameters
-pars = {'algorithm' : LLT_ROF, \
- 'input' : noisyVol,\
- 'regularisation_parameterROF':0.04, \
- 'regularisation_parameterLLT':0.015, \
- 'number_of_iterations' :300 ,\
- 'time_marching_parameter' :0.0025 ,\
- }
-
-print ("#############LLT ROF CPU####################")
-start_time = timeit.default_timer()
-lltrof_cpu3D = LLT_ROF(pars['input'],
- pars['regularisation_parameterROF'],
- pars['regularisation_parameterLLT'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'cpu')
-
-rms = rmse(idealVol, lltrof_cpu3D)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(lltrof_cpu3D[10,:,:], cmap="gray")
-plt.title('{}'.format('Recovered volume on the CPU using LLT-ROF'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_______________TGV (3D)_________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of TGV regulariser using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
-
-# set parameters
-pars = {'algorithm' : TGV, \
- 'input' : noisyVol,\
- 'regularisation_parameter':0.04, \
- 'alpha1':1.0,\
- 'alpha0':2.0,\
- 'number_of_iterations' :250 ,\
- 'LipshitzConstant' :12 ,\
- }
-
-print ("#############TGV CPU####################")
-start_time = timeit.default_timer()
-tgv_cpu3D = TGV(pars['input'],
- pars['regularisation_parameter'],
- pars['alpha1'],
- pars['alpha0'],
- pars['number_of_iterations'],
- pars['LipshitzConstant'],'cpu')
-
-
-rms = rmse(idealVol, tgv_cpu3D)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(tgv_cpu3D[10,:,:], cmap="gray")
-plt.title('{}'.format('Recovered volume on the CPU using TGV'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("________________NDF (3D)___________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of NDF regulariser using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy volume')
-imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
-
-# set parameters
-pars = {'algorithm' : NDF, \
- 'input' : noisyVol,\
- 'regularisation_parameter':0.025, \
- 'edge_parameter':0.015,\
- 'number_of_iterations' :500 ,\
- 'time_marching_parameter':0.025,\
- 'penalty_type': 1
- }
-
-print ("#############NDF CPU################")
-start_time = timeit.default_timer()
-ndf_cpu3D = NDF(pars['input'],
- pars['regularisation_parameter'],
- pars['edge_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],
- pars['penalty_type'])
-
-rms = rmse(idealVol, ndf_cpu3D)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(ndf_cpu3D[10,:,:], cmap="gray")
-plt.title('{}'.format('Recovered volume on the CPU using NDF iterations'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("___Anisotropic Diffusion 4th Order (2D)____")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of Diff4th regulariser using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy volume')
-imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
-
-# set parameters
-pars = {'algorithm' : Diff4th, \
- 'input' : noisyVol,\
- 'regularisation_parameter':3.5, \
- 'edge_parameter':0.02,\
- 'number_of_iterations' :300 ,\
- 'time_marching_parameter':0.0015
- }
-
-print ("#############Diff4th CPU################")
-start_time = timeit.default_timer()
-diff4th_cpu3D = Diff4th(pars['input'],
- pars['regularisation_parameter'],
- pars['edge_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'])
-
-rms = rmse(idealVol, diff4th_cpu3D)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(diff4th_cpu3D[10,:,:], cmap="gray")
-plt.title('{}'.format('Recovered volume on the CPU using DIFF4th iterations'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_______________FGP-dTV (3D)__________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of FGP-dTV regulariser using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
-
-# set parameters
-pars = {'algorithm' : FGP_dTV,\
- 'input' : noisyVol,\
- 'refdata' : noisyRef,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :300 ,\
- 'tolerance_constant':0.00001,\
- 'eta_const':0.2,\
- 'methodTV': 0 ,\
- 'nonneg': 0 ,\
- 'printingOut': 0
- }
-
-print ("#############FGP dTV CPU####################")
-start_time = timeit.default_timer()
-fgp_dTV_cpu3D = FGP_dTV(pars['input'],
- pars['refdata'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['eta_const'],
- pars['methodTV'],
- pars['nonneg'],
- pars['printingOut'],'cpu')
-
-
-rms = rmse(idealVol, fgp_dTV_cpu3D)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(fgp_dTV_cpu3D[10,:,:], cmap="gray")
-plt.title('{}'.format('Recovered volume on the CPU using FGP-dTV'))
-#%%
diff --git a/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py b/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py
deleted file mode 100644
index 230a761..0000000
--- a/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py
+++ /dev/null
@@ -1,790 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-"""
-Created on Thu Feb 22 11:39:43 2018
-
-Demonstration of CPU implementation against the GPU one
-
-@authors: Daniil Kazantsev, Edoardo Pasca
-"""
-
-import matplotlib.pyplot as plt
-import numpy as np
-import os
-import timeit
-from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, NDF, Diff4th
-from ccpi.filters.regularisers import PatchSelect
-from qualitymetrics import rmse
-###############################################################################
-def printParametersToString(pars):
- txt = r''
- for key, value in pars.items():
- if key== 'algorithm' :
- txt += "{0} = {1}".format(key, value.__name__)
- elif key == 'input':
- txt += "{0} = {1}".format(key, np.shape(value))
- elif key == 'refdata':
- txt += "{0} = {1}".format(key, np.shape(value))
- else:
- txt += "{0} = {1}".format(key, value)
- txt += '\n'
- return txt
-###############################################################################
-
-filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif")
-
-# read image
-Im = plt.imread(filename)
-Im = np.asarray(Im, dtype='float32')
-
-Im = Im/255
-perc = 0.05
-u0 = Im + np.random.normal(loc = 0 ,
- scale = perc * Im ,
- size = np.shape(Im))
-u_ref = Im + np.random.normal(loc = 0 ,
- scale = 0.01 * Im ,
- size = np.shape(Im))
-
-# map the u0 u0->u0>0
-# f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
-u0 = u0.astype('float32')
-u_ref = u_ref.astype('float32')
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("____________ROF-TV bench___________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Comparison of ROF-TV regulariser using CPU and GPU implementations')
-a=fig.add_subplot(1,4,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm': ROF_TV, \
- 'input' : u0,\
- 'regularisation_parameter':0.04,\
- 'number_of_iterations': 4500,\
- 'time_marching_parameter': 0.00002
- }
-print ("#############ROF TV CPU####################")
-start_time = timeit.default_timer()
-rof_cpu = ROF_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'cpu')
-rms = rmse(Im, rof_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,4,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(rof_cpu, cmap="gray")
-plt.title('{}'.format('CPU results'))
-
-print ("##############ROF TV GPU##################")
-start_time = timeit.default_timer()
-rof_gpu = ROF_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'gpu')
-
-rms = rmse(Im, rof_gpu)
-pars['rmse'] = rms
-pars['algorithm'] = ROF_TV
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,4,3)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(rof_gpu, cmap="gray")
-plt.title('{}'.format('GPU results'))
-
-
-print ("--------Compare the results--------")
-tolerance = 1e-05
-diff_im = np.zeros(np.shape(rof_cpu))
-diff_im = abs(rof_cpu - rof_gpu)
-diff_im[diff_im > tolerance] = 1
-a=fig.add_subplot(1,4,4)
-imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray")
-plt.title('{}'.format('Pixels larger threshold difference'))
-if (diff_im.sum() > 1):
- print ("Arrays do not match!")
-else:
- print ("Arrays match")
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("____________FGP-TV bench___________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Comparison of FGP-TV regulariser using CPU and GPU implementations')
-a=fig.add_subplot(1,4,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : FGP_TV, \
- 'input' : u0,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :1200 ,\
- 'tolerance_constant':0.00001,\
- 'methodTV': 0 ,\
- 'nonneg': 0 ,\
- 'printingOut': 0
- }
-
-print ("#############FGP TV CPU####################")
-start_time = timeit.default_timer()
-fgp_cpu = FGP_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['methodTV'],
- pars['nonneg'],
- pars['printingOut'],'cpu')
-
-
-rms = rmse(Im, fgp_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,4,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(fgp_cpu, cmap="gray")
-plt.title('{}'.format('CPU results'))
-
-
-print ("##############FGP TV GPU##################")
-start_time = timeit.default_timer()
-fgp_gpu = FGP_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['methodTV'],
- pars['nonneg'],
- pars['printingOut'],'gpu')
-
-rms = rmse(Im, fgp_gpu)
-pars['rmse'] = rms
-pars['algorithm'] = FGP_TV
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,4,3)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(fgp_gpu, cmap="gray")
-plt.title('{}'.format('GPU results'))
-
-
-print ("--------Compare the results--------")
-tolerance = 1e-05
-diff_im = np.zeros(np.shape(fgp_cpu))
-diff_im = abs(fgp_cpu - fgp_gpu)
-diff_im[diff_im > tolerance] = 1
-a=fig.add_subplot(1,4,4)
-imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray")
-plt.title('{}'.format('Pixels larger threshold difference'))
-if (diff_im.sum() > 1):
- print ("Arrays do not match!")
-else:
- print ("Arrays match")
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("____________SB-TV bench___________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Comparison of SB-TV regulariser using CPU and GPU implementations')
-a=fig.add_subplot(1,4,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : SB_TV, \
- 'input' : u0,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :150 ,\
- 'tolerance_constant':1e-05,\
- 'methodTV': 0 ,\
- 'printingOut': 0
- }
-
-print ("#############SB-TV CPU####################")
-start_time = timeit.default_timer()
-sb_cpu = SB_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['methodTV'],
- pars['printingOut'],'cpu')
-
-
-rms = rmse(Im, sb_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,4,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(sb_cpu, cmap="gray")
-plt.title('{}'.format('CPU results'))
-
-
-print ("##############SB TV GPU##################")
-start_time = timeit.default_timer()
-sb_gpu = SB_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['methodTV'],
- pars['printingOut'],'gpu')
-
-rms = rmse(Im, sb_gpu)
-pars['rmse'] = rms
-pars['algorithm'] = SB_TV
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,4,3)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(sb_gpu, cmap="gray")
-plt.title('{}'.format('GPU results'))
-
-print ("--------Compare the results--------")
-tolerance = 1e-05
-diff_im = np.zeros(np.shape(sb_cpu))
-diff_im = abs(sb_cpu - sb_gpu)
-diff_im[diff_im > tolerance] = 1
-a=fig.add_subplot(1,4,4)
-imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray")
-plt.title('{}'.format('Pixels larger threshold difference'))
-if (diff_im.sum() > 1):
- print ("Arrays do not match!")
-else:
- print ("Arrays match")
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("____________TGV bench___________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Comparison of TGV regulariser using CPU and GPU implementations')
-a=fig.add_subplot(1,4,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : TGV, \
- 'input' : u0,\
- 'regularisation_parameter':0.04, \
- 'alpha1':1.0,\
- 'alpha0':2.0,\
- 'number_of_iterations' :400 ,\
- 'LipshitzConstant' :12 ,\
- }
-
-print ("#############TGV CPU####################")
-start_time = timeit.default_timer()
-tgv_cpu = TGV(pars['input'],
- pars['regularisation_parameter'],
- pars['alpha1'],
- pars['alpha0'],
- pars['number_of_iterations'],
- pars['LipshitzConstant'],'cpu')
-
-rms = rmse(Im, tgv_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,4,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(tgv_cpu, cmap="gray")
-plt.title('{}'.format('CPU results'))
-
-print ("##############TGV GPU##################")
-start_time = timeit.default_timer()
-tgv_gpu = TGV(pars['input'],
- pars['regularisation_parameter'],
- pars['alpha1'],
- pars['alpha0'],
- pars['number_of_iterations'],
- pars['LipshitzConstant'],'gpu')
-
-rms = rmse(Im, tgv_gpu)
-pars['rmse'] = rms
-pars['algorithm'] = TGV
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,4,3)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(tgv_gpu, cmap="gray")
-plt.title('{}'.format('GPU results'))
-
-print ("--------Compare the results--------")
-tolerance = 1e-05
-diff_im = np.zeros(np.shape(tgv_gpu))
-diff_im = abs(tgv_cpu - tgv_gpu)
-diff_im[diff_im > tolerance] = 1
-a=fig.add_subplot(1,4,4)
-imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray")
-plt.title('{}'.format('Pixels larger threshold difference'))
-if (diff_im.sum() > 1):
- print ("Arrays do not match!")
-else:
- print ("Arrays match")
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("____________LLT-ROF bench___________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Comparison of LLT-ROF regulariser using CPU and GPU implementations')
-a=fig.add_subplot(1,4,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : LLT_ROF, \
- 'input' : u0,\
- 'regularisation_parameterROF':0.04, \
- 'regularisation_parameterLLT':0.01, \
- 'number_of_iterations' :4500 ,\
- 'time_marching_parameter' :0.00002 ,\
- }
-
-print ("#############LLT- ROF CPU####################")
-start_time = timeit.default_timer()
-lltrof_cpu = LLT_ROF(pars['input'],
- pars['regularisation_parameterROF'],
- pars['regularisation_parameterLLT'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'cpu')
-
-rms = rmse(Im, lltrof_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,4,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(lltrof_cpu, cmap="gray")
-plt.title('{}'.format('CPU results'))
-
-print ("#############LLT- ROF GPU####################")
-start_time = timeit.default_timer()
-lltrof_gpu = LLT_ROF(pars['input'],
- pars['regularisation_parameterROF'],
- pars['regularisation_parameterLLT'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'gpu')
-
-rms = rmse(Im, lltrof_gpu)
-pars['rmse'] = rms
-pars['algorithm'] = LLT_ROF
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,4,3)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(lltrof_gpu, cmap="gray")
-plt.title('{}'.format('GPU results'))
-
-print ("--------Compare the results--------")
-tolerance = 1e-05
-diff_im = np.zeros(np.shape(lltrof_gpu))
-diff_im = abs(lltrof_cpu - lltrof_gpu)
-diff_im[diff_im > tolerance] = 1
-a=fig.add_subplot(1,4,4)
-imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray")
-plt.title('{}'.format('Pixels larger threshold difference'))
-if (diff_im.sum() > 1):
- print ("Arrays do not match!")
-else:
- print ("Arrays match")
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_______________NDF bench___________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Comparison of NDF regulariser using CPU and GPU implementations')
-a=fig.add_subplot(1,4,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : NDF, \
- 'input' : u0,\
- 'regularisation_parameter':0.06, \
- 'edge_parameter':0.04,\
- 'number_of_iterations' :1000 ,\
- 'time_marching_parameter':0.025,\
- 'penalty_type': 1
- }
-
-print ("#############NDF CPU####################")
-start_time = timeit.default_timer()
-ndf_cpu = NDF(pars['input'],
- pars['regularisation_parameter'],
- pars['edge_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],
- pars['penalty_type'],'cpu')
-
-rms = rmse(Im, ndf_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,4,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(ndf_cpu, cmap="gray")
-plt.title('{}'.format('CPU results'))
-
-
-print ("##############NDF GPU##################")
-start_time = timeit.default_timer()
-ndf_gpu = NDF(pars['input'],
- pars['regularisation_parameter'],
- pars['edge_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],
- pars['penalty_type'],'gpu')
-
-rms = rmse(Im, ndf_gpu)
-pars['rmse'] = rms
-pars['algorithm'] = NDF
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,4,3)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(ndf_gpu, cmap="gray")
-plt.title('{}'.format('GPU results'))
-
-print ("--------Compare the results--------")
-tolerance = 1e-05
-diff_im = np.zeros(np.shape(ndf_cpu))
-diff_im = abs(ndf_cpu - ndf_gpu)
-diff_im[diff_im > tolerance] = 1
-a=fig.add_subplot(1,4,4)
-imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray")
-plt.title('{}'.format('Pixels larger threshold difference'))
-if (diff_im.sum() > 1):
- print ("Arrays do not match!")
-else:
- print ("Arrays match")
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("___Anisotropic Diffusion 4th Order (2D)____")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Comparison of Diff4th regulariser using CPU and GPU implementations')
-a=fig.add_subplot(1,4,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : Diff4th, \
- 'input' : u0,\
- 'regularisation_parameter':3.5, \
- 'edge_parameter':0.02,\
- 'number_of_iterations' :500 ,\
- 'time_marching_parameter':0.001
- }
-
-print ("#############Diff4th CPU####################")
-start_time = timeit.default_timer()
-diff4th_cpu = Diff4th(pars['input'],
- pars['regularisation_parameter'],
- pars['edge_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'cpu')
-
-rms = rmse(Im, diff4th_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,4,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(diff4th_cpu, cmap="gray")
-plt.title('{}'.format('CPU results'))
-
-print ("##############Diff4th GPU##################")
-start_time = timeit.default_timer()
-diff4th_gpu = Diff4th(pars['input'],
- pars['regularisation_parameter'],
- pars['edge_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'], 'gpu')
-
-rms = rmse(Im, diff4th_gpu)
-pars['rmse'] = rms
-pars['algorithm'] = Diff4th
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,4,3)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(diff4th_gpu, cmap="gray")
-plt.title('{}'.format('GPU results'))
-
-print ("--------Compare the results--------")
-tolerance = 1e-05
-diff_im = np.zeros(np.shape(diff4th_cpu))
-diff_im = abs(diff4th_cpu - diff4th_gpu)
-diff_im[diff_im > tolerance] = 1
-a=fig.add_subplot(1,4,4)
-imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray")
-plt.title('{}'.format('Pixels larger threshold difference'))
-if (diff_im.sum() > 1):
- print ("Arrays do not match!")
-else:
- print ("Arrays match")
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("____________FGP-dTV bench___________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Comparison of FGP-dTV regulariser using CPU and GPU implementations')
-a=fig.add_subplot(1,4,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : FGP_dTV, \
- 'input' : u0,\
- 'refdata' : u_ref,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :1000 ,\
- 'tolerance_constant':1e-07,\
- 'eta_const':0.2,\
- 'methodTV': 0 ,\
- 'nonneg': 0 ,\
- 'printingOut': 0
- }
-
-print ("#############FGP dTV CPU####################")
-start_time = timeit.default_timer()
-fgp_dtv_cpu = FGP_dTV(pars['input'],
- pars['refdata'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['eta_const'],
- pars['methodTV'],
- pars['nonneg'],
- pars['printingOut'],'cpu')
-
-
-rms = rmse(Im, fgp_dtv_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,4,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(fgp_dtv_cpu, cmap="gray")
-plt.title('{}'.format('CPU results'))
-
-print ("##############FGP dTV GPU##################")
-start_time = timeit.default_timer()
-fgp_dtv_gpu = FGP_dTV(pars['input'],
- pars['refdata'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['eta_const'],
- pars['methodTV'],
- pars['nonneg'],
- pars['printingOut'],'gpu')
-rms = rmse(Im, fgp_dtv_gpu)
-pars['rmse'] = rms
-pars['algorithm'] = FGP_dTV
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,4,3)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(fgp_dtv_gpu, cmap="gray")
-plt.title('{}'.format('GPU results'))
-
-
-print ("--------Compare the results--------")
-tolerance = 1e-05
-diff_im = np.zeros(np.shape(fgp_dtv_cpu))
-diff_im = abs(fgp_dtv_cpu - fgp_dtv_gpu)
-diff_im[diff_im > tolerance] = 1
-a=fig.add_subplot(1,4,4)
-imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray")
-plt.title('{}'.format('Pixels larger threshold difference'))
-if (diff_im.sum() > 1):
- print ("Arrays do not match!")
-else:
- print ("Arrays match")
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("____Non-local regularisation bench_________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Comparison of Nonlocal TV regulariser using CPU and GPU implementations')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-pars = {'algorithm' : PatchSelect, \
- 'input' : u0,\
- 'searchwindow': 7, \
- 'patchwindow': 2,\
- 'neighbours' : 15 ,\
- 'edge_parameter':0.18}
-
-print ("############## Nonlocal Patches on CPU##################")
-start_time = timeit.default_timer()
-H_i, H_j, WeightsCPU = PatchSelect(pars['input'],
- pars['searchwindow'],
- pars['patchwindow'],
- pars['neighbours'],
- pars['edge_parameter'],'cpu')
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-
-print ("############## Nonlocal Patches on GPU##################")
-start_time = timeit.default_timer()
-start_time = timeit.default_timer()
-H_i, H_j, WeightsGPU = PatchSelect(pars['input'],
- pars['searchwindow'],
- pars['patchwindow'],
- pars['neighbours'],
- pars['edge_parameter'],'gpu')
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-
-print ("--------Compare the results--------")
-tolerance = 1e-05
-diff_im = np.zeros(np.shape(u0))
-diff_im = abs(WeightsCPU[0,:,:] - WeightsGPU[0,:,:])
-diff_im[diff_im > tolerance] = 1
-a=fig.add_subplot(1,2,2)
-imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray")
-plt.title('{}'.format('Pixels larger threshold difference'))
-if (diff_im.sum() > 1):
- print ("Arrays do not match!")
-else:
- print ("Arrays match")
-#%% \ No newline at end of file
diff --git a/Wrappers/Python/demos/demo_gpu_regularisers.py b/Wrappers/Python/demos/demo_gpu_regularisers.py
deleted file mode 100644
index e1c6575..0000000
--- a/Wrappers/Python/demos/demo_gpu_regularisers.py
+++ /dev/null
@@ -1,518 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-"""
-Created on Thu Feb 22 11:39:43 2018
-
-Demonstration of GPU regularisers
-
-@authors: Daniil Kazantsev, Edoardo Pasca
-"""
-
-import matplotlib.pyplot as plt
-import numpy as np
-import os
-import timeit
-from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, NDF, Diff4th
-from ccpi.filters.regularisers import PatchSelect, NLTV
-from qualitymetrics import rmse
-###############################################################################
-def printParametersToString(pars):
- txt = r''
- for key, value in pars.items():
- if key== 'algorithm' :
- txt += "{0} = {1}".format(key, value.__name__)
- elif key == 'input':
- txt += "{0} = {1}".format(key, np.shape(value))
- elif key == 'refdata':
- txt += "{0} = {1}".format(key, np.shape(value))
- else:
- txt += "{0} = {1}".format(key, value)
- txt += '\n'
- return txt
-###############################################################################
-#%%
-filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif")
-
-# read image
-Im = plt.imread(filename)
-Im = np.asarray(Im, dtype='float32')
-
-Im = Im/255
-perc = 0.05
-u0 = Im + np.random.normal(loc = 0 ,
- scale = perc * Im ,
- size = np.shape(Im))
-u_ref = Im + np.random.normal(loc = 0 ,
- scale = 0.01 * Im ,
- size = np.shape(Im))
-(N,M) = np.shape(u0)
-# map the u0 u0->u0>0
-# f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
-u0 = u0.astype('float32')
-u_ref = u_ref.astype('float32')
-"""
-M = M-100
-u_ref2 = np.zeros([N,M],dtype='float32')
-u_ref2[:,0:M] = u_ref[:,0:M]
-u_ref = u_ref2
-del u_ref2
-
-u02 = np.zeros([N,M],dtype='float32')
-u02[:,0:M] = u0[:,0:M]
-u0 = u02
-del u02
-
-Im2 = np.zeros([N,M],dtype='float32')
-Im2[:,0:M] = Im[:,0:M]
-Im = Im2
-del Im2
-"""
-#%%
-
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("____________ROF-TV regulariser_____________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of the ROF-TV regulariser using the GPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm': ROF_TV, \
- 'input' : u0,\
- 'regularisation_parameter':0.04,\
- 'number_of_iterations': 1200,\
- 'time_marching_parameter': 0.0025
- }
-print ("##############ROF TV GPU##################")
-start_time = timeit.default_timer()
-rof_gpu = ROF_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'gpu')
-
-rms = rmse(Im, rof_gpu)
-pars['rmse'] = rms
-pars['algorithm'] = ROF_TV
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(rof_gpu, cmap="gray")
-plt.title('{}'.format('GPU results'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("____________FGP-TV regulariser_____________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of the FGP-TV regulariser using the GPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : FGP_TV, \
- 'input' : u0,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :1200 ,\
- 'tolerance_constant':1e-06,\
- 'methodTV': 0 ,\
- 'nonneg': 0 ,\
- 'printingOut': 0
- }
-
-print ("##############FGP TV GPU##################")
-start_time = timeit.default_timer()
-fgp_gpu = FGP_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['methodTV'],
- pars['nonneg'],
- pars['printingOut'],'gpu')
-
-rms = rmse(Im, fgp_gpu)
-pars['rmse'] = rms
-pars['algorithm'] = FGP_TV
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(fgp_gpu, cmap="gray")
-plt.title('{}'.format('GPU results'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("____________SB-TV regulariser______________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of the SB-TV regulariser using the GPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : SB_TV, \
- 'input' : u0,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :150 ,\
- 'tolerance_constant':1e-06,\
- 'methodTV': 0 ,\
- 'printingOut': 0
- }
-
-print ("##############SB TV GPU##################")
-start_time = timeit.default_timer()
-sb_gpu = SB_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['methodTV'],
- pars['printingOut'],'gpu')
-
-rms = rmse(Im, sb_gpu)
-pars['rmse'] = rms
-pars['algorithm'] = SB_TV
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(sb_gpu, cmap="gray")
-plt.title('{}'.format('GPU results'))
-#%%
-
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_____Total Generalised Variation (2D)______")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of TGV regulariser using the GPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : TGV, \
- 'input' : u0,\
- 'regularisation_parameter':0.04, \
- 'alpha1':1.0,\
- 'alpha0':2.0,\
- 'number_of_iterations' :1250 ,\
- 'LipshitzConstant' :12 ,\
- }
-
-print ("#############TGV CPU####################")
-start_time = timeit.default_timer()
-tgv_gpu = TGV(pars['input'],
- pars['regularisation_parameter'],
- pars['alpha1'],
- pars['alpha0'],
- pars['number_of_iterations'],
- pars['LipshitzConstant'],'gpu')
-
-
-rms = rmse(Im, tgv_gpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(tgv_gpu, cmap="gray")
-plt.title('{}'.format('GPU results'))
-
-#%%
-
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("______________LLT- ROF (2D)________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of LLT-ROF regulariser using the GPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : LLT_ROF, \
- 'input' : u0,\
- 'regularisation_parameterROF':0.04, \
- 'regularisation_parameterLLT':0.01, \
- 'number_of_iterations' :500 ,\
- 'time_marching_parameter' :0.0025 ,\
- }
-
-print ("#############LLT- ROF GPU####################")
-start_time = timeit.default_timer()
-lltrof_gpu = LLT_ROF(pars['input'],
- pars['regularisation_parameterROF'],
- pars['regularisation_parameterLLT'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'gpu')
-
-
-rms = rmse(Im, lltrof_gpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(lltrof_gpu, cmap="gray")
-plt.title('{}'.format('GPU results'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_______________NDF regulariser_____________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of the NDF regulariser using the GPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : NDF, \
- 'input' : u0,\
- 'regularisation_parameter':0.025, \
- 'edge_parameter':0.015,\
- 'number_of_iterations' :500 ,\
- 'time_marching_parameter':0.025,\
- 'penalty_type': 1
- }
-
-print ("##############NDF GPU##################")
-start_time = timeit.default_timer()
-ndf_gpu = NDF(pars['input'],
- pars['regularisation_parameter'],
- pars['edge_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],
- pars['penalty_type'],'gpu')
-
-rms = rmse(Im, ndf_gpu)
-pars['rmse'] = rms
-pars['algorithm'] = NDF
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(ndf_gpu, cmap="gray")
-plt.title('{}'.format('GPU results'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("___Anisotropic Diffusion 4th Order (2D)____")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of Diff4th regulariser using the GPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : Diff4th, \
- 'input' : u0,\
- 'regularisation_parameter':3.5, \
- 'edge_parameter':0.02,\
- 'number_of_iterations' :500 ,\
- 'time_marching_parameter':0.0015
- }
-
-print ("#############DIFF4th CPU################")
-start_time = timeit.default_timer()
-diff4_gpu = Diff4th(pars['input'],
- pars['regularisation_parameter'],
- pars['edge_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'gpu')
-
-rms = rmse(Im, diff4_gpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(diff4_gpu, cmap="gray")
-plt.title('{}'.format('GPU results'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("___Nonlocal patches pre-calculation____")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-start_time = timeit.default_timer()
-# set parameters
-pars = {'algorithm' : PatchSelect, \
- 'input' : u0,\
- 'searchwindow': 7, \
- 'patchwindow': 2,\
- 'neighbours' : 15 ,\
- 'edge_parameter':0.18}
-
-H_i, H_j, Weights = PatchSelect(pars['input'],
- pars['searchwindow'],
- pars['patchwindow'],
- pars['neighbours'],
- pars['edge_parameter'],'gpu')
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-"""
-plt.figure()
-plt.imshow(Weights[0,:,:],cmap="gray",interpolation="nearest",vmin=0, vmax=1)
-plt.show()
-"""
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("___Nonlocal Total Variation penalty____")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of NLTV regulariser using the CPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-pars2 = {'algorithm' : NLTV, \
- 'input' : u0,\
- 'H_i': H_i, \
- 'H_j': H_j,\
- 'H_k' : 0,\
- 'Weights' : Weights,\
- 'regularisation_parameter': 0.02,\
- 'iterations': 3
- }
-start_time = timeit.default_timer()
-nltv_cpu = NLTV(pars2['input'],
- pars2['H_i'],
- pars2['H_j'],
- pars2['H_k'],
- pars2['Weights'],
- pars2['regularisation_parameter'],
- pars2['iterations'])
-
-rms = rmse(Im, nltv_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(nltv_cpu, cmap="gray")
-plt.title('{}'.format('CPU results'))
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("____________FGP-dTV bench___________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of the FGP-dTV regulariser using the GPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : FGP_dTV, \
- 'input' : u0,\
- 'refdata' : u_ref,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :2000 ,\
- 'tolerance_constant':1e-06,\
- 'eta_const':0.2,\
- 'methodTV': 0 ,\
- 'nonneg': 0 ,\
- 'printingOut': 0
- }
-
-print ("##############FGP dTV GPU##################")
-start_time = timeit.default_timer()
-fgp_dtv_gpu = FGP_dTV(pars['input'],
- pars['refdata'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['eta_const'],
- pars['methodTV'],
- pars['nonneg'],
- pars['printingOut'],'gpu')
-
-rms = rmse(Im, fgp_dtv_gpu)
-pars['rmse'] = rms
-pars['algorithm'] = FGP_dTV
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(fgp_dtv_gpu, cmap="gray")
-plt.title('{}'.format('GPU results'))
diff --git a/Wrappers/Python/demos/demo_gpu_regularisers3D.py b/Wrappers/Python/demos/demo_gpu_regularisers3D.py
deleted file mode 100644
index b6058d2..0000000
--- a/Wrappers/Python/demos/demo_gpu_regularisers3D.py
+++ /dev/null
@@ -1,460 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-"""
-Created on Thu Feb 22 11:39:43 2018
-
-Demonstration of GPU regularisers
-
-@authors: Daniil Kazantsev, Edoardo Pasca
-"""
-
-import matplotlib.pyplot as plt
-import numpy as np
-import os
-import timeit
-from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, NDF, Diff4th
-from qualitymetrics import rmse
-###############################################################################
-def printParametersToString(pars):
- txt = r''
- for key, value in pars.items():
- if key== 'algorithm' :
- txt += "{0} = {1}".format(key, value.__name__)
- elif key == 'input':
- txt += "{0} = {1}".format(key, np.shape(value))
- elif key == 'refdata':
- txt += "{0} = {1}".format(key, np.shape(value))
- else:
- txt += "{0} = {1}".format(key, value)
- txt += '\n'
- return txt
-###############################################################################
-#%%
-filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif")
-
-# read image
-Im = plt.imread(filename)
-Im = np.asarray(Im, dtype='float32')
-
-Im = Im/255
-perc = 0.05
-u0 = Im + np.random.normal(loc = 0 ,
- scale = perc * Im ,
- size = np.shape(Im))
-u_ref = Im + np.random.normal(loc = 0 ,
- scale = 0.01 * Im ,
- size = np.shape(Im))
-(N,M) = np.shape(u0)
-# map the u0 u0->u0>0
-# f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
-u0 = u0.astype('float32')
-u_ref = u_ref.astype('float32')
-"""
-M = M-100
-u_ref2 = np.zeros([N,M],dtype='float32')
-u_ref2[:,0:M] = u_ref[:,0:M]
-u_ref = u_ref2
-del u_ref2
-
-u02 = np.zeros([N,M],dtype='float32')
-u02[:,0:M] = u0[:,0:M]
-u0 = u02
-del u02
-
-Im2 = np.zeros([N,M],dtype='float32')
-Im2[:,0:M] = Im[:,0:M]
-Im = Im2
-del Im2
-"""
-
-
-slices = 20
-
-filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif")
-Im = plt.imread(filename)
-Im = np.asarray(Im, dtype='float32')
-
-Im = Im/255
-perc = 0.05
-
-noisyVol = np.zeros((slices,N,N),dtype='float32')
-noisyRef = np.zeros((slices,N,N),dtype='float32')
-idealVol = np.zeros((slices,N,N),dtype='float32')
-
-for i in range (slices):
- noisyVol[i,:,:] = Im + np.random.normal(loc = 0 , scale = perc * Im , size = np.shape(Im))
- noisyRef[i,:,:] = Im + np.random.normal(loc = 0 , scale = 0.01 * Im , size = np.shape(Im))
- idealVol[i,:,:] = Im
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_______________ROF-TV (3D)_________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of ROF-TV regulariser using the GPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy 15th slice of a volume')
-imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
-
-# set parameters
-pars = {'algorithm': ROF_TV, \
- 'input' : noisyVol,\
- 'regularisation_parameter':0.04,\
- 'number_of_iterations': 500,\
- 'time_marching_parameter': 0.0025
- }
-print ("#############ROF TV GPU####################")
-start_time = timeit.default_timer()
-rof_gpu3D = ROF_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'gpu')
-rms = rmse(idealVol, rof_gpu3D)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(rof_gpu3D[10,:,:], cmap="gray")
-plt.title('{}'.format('Recovered volume on the GPU using ROF-TV'))
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_______________FGP-TV (3D)__________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of FGP-TV regulariser using the GPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
-
-# set parameters
-pars = {'algorithm' : FGP_TV, \
- 'input' : noisyVol,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :300 ,\
- 'tolerance_constant':0.00001,\
- 'methodTV': 0 ,\
- 'nonneg': 0 ,\
- 'printingOut': 0
- }
-
-print ("#############FGP TV GPU####################")
-start_time = timeit.default_timer()
-fgp_gpu3D = FGP_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['methodTV'],
- pars['nonneg'],
- pars['printingOut'],'gpu')
-
-rms = rmse(idealVol, fgp_gpu3D)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(fgp_gpu3D[10,:,:], cmap="gray")
-plt.title('{}'.format('Recovered volume on the GPU using FGP-TV'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_______________SB-TV (3D)__________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of SB-TV regulariser using the GPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
-
-# set parameters
-pars = {'algorithm' : SB_TV, \
- 'input' : noisyVol,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :100 ,\
- 'tolerance_constant':1e-05,\
- 'methodTV': 0 ,\
- 'printingOut': 0
- }
-
-print ("#############SB TV GPU####################")
-start_time = timeit.default_timer()
-sb_gpu3D = SB_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['methodTV'],
- pars['printingOut'],'gpu')
-
-rms = rmse(idealVol, sb_gpu3D)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(sb_gpu3D[10,:,:], cmap="gray")
-plt.title('{}'.format('Recovered volume on the GPU using SB-TV'))
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_______________LLT-ROF (3D)_________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of LLT-ROF regulariser using the GPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
-
-# set parameters
-pars = {'algorithm' : LLT_ROF, \
- 'input' : noisyVol,\
- 'regularisation_parameterROF':0.04, \
- 'regularisation_parameterLLT':0.015, \
- 'number_of_iterations' :300 ,\
- 'time_marching_parameter' :0.0025 ,\
- }
-
-print ("#############LLT ROF CPU####################")
-start_time = timeit.default_timer()
-lltrof_gpu3D = LLT_ROF(pars['input'],
- pars['regularisation_parameterROF'],
- pars['regularisation_parameterLLT'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'gpu')
-
-rms = rmse(idealVol, lltrof_gpu3D)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(lltrof_gpu3D[10,:,:], cmap="gray")
-plt.title('{}'.format('Recovered volume on the GPU using LLT-ROF'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_______________TGV (3D)_________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of TGV regulariser using the GPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
-
-# set parameters
-pars = {'algorithm' : TGV, \
- 'input' : noisyVol,\
- 'regularisation_parameter':0.04, \
- 'alpha1':1.0,\
- 'alpha0':2.0,\
- 'number_of_iterations' :600 ,\
- 'LipshitzConstant' :12 ,\
- }
-
-print ("#############TGV GPU####################")
-start_time = timeit.default_timer()
-tgv_gpu3D = TGV(pars['input'],
- pars['regularisation_parameter'],
- pars['alpha1'],
- pars['alpha0'],
- pars['number_of_iterations'],
- pars['LipshitzConstant'],'gpu')
-
-
-rms = rmse(idealVol, tgv_gpu3D)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(tgv_gpu3D[10,:,:], cmap="gray")
-plt.title('{}'.format('Recovered volume on the GPU using TGV'))
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_______________NDF-TV (3D)_________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of NDF regulariser using the GPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
-
-# set parameters
-pars = {'algorithm' : NDF, \
- 'input' : noisyVol,\
- 'regularisation_parameter':0.025, \
- 'edge_parameter':0.015,\
- 'number_of_iterations' :500 ,\
- 'time_marching_parameter':0.025,\
- 'penalty_type': 1
- }
-
-print ("#############NDF GPU####################")
-start_time = timeit.default_timer()
-ndf_gpu3D = NDF(pars['input'],
- pars['regularisation_parameter'],
- pars['edge_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],
- pars['penalty_type'],'gpu')
-
-rms = rmse(idealVol, ndf_gpu3D)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(ndf_gpu3D[10,:,:], cmap="gray")
-plt.title('{}'.format('Recovered volume on the GPU using NDF'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("___Anisotropic Diffusion 4th Order (3D)____")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of DIFF4th regulariser using the GPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
-
-# set parameters
-pars = {'algorithm' : Diff4th, \
- 'input' : noisyVol,\
- 'regularisation_parameter':3.5, \
- 'edge_parameter':0.02,\
- 'number_of_iterations' :300 ,\
- 'time_marching_parameter':0.0015
- }
-
-print ("#############DIFF4th CPU################")
-start_time = timeit.default_timer()
-diff4_gpu3D = Diff4th(pars['input'],
- pars['regularisation_parameter'],
- pars['edge_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'gpu')
-
-rms = rmse(idealVol, diff4_gpu3D)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(diff4_gpu3D[10,:,:], cmap="gray")
-plt.title('{}'.format('GPU results'))
-
-#%%
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("_______________FGP-dTV (3D)________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot
-fig = plt.figure()
-plt.suptitle('Performance of FGP-dTV regulariser using the GPU')
-a=fig.add_subplot(1,2,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
-
-# set parameters
-pars = {'algorithm' : FGP_dTV, \
- 'input' : noisyVol,\
- 'refdata' : noisyRef,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :300 ,\
- 'tolerance_constant':0.00001,\
- 'eta_const':0.2,\
- 'methodTV': 0 ,\
- 'nonneg': 0 ,\
- 'printingOut': 0
- }
-
-print ("#############FGP TV GPU####################")
-start_time = timeit.default_timer()
-fgp_dTV_gpu3D = FGP_dTV(pars['input'],
- pars['refdata'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['tolerance_constant'],
- pars['eta_const'],
- pars['methodTV'],
- pars['nonneg'],
- pars['printingOut'],'gpu')
-
-rms = rmse(idealVol, fgp_dTV_gpu3D)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,2,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
- verticalalignment='top', bbox=props)
-imgplot = plt.imshow(fgp_dTV_gpu3D[10,:,:], cmap="gray")
-plt.title('{}'.format('Recovered volume on the GPU using FGP-dTV'))
-#%%
diff --git a/Wrappers/Python/demos/qualitymetrics.py b/Wrappers/Python/demos/qualitymetrics.py
deleted file mode 100644
index 850829e..0000000
--- a/Wrappers/Python/demos/qualitymetrics.py
+++ /dev/null
@@ -1,18 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-"""
-Created on Wed Feb 21 13:34:32 2018
-# quality metrics
-@authors: Daniil Kazantsev, Edoardo Pasca
-"""
-import numpy as np
-
-def nrmse(im1, im2):
- rmse = np.sqrt(np.sum((im2 - im1) ** 2) / float(im1.size))
- max_val = max(np.max(im1), np.max(im2))
- min_val = min(np.min(im1), np.min(im2))
- return 1 - (rmse / (max_val - min_val))
-
-def rmse(im1, im2):
- rmse = np.sqrt(np.sum((im1 - im2) ** 2) / float(im1.size))
- return rmse
diff --git a/Wrappers/Python/setup-regularisers.py.in b/Wrappers/Python/setup-regularisers.py.in
deleted file mode 100644
index 462edda..0000000
--- a/Wrappers/Python/setup-regularisers.py.in
+++ /dev/null
@@ -1,75 +0,0 @@
-#!/usr/bin/env python
-
-import setuptools
-from distutils.core import setup
-from distutils.extension import Extension
-from Cython.Distutils import build_ext
-
-import os
-import sys
-import numpy
-import platform
-
-cil_version=os.environ['CIL_VERSION']
-if cil_version == '':
- print("Please set the environmental variable CIL_VERSION")
- sys.exit(1)
-
-library_include_path = ""
-library_lib_path = ""
-try:
- library_include_path = os.environ['LIBRARY_INC']
- library_lib_path = os.environ['LIBRARY_LIB']
-except:
- library_include_path = os.environ['PREFIX']+'/include'
- pass
-
-extra_include_dirs = [numpy.get_include(), library_include_path]
-#extra_library_dirs = [os.path.join(library_include_path, "..", "lib")]
-extra_compile_args = []
-extra_library_dirs = [library_lib_path]
-extra_compile_args = []
-extra_link_args = []
-extra_libraries = ['cilreg']
-
-print ("extra_library_dirs " , extra_library_dirs)
-
-extra_include_dirs += [os.path.join(".." , ".." , "Core"),
- os.path.join(".." , ".." , "Core", "regularisers_CPU"),
- os.path.join(".." , ".." , "Core", "inpainters_CPU"),
- os.path.join(".." , ".." , "Core", "regularisers_GPU" , "TV_FGP" ) ,
- os.path.join(".." , ".." , "Core", "regularisers_GPU" , "TV_ROF" ) ,
- os.path.join(".." , ".." , "Core", "regularisers_GPU" , "TV_SB" ) ,
- os.path.join(".." , ".." , "Core", "regularisers_GPU" , "TGV" ) ,
- os.path.join(".." , ".." , "Core", "regularisers_GPU" , "LLTROF" ) ,
- os.path.join(".." , ".." , "Core", "regularisers_GPU" , "NDF" ) ,
- os.path.join(".." , ".." , "Core", "regularisers_GPU" , "dTV_FGP" ) ,
- os.path.join(".." , ".." , "Core", "regularisers_GPU" , "DIFF4th" ) ,
- os.path.join(".." , ".." , "Core", "regularisers_GPU" , "PatchSelect" ) ,
- "."]
-
-if platform.system() == 'Windows':
- extra_compile_args[0:] = ['/DWIN32','/EHsc','/DBOOST_ALL_NO_LIB' , '/openmp' ]
-else:
- extra_compile_args = ['-fopenmp','-O2', '-funsigned-char', '-Wall', '-std=c++0x']
- extra_libraries += [@EXTRA_OMP_LIB@]
-
-setup(
- name='ccpi',
- description='CCPi Core Imaging Library - Image regularisers',
- version=cil_version,
- cmdclass = {'build_ext': build_ext},
- ext_modules = [Extension("ccpi.filters.cpu_regularisers",
- sources=[os.path.join("." , "src", "cpu_regularisers.pyx" ) ],
- include_dirs=extra_include_dirs,
- library_dirs=extra_library_dirs,
- extra_compile_args=extra_compile_args,
- libraries=extra_libraries ),
-
- ],
- zip_safe = False,
- packages = {'ccpi','ccpi.filters'},
-)
-
-
-@SETUP_GPU_WRAPPERS@
diff --git a/Wrappers/Python/src/cpu_regularisers.pyx b/Wrappers/Python/src/cpu_regularisers.pyx
deleted file mode 100644
index 11a0617..0000000
--- a/Wrappers/Python/src/cpu_regularisers.pyx
+++ /dev/null
@@ -1,685 +0,0 @@
-# distutils: language=c++
-"""
-Copyright 2018 CCPi
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-
-Author: Edoardo Pasca, Daniil Kazantsev
-"""
-
-import cython
-import numpy as np
-cimport numpy as np
-
-cdef extern float TV_ROF_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float tau, int dimX, int dimY, int dimZ);
-cdef extern float TV_FGP_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ);
-cdef extern float SB_TV_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int printM, int dimX, int dimY, int dimZ);
-cdef extern float LLT_ROF_CPU_main(float *Input, float *Output, float lambdaROF, float lambdaLLT, int iterationsNumb, float tau, int dimX, int dimY, int dimZ);
-cdef extern float TGV_main(float *Input, float *Output, float lambdaPar, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY, int dimZ);
-cdef extern float Diffusion_CPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int dimX, int dimY, int dimZ);
-cdef extern float Diffus4th_CPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int dimX, int dimY, int dimZ);
-cdef extern float TNV_CPU_main(float *Input, float *u, float lambdaPar, int maxIter, float tol, int dimX, int dimY, int dimZ);
-cdef extern float dTV_FGP_CPU_main(float *Input, float *InputRef, float *Output, float lambdaPar, int iterationsNumb, float epsil, float eta, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ);
-cdef extern float PatchSelect_CPU_main(float *Input, unsigned short *H_i, unsigned short *H_j, unsigned short *H_k, float *Weights, int dimX, int dimY, int dimZ, int SearchWindow, int SimilarWin, int NumNeighb, float h, int switchM);
-cdef extern float Nonlocal_TV_CPU_main(float *A_orig, float *Output, unsigned short *H_i, unsigned short *H_j, unsigned short *H_k, float *Weights, int dimX, int dimY, int dimZ, int NumNeighb, float lambdaReg, int IterNumb);
-
-cdef extern float Diffusion_Inpaint_CPU_main(float *Input, unsigned char *Mask, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int dimX, int dimY, int dimZ);
-cdef extern float NonlocalMarching_Inpaint_main(float *Input, unsigned char *M, float *Output, unsigned char *M_upd, int SW_increment, int iterationsNumb, int trigger, int dimX, int dimY, int dimZ);
-cdef extern float TV_energy2D(float *U, float *U0, float *E_val, float lambdaPar, int type, int dimX, int dimY);
-cdef extern float TV_energy3D(float *U, float *U0, float *E_val, float lambdaPar, int type, int dimX, int dimY, int dimZ);
-#****************************************************************#
-#********************** Total-variation ROF *********************#
-#****************************************************************#
-def TV_ROF_CPU(inputData, regularisation_parameter, iterationsNumb, marching_step_parameter):
- if inputData.ndim == 2:
- return TV_ROF_2D(inputData, regularisation_parameter, iterationsNumb, marching_step_parameter)
- elif inputData.ndim == 3:
- return TV_ROF_3D(inputData, regularisation_parameter, iterationsNumb, marching_step_parameter)
-
-def TV_ROF_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- float regularisation_parameter,
- int iterationsNumb,
- float marching_step_parameter):
- cdef long dims[2]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
-
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
- np.zeros([dims[0],dims[1]], dtype='float32')
-
- # Run ROF iterations for 2D data
- TV_ROF_CPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameter, iterationsNumb, marching_step_parameter, dims[1], dims[0], 1)
-
- return outputData
-
-def TV_ROF_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- float regularisation_parameter,
- int iterationsNumb,
- float marching_step_parameter):
- cdef long dims[3]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- dims[2] = inputData.shape[2]
-
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
- np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
-
- # Run ROF iterations for 3D data
- TV_ROF_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter, iterationsNumb, marching_step_parameter, dims[2], dims[1], dims[0])
-
- return outputData
-
-#****************************************************************#
-#********************** Total-variation FGP *********************#
-#****************************************************************#
-#******** Total-variation Fast-Gradient-Projection (FGP)*********#
-def TV_FGP_CPU(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV, nonneg, printM):
- if inputData.ndim == 2:
- return TV_FGP_2D(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV, nonneg, printM)
- elif inputData.ndim == 3:
- return TV_FGP_3D(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV, nonneg, printM)
-
-def TV_FGP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- float regularisation_parameter,
- int iterationsNumb,
- float tolerance_param,
- int methodTV,
- int nonneg,
- int printM):
-
- cdef long dims[2]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
-
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
- np.zeros([dims[0],dims[1]], dtype='float32')
-
- #/* Run FGP-TV iterations for 2D data */
- TV_FGP_CPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameter,
- iterationsNumb,
- tolerance_param,
- methodTV,
- nonneg,
- printM,
- dims[1],dims[0],1)
-
- return outputData
-
-def TV_FGP_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- float regularisation_parameter,
- int iterationsNumb,
- float tolerance_param,
- int methodTV,
- int nonneg,
- int printM):
- cdef long dims[3]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- dims[2] = inputData.shape[2]
-
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
- np.zeros([dims[0], dims[1], dims[2]], dtype='float32')
-
- #/* Run FGP-TV iterations for 3D data */
- TV_FGP_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter,
- iterationsNumb,
- tolerance_param,
- methodTV,
- nonneg,
- printM,
- dims[2], dims[1], dims[0])
- return outputData
-
-#***************************************************************#
-#********************** Total-variation SB *********************#
-#***************************************************************#
-#*************** Total-variation Split Bregman (SB)*************#
-def TV_SB_CPU(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV, printM):
- if inputData.ndim == 2:
- return TV_SB_2D(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV, printM)
- elif inputData.ndim == 3:
- return TV_SB_3D(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV, printM)
-
-def TV_SB_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- float regularisation_parameter,
- int iterationsNumb,
- float tolerance_param,
- int methodTV,
- int printM):
-
- cdef long dims[2]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
-
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
- np.zeros([dims[0],dims[1]], dtype='float32')
-
- #/* Run SB-TV iterations for 2D data */
- SB_TV_CPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameter,
- iterationsNumb,
- tolerance_param,
- methodTV,
- printM,
- dims[1],dims[0],1)
-
- return outputData
-
-def TV_SB_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- float regularisation_parameter,
- int iterationsNumb,
- float tolerance_param,
- int methodTV,
- int printM):
- cdef long dims[3]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- dims[2] = inputData.shape[2]
-
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
- np.zeros([dims[0], dims[1], dims[2]], dtype='float32')
-
- #/* Run SB-TV iterations for 3D data */
- SB_TV_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter,
- iterationsNumb,
- tolerance_param,
- methodTV,
- printM,
- dims[2], dims[1], dims[0])
- return outputData
-
-#***************************************************************#
-#***************** Total Generalised Variation *****************#
-#***************************************************************#
-def TGV_CPU(inputData, regularisation_parameter, alpha1, alpha0, iterations, LipshitzConst):
- if inputData.ndim == 2:
- return TGV_2D(inputData, regularisation_parameter, alpha1, alpha0,
- iterations, LipshitzConst)
- elif inputData.ndim == 3:
- return TGV_3D(inputData, regularisation_parameter, alpha1, alpha0,
- iterations, LipshitzConst)
-
-def TGV_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- float regularisation_parameter,
- float alpha1,
- float alpha0,
- int iterationsNumb,
- float LipshitzConst):
-
- cdef long dims[2]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
-
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
- np.zeros([dims[0],dims[1]], dtype='float32')
-
- #/* Run TGV iterations for 2D data */
- TGV_main(&inputData[0,0], &outputData[0,0], regularisation_parameter,
- alpha1,
- alpha0,
- iterationsNumb,
- LipshitzConst,
- dims[1],dims[0],1)
- return outputData
-def TGV_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- float regularisation_parameter,
- float alpha1,
- float alpha0,
- int iterationsNumb,
- float LipshitzConst):
-
- cdef long dims[3]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- dims[2] = inputData.shape[2]
-
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
- np.zeros([dims[0], dims[1], dims[2]], dtype='float32')
-
- #/* Run TGV iterations for 3D data */
- TGV_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter,
- alpha1,
- alpha0,
- iterationsNumb,
- LipshitzConst,
- dims[2], dims[1], dims[0])
- return outputData
-
-#***************************************************************#
-#******************* ROF - LLT regularisation ******************#
-#***************************************************************#
-def LLT_ROF_CPU(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter):
- if inputData.ndim == 2:
- return LLT_ROF_2D(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter)
- elif inputData.ndim == 3:
- return LLT_ROF_3D(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter)
-
-def LLT_ROF_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- float regularisation_parameterROF,
- float regularisation_parameterLLT,
- int iterations,
- float time_marching_parameter):
-
- cdef long dims[2]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
-
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
- np.zeros([dims[0],dims[1]], dtype='float32')
-
- #/* Run ROF-LLT iterations for 2D data */
- LLT_ROF_CPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter, dims[1],dims[0],1)
- return outputData
-
-def LLT_ROF_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- float regularisation_parameterROF,
- float regularisation_parameterLLT,
- int iterations,
- float time_marching_parameter):
-
- cdef long dims[3]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- dims[2] = inputData.shape[2]
-
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
- np.zeros([dims[0], dims[1], dims[2]], dtype='float32')
-
- #/* Run ROF-LLT iterations for 3D data */
- LLT_ROF_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter, dims[2], dims[1], dims[0])
- return outputData
-
-#****************************************************************#
-#**************Directional Total-variation FGP ******************#
-#****************************************************************#
-#******** Directional TV Fast-Gradient-Projection (FGP)*********#
-def dTV_FGP_CPU(inputData, refdata, regularisation_parameter, iterationsNumb, tolerance_param, eta_const, methodTV, nonneg, printM):
- if inputData.ndim == 2:
- return dTV_FGP_2D(inputData, refdata, regularisation_parameter, iterationsNumb, tolerance_param, eta_const, methodTV, nonneg, printM)
- elif inputData.ndim == 3:
- return dTV_FGP_3D(inputData, refdata, regularisation_parameter, iterationsNumb, tolerance_param, eta_const, methodTV, nonneg, printM)
-
-def dTV_FGP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- np.ndarray[np.float32_t, ndim=2, mode="c"] refdata,
- float regularisation_parameter,
- int iterationsNumb,
- float tolerance_param,
- float eta_const,
- int methodTV,
- int nonneg,
- int printM):
-
- cdef long dims[2]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
-
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
- np.zeros([dims[0],dims[1]], dtype='float32')
-
- #/* Run FGP-dTV iterations for 2D data */
- dTV_FGP_CPU_main(&inputData[0,0], &refdata[0,0], &outputData[0,0], regularisation_parameter,
- iterationsNumb,
- tolerance_param,
- eta_const,
- methodTV,
- nonneg,
- printM,
- dims[1], dims[0], 1)
-
- return outputData
-
-def dTV_FGP_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- np.ndarray[np.float32_t, ndim=3, mode="c"] refdata,
- float regularisation_parameter,
- int iterationsNumb,
- float tolerance_param,
- float eta_const,
- int methodTV,
- int nonneg,
- int printM):
- cdef long dims[3]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- dims[2] = inputData.shape[2]
-
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
- np.zeros([dims[0], dims[1], dims[2]], dtype='float32')
-
- #/* Run FGP-dTV iterations for 3D data */
- dTV_FGP_CPU_main(&inputData[0,0,0], &refdata[0,0,0], &outputData[0,0,0], regularisation_parameter,
- iterationsNumb,
- tolerance_param,
- eta_const,
- methodTV,
- nonneg,
- printM,
- dims[2], dims[1], dims[0])
- return outputData
-
-#****************************************************************#
-#*********************Total Nuclear Variation********************#
-#****************************************************************#
-def TNV_CPU(inputData, regularisation_parameter, iterationsNumb, tolerance_param):
- if inputData.ndim == 2:
- return
- elif inputData.ndim == 3:
- return TNV_3D(inputData, regularisation_parameter, iterationsNumb, tolerance_param)
-
-def TNV_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- float regularisation_parameter,
- int iterationsNumb,
- float tolerance_param):
- cdef long dims[3]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- dims[2] = inputData.shape[2]
-
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
- np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
-
- # Run TNV iterations for 3D (X,Y,Channels) data
- TNV_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter, iterationsNumb, tolerance_param, dims[2], dims[1], dims[0])
- return outputData
-#****************************************************************#
-#***************Nonlinear (Isotropic) Diffusion******************#
-#****************************************************************#
-def NDF_CPU(inputData, regularisation_parameter, edge_parameter, iterationsNumb,time_marching_parameter, penalty_type):
- if inputData.ndim == 2:
- return NDF_2D(inputData, regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type)
- elif inputData.ndim == 3:
- return NDF_3D(inputData, regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type)
-
-def NDF_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- float regularisation_parameter,
- float edge_parameter,
- int iterationsNumb,
- float time_marching_parameter,
- int penalty_type):
- cdef long dims[2]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
-
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
- np.zeros([dims[0],dims[1]], dtype='float32')
-
- # Run Nonlinear Diffusion iterations for 2D data
- Diffusion_CPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type, dims[1], dims[0], 1)
- return outputData
-
-def NDF_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- float regularisation_parameter,
- float edge_parameter,
- int iterationsNumb,
- float time_marching_parameter,
- int penalty_type):
- cdef long dims[3]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- dims[2] = inputData.shape[2]
-
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
- np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
-
- # Run Nonlinear Diffusion iterations for 3D data
- Diffusion_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type, dims[2], dims[1], dims[0])
-
- return outputData
-
-#****************************************************************#
-#*************Anisotropic Fourth-Order diffusion*****************#
-#****************************************************************#
-def Diff4th_CPU(inputData, regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter):
- if inputData.ndim == 2:
- return Diff4th_2D(inputData, regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter)
- elif inputData.ndim == 3:
- return Diff4th_3D(inputData, regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter)
-
-def Diff4th_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- float regularisation_parameter,
- float edge_parameter,
- int iterationsNumb,
- float time_marching_parameter):
- cdef long dims[2]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
-
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
- np.zeros([dims[0],dims[1]], dtype='float32')
-
- # Run Anisotropic Fourth-Order diffusion for 2D data
- Diffus4th_CPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, dims[1], dims[0], 1)
- return outputData
-
-def Diff4th_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- float regularisation_parameter,
- float edge_parameter,
- int iterationsNumb,
- float time_marching_parameter):
- cdef long dims[3]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- dims[2] = inputData.shape[2]
-
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
- np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
-
- # Run Anisotropic Fourth-Order diffusion for 3D data
- Diffus4th_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, dims[2], dims[1], dims[0])
-
- return outputData
-
-#****************************************************************#
-#***************Patch-based weights calculation******************#
-#****************************************************************#
-def PATCHSEL_CPU(inputData, searchwindow, patchwindow, neighbours, edge_parameter):
- if inputData.ndim == 2:
- return PatchSel_2D(inputData, searchwindow, patchwindow, neighbours, edge_parameter)
- elif inputData.ndim == 3:
- return 1
-def PatchSel_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- int searchwindow,
- int patchwindow,
- int neighbours,
- float edge_parameter):
- cdef long dims[3]
- dims[0] = neighbours
- dims[1] = inputData.shape[0]
- dims[2] = inputData.shape[1]
-
-
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] Weights = \
- np.zeros([dims[0], dims[1],dims[2]], dtype='float32')
-
- cdef np.ndarray[np.uint16_t, ndim=3, mode="c"] H_i = \
- np.zeros([dims[0], dims[1],dims[2]], dtype='uint16')
-
- cdef np.ndarray[np.uint16_t, ndim=3, mode="c"] H_j = \
- np.zeros([dims[0], dims[1],dims[2]], dtype='uint16')
-
- # Run patch-based weight selection function
- PatchSelect_CPU_main(&inputData[0,0], &H_j[0,0,0], &H_i[0,0,0], &H_i[0,0,0], &Weights[0,0,0], dims[2], dims[1], 0, searchwindow, patchwindow, neighbours, edge_parameter, 1)
- return H_i, H_j, Weights
-"""
-def PatchSel_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- int searchwindow,
- int patchwindow,
- int neighbours,
- float edge_parameter):
- cdef long dims[4]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- dims[2] = inputData.shape[2]
- dims[3] = neighbours
-
- cdef np.ndarray[np.float32_t, ndim=4, mode="c"] Weights = \
- np.zeros([dims[3],dims[0],dims[1],dims[2]], dtype='float32')
-
- cdef np.ndarray[np.uint16_t, ndim=4, mode="c"] H_i = \
- np.zeros([dims[3],dims[0],dims[1],dims[2]], dtype='uint16')
-
- cdef np.ndarray[np.uint16_t, ndim=4, mode="c"] H_j = \
- np.zeros([dims[3],dims[0],dims[1],dims[2]], dtype='uint16')
-
- cdef np.ndarray[np.uint16_t, ndim=4, mode="c"] H_k = \
- np.zeros([dims[3],dims[0],dims[1],dims[2]], dtype='uint16')
-
- # Run patch-based weight selection function
- PatchSelect_CPU_main(&inputData[0,0,0], &H_i[0,0,0,0], &H_j[0,0,0,0], &H_k[0,0,0,0], &Weights[0,0,0,0], dims[2], dims[1], dims[0], searchwindow, patchwindow, neighbours, edge_parameter, 1)
- return H_i, H_j, H_k, Weights
-"""
-
-#****************************************************************#
-#***************Non-local Total Variation******************#
-#****************************************************************#
-def NLTV_CPU(inputData, H_i, H_j, H_k, Weights, regularisation_parameter, iterations):
- if inputData.ndim == 2:
- return NLTV_2D(inputData, H_i, H_j, Weights, regularisation_parameter, iterations)
- elif inputData.ndim == 3:
- return 1
-def NLTV_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- np.ndarray[np.uint16_t, ndim=3, mode="c"] H_i,
- np.ndarray[np.uint16_t, ndim=3, mode="c"] H_j,
- np.ndarray[np.float32_t, ndim=3, mode="c"] Weights,
- float regularisation_parameter,
- int iterations):
-
- cdef long dims[2]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- neighbours = H_i.shape[0]
-
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
- np.zeros([dims[0],dims[1]], dtype='float32')
-
- # Run nonlocal TV regularisation
- Nonlocal_TV_CPU_main(&inputData[0,0], &outputData[0,0], &H_i[0,0,0], &H_j[0,0,0], &H_i[0,0,0], &Weights[0,0,0], dims[1], dims[0], 0, neighbours, regularisation_parameter, iterations)
- return outputData
-
-#*********************Inpainting WITH****************************#
-#***************Nonlinear (Isotropic) Diffusion******************#
-#****************************************************************#
-def NDF_INPAINT_CPU(inputData, maskData, regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type):
- if inputData.ndim == 2:
- return NDF_INP_2D(inputData, maskData, regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type)
- elif inputData.ndim == 3:
- return NDF_INP_3D(inputData, maskData, regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type)
-
-def NDF_INP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- np.ndarray[np.uint8_t, ndim=2, mode="c"] maskData,
- float regularisation_parameter,
- float edge_parameter,
- int iterationsNumb,
- float time_marching_parameter,
- int penalty_type):
-
- cdef long dims[2]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
-
-
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
- np.zeros([dims[0],dims[1]], dtype='float32')
-
- # Run Inpaiting by Diffusion iterations for 2D data
- Diffusion_Inpaint_CPU_main(&inputData[0,0], &maskData[0,0], &outputData[0,0], regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type, dims[1], dims[0], 1)
- return outputData
-
-def NDF_INP_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- np.ndarray[np.uint8_t, ndim=3, mode="c"] maskData,
- float regularisation_parameter,
- float edge_parameter,
- int iterationsNumb,
- float time_marching_parameter,
- int penalty_type):
- cdef long dims[3]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- dims[2] = inputData.shape[2]
-
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
- np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
-
- # Run Inpaiting by Diffusion iterations for 3D data
- Diffusion_Inpaint_CPU_main(&inputData[0,0,0], &maskData[0,0,0], &outputData[0,0,0], regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type, dims[2], dims[1], dims[0])
-
- return outputData
-#*********************Inpainting WITH****************************#
-#***************Nonlocal Vertical Marching method****************#
-#****************************************************************#
-def NVM_INPAINT_CPU(inputData, maskData, SW_increment, iterationsNumb):
- if inputData.ndim == 2:
- return NVM_INP_2D(inputData, maskData, SW_increment, iterationsNumb)
- elif inputData.ndim == 3:
- return
-
-def NVM_INP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- np.ndarray[np.uint8_t, ndim=2, mode="c"] maskData,
- int SW_increment,
- int iterationsNumb):
- cdef long dims[2]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
-
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
- np.zeros([dims[0],dims[1]], dtype='float32')
-
- cdef np.ndarray[np.uint8_t, ndim=2, mode="c"] maskData_upd = \
- np.zeros([dims[0],dims[1]], dtype='uint8')
-
- # Run Inpaiting by Nonlocal vertical marching method for 2D data
- NonlocalMarching_Inpaint_main(&inputData[0,0], &maskData[0,0], &outputData[0,0],
- &maskData_upd[0,0],
- SW_increment, iterationsNumb, 1, dims[1], dims[0], 1)
-
- return (outputData, maskData_upd)
-
-
-#****************************************************************#
-#***************Calculation of TV-energy functional**************#
-#****************************************************************#
-def TV_ENERGY(inputData, inputData0, regularisation_parameter, typeFunctional):
- if inputData.ndim == 2:
- return TV_ENERGY_2D(inputData, inputData0, regularisation_parameter, typeFunctional)
- elif inputData.ndim == 3:
- return TV_ENERGY_3D(inputData, inputData0, regularisation_parameter, typeFunctional)
-
-def TV_ENERGY_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- np.ndarray[np.float32_t, ndim=2, mode="c"] inputData0,
- float regularisation_parameter,
- int typeFunctional):
-
- cdef long dims[2]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
-
- cdef np.ndarray[np.float32_t, ndim=1, mode="c"] outputData = \
- np.zeros([1], dtype='float32')
-
- # run function
- TV_energy2D(&inputData[0,0], &inputData0[0,0], &outputData[0], regularisation_parameter, typeFunctional, dims[1], dims[0])
-
- return outputData
-
-def TV_ENERGY_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- np.ndarray[np.float32_t, ndim=3, mode="c"] inputData0,
- float regularisation_parameter,
- int typeFunctional):
-
- cdef long dims[3]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- dims[2] = inputData.shape[2]
-
- cdef np.ndarray[np.float32_t, ndim=1, mode="c"] outputData = \
- np.zeros([1], dtype='float32')
-
- # Run function
- TV_energy3D(&inputData[0,0,0], &inputData0[0,0,0], &outputData[0], regularisation_parameter, typeFunctional, dims[2], dims[1], dims[0])
-
- return outputData
diff --git a/Wrappers/Python/src/gpu_regularisers.pyx b/Wrappers/Python/src/gpu_regularisers.pyx
deleted file mode 100644
index b52f669..0000000
--- a/Wrappers/Python/src/gpu_regularisers.pyx
+++ /dev/null
@@ -1,640 +0,0 @@
-# distutils: language=c++
-"""
-Copyright 2018 CCPi
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-
-Author: Edoardo Pasca, Daniil Kazantsev
-"""
-
-import cython
-import numpy as np
-cimport numpy as np
-
-CUDAErrorMessage = 'CUDA error'
-
-cdef extern int TV_ROF_GPU_main(float* Input, float* Output, float lambdaPar, int iter, float tau, int N, int M, int Z);
-cdef extern int TV_FGP_GPU_main(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int nonneg, int printM, int N, int M, int Z);
-cdef extern int TV_SB_GPU_main(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int printM, int N, int M, int Z);
-cdef extern int TGV_GPU_main(float *Input, float *Output, float lambdaPar, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY, int dimZ);
-cdef extern int LLT_ROF_GPU_main(float *Input, float *Output, float lambdaROF, float lambdaLLT, int iterationsNumb, float tau, int N, int M, int Z);
-cdef extern int NonlDiff_GPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int N, int M, int Z);
-cdef extern int dTV_FGP_GPU_main(float *Input, float *InputRef, float *Output, float lambdaPar, int iterationsNumb, float epsil, float eta, int methodTV, int nonneg, int printM, int N, int M, int Z);
-cdef extern int Diffus4th_GPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int N, int M, int Z);
-cdef extern int PatchSelect_GPU_main(float *Input, unsigned short *H_i, unsigned short *H_j, float *Weights, int N, int M, int SearchWindow, int SimilarWin, int NumNeighb, float h);
-
-# Total-variation Rudin-Osher-Fatemi (ROF)
-def TV_ROF_GPU(inputData,
- regularisation_parameter,
- iterations,
- time_marching_parameter):
- if inputData.ndim == 2:
- return ROFTV2D(inputData,
- regularisation_parameter,
- iterations,
- time_marching_parameter)
- elif inputData.ndim == 3:
- return ROFTV3D(inputData,
- regularisation_parameter,
- iterations,
- time_marching_parameter)
-
-# Total-variation Fast-Gradient-Projection (FGP)
-def TV_FGP_GPU(inputData,
- regularisation_parameter,
- iterations,
- tolerance_param,
- methodTV,
- nonneg,
- printM):
- if inputData.ndim == 2:
- return FGPTV2D(inputData,
- regularisation_parameter,
- iterations,
- tolerance_param,
- methodTV,
- nonneg,
- printM)
- elif inputData.ndim == 3:
- return FGPTV3D(inputData,
- regularisation_parameter,
- iterations,
- tolerance_param,
- methodTV,
- nonneg,
- printM)
-# Total-variation Split Bregman (SB)
-def TV_SB_GPU(inputData,
- regularisation_parameter,
- iterations,
- tolerance_param,
- methodTV,
- printM):
- if inputData.ndim == 2:
- return SBTV2D(inputData,
- regularisation_parameter,
- iterations,
- tolerance_param,
- methodTV,
- printM)
- elif inputData.ndim == 3:
- return SBTV3D(inputData,
- regularisation_parameter,
- iterations,
- tolerance_param,
- methodTV,
- printM)
-# LLT-ROF model
-def LLT_ROF_GPU(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter):
- if inputData.ndim == 2:
- return LLT_ROF_GPU2D(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter)
- elif inputData.ndim == 3:
- return LLT_ROF_GPU3D(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter)
-# Total Generilised Variation (TGV)
-def TGV_GPU(inputData, regularisation_parameter, alpha1, alpha0, iterations, LipshitzConst):
- if inputData.ndim == 2:
- return TGV2D(inputData, regularisation_parameter, alpha1, alpha0, iterations, LipshitzConst)
- elif inputData.ndim == 3:
- return TGV3D(inputData, regularisation_parameter, alpha1, alpha0, iterations, LipshitzConst)
-# Directional Total-variation Fast-Gradient-Projection (FGP)
-def dTV_FGP_GPU(inputData,
- refdata,
- regularisation_parameter,
- iterations,
- tolerance_param,
- eta_const,
- methodTV,
- nonneg,
- printM):
- if inputData.ndim == 2:
- return FGPdTV2D(inputData,
- refdata,
- regularisation_parameter,
- iterations,
- tolerance_param,
- eta_const,
- methodTV,
- nonneg,
- printM)
- elif inputData.ndim == 3:
- return FGPdTV3D(inputData,
- refdata,
- regularisation_parameter,
- iterations,
- tolerance_param,
- eta_const,
- methodTV,
- nonneg,
- printM)
-# Nonlocal Isotropic Diffusion (NDF)
-def NDF_GPU(inputData,
- regularisation_parameter,
- edge_parameter,
- iterations,
- time_marching_parameter,
- penalty_type):
- if inputData.ndim == 2:
- return NDF_GPU_2D(inputData,
- regularisation_parameter,
- edge_parameter,
- iterations,
- time_marching_parameter,
- penalty_type)
- elif inputData.ndim == 3:
- return NDF_GPU_3D(inputData,
- regularisation_parameter,
- edge_parameter,
- iterations,
- time_marching_parameter,
- penalty_type)
-# Anisotropic Fourth-Order diffusion
-def Diff4th_GPU(inputData,
- regularisation_parameter,
- edge_parameter,
- iterations,
- time_marching_parameter):
- if inputData.ndim == 2:
- return Diff4th_2D(inputData,
- regularisation_parameter,
- edge_parameter,
- iterations,
- time_marching_parameter)
- elif inputData.ndim == 3:
- return Diff4th_3D(inputData,
- regularisation_parameter,
- edge_parameter,
- iterations,
- time_marching_parameter)
-
-#****************************************************************#
-#********************** Total-variation ROF *********************#
-#****************************************************************#
-def ROFTV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- float regularisation_parameter,
- int iterations,
- float time_marching_parameter):
-
- cdef long dims[2]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
-
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
- np.zeros([dims[0],dims[1]], dtype='float32')
-
- # Running CUDA code here
- if (TV_ROF_GPU_main(
- &inputData[0,0], &outputData[0,0],
- regularisation_parameter,
- iterations ,
- time_marching_parameter,
- dims[1], dims[0], 1)==0):
- return outputData;
- else:
- raise ValueError(CUDAErrorMessage);
-
-def ROFTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- float regularisation_parameter,
- int iterations,
- float time_marching_parameter):
-
- cdef long dims[3]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- dims[2] = inputData.shape[2]
-
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
- np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
-
- # Running CUDA code here
- if (TV_ROF_GPU_main(
- &inputData[0,0,0], &outputData[0,0,0],
- regularisation_parameter,
- iterations ,
- time_marching_parameter,
- dims[2], dims[1], dims[0])==0):
- return outputData;
- else:
- raise ValueError(CUDAErrorMessage);
-#****************************************************************#
-#********************** Total-variation FGP *********************#
-#****************************************************************#
-#******** Total-variation Fast-Gradient-Projection (FGP)*********#
-def FGPTV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- float regularisation_parameter,
- int iterations,
- float tolerance_param,
- int methodTV,
- int nonneg,
- int printM):
-
- cdef long dims[2]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
-
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
- np.zeros([dims[0],dims[1]], dtype='float32')
-
- # Running CUDA code here
- if (TV_FGP_GPU_main(&inputData[0,0], &outputData[0,0],
- regularisation_parameter,
- iterations,
- tolerance_param,
- methodTV,
- nonneg,
- printM,
- dims[1], dims[0], 1)==0):
- return outputData;
- else:
- raise ValueError(CUDAErrorMessage);
-
-
-def FGPTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- float regularisation_parameter,
- int iterations,
- float tolerance_param,
- int methodTV,
- int nonneg,
- int printM):
-
- cdef long dims[3]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- dims[2] = inputData.shape[2]
-
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
- np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
-
- # Running CUDA code here
- if (TV_FGP_GPU_main(&inputData[0,0,0], &outputData[0,0,0],
- regularisation_parameter ,
- iterations,
- tolerance_param,
- methodTV,
- nonneg,
- printM,
- dims[2], dims[1], dims[0])==0):
- return outputData;
- else:
- raise ValueError(CUDAErrorMessage);
-
-#***************************************************************#
-#********************** Total-variation SB *********************#
-#***************************************************************#
-#*************** Total-variation Split Bregman (SB)*************#
-def SBTV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- float regularisation_parameter,
- int iterations,
- float tolerance_param,
- int methodTV,
- int printM):
-
- cdef long dims[2]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
-
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
- np.zeros([dims[0],dims[1]], dtype='float32')
-
- # Running CUDA code here
- if (TV_SB_GPU_main(&inputData[0,0], &outputData[0,0],
- regularisation_parameter,
- iterations,
- tolerance_param,
- methodTV,
- printM,
- dims[1], dims[0], 1)==0):
- return outputData;
- else:
- raise ValueError(CUDAErrorMessage);
-
-
-def SBTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- float regularisation_parameter,
- int iterations,
- float tolerance_param,
- int methodTV,
- int printM):
-
- cdef long dims[3]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- dims[2] = inputData.shape[2]
-
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
- np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
-
- # Running CUDA code here
- if (TV_SB_GPU_main(&inputData[0,0,0], &outputData[0,0,0],
- regularisation_parameter ,
- iterations,
- tolerance_param,
- methodTV,
- printM,
- dims[2], dims[1], dims[0])==0):
- return outputData;
- else:
- raise ValueError(CUDAErrorMessage);
-
-
-#***************************************************************#
-#************************ LLT-ROF model ************************#
-#***************************************************************#
-#************Joint LLT-ROF model for higher order **************#
-def LLT_ROF_GPU2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- float regularisation_parameterROF,
- float regularisation_parameterLLT,
- int iterations,
- float time_marching_parameter):
-
- cdef long dims[2]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
-
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
- np.zeros([dims[0],dims[1]], dtype='float32')
-
- # Running CUDA code here
- if (LLT_ROF_GPU_main(&inputData[0,0], &outputData[0,0],regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter, dims[1],dims[0],1)==0):
- return outputData;
- else:
- raise ValueError(CUDAErrorMessage);
-
-
-def LLT_ROF_GPU3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- float regularisation_parameterROF,
- float regularisation_parameterLLT,
- int iterations,
- float time_marching_parameter):
-
- cdef long dims[3]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- dims[2] = inputData.shape[2]
-
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
- np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
-
- # Running CUDA code here
- if (LLT_ROF_GPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter, dims[2], dims[1], dims[0])==0):
- return outputData;
- else:
- raise ValueError(CUDAErrorMessage);
-
-
-#***************************************************************#
-#***************** Total Generalised Variation *****************#
-#***************************************************************#
-def TGV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- float regularisation_parameter,
- float alpha1,
- float alpha0,
- int iterationsNumb,
- float LipshitzConst):
-
- cdef long dims[2]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
-
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
- np.zeros([dims[0],dims[1]], dtype='float32')
-
- #/* Run TGV iterations for 2D data */
- if (TGV_GPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameter,
- alpha1,
- alpha0,
- iterationsNumb,
- LipshitzConst,
- dims[1],dims[0], 1)==0):
- return outputData
- else:
- raise ValueError(CUDAErrorMessage);
-
-def TGV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- float regularisation_parameter,
- float alpha1,
- float alpha0,
- int iterationsNumb,
- float LipshitzConst):
-
- cdef long dims[3]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- dims[2] = inputData.shape[2]
-
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
- np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
-
- # Running CUDA code here
- if (TGV_GPU_main(
- &inputData[0,0,0], &outputData[0,0,0], regularisation_parameter,
- alpha1,
- alpha0,
- iterationsNumb,
- LipshitzConst,
- dims[2], dims[1], dims[0])==0):
- return outputData;
- else:
- raise ValueError(CUDAErrorMessage);
-
-
-#****************************************************************#
-#**************Directional Total-variation FGP ******************#
-#****************************************************************#
-#******** Directional TV Fast-Gradient-Projection (FGP)*********#
-def FGPdTV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- np.ndarray[np.float32_t, ndim=2, mode="c"] refdata,
- float regularisation_parameter,
- int iterations,
- float tolerance_param,
- float eta_const,
- int methodTV,
- int nonneg,
- int printM):
-
- cdef long dims[2]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
-
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
- np.zeros([dims[0],dims[1]], dtype='float32')
-
- # Running CUDA code here
- if (dTV_FGP_GPU_main(&inputData[0,0], &refdata[0,0], &outputData[0,0],
- regularisation_parameter,
- iterations,
- tolerance_param,
- eta_const,
- methodTV,
- nonneg,
- printM,
- dims[1], dims[0], 1)==0):
- return outputData
- else:
- raise ValueError(CUDAErrorMessage);
-
-
-def FGPdTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- np.ndarray[np.float32_t, ndim=3, mode="c"] refdata,
- float regularisation_parameter,
- int iterations,
- float tolerance_param,
- float eta_const,
- int methodTV,
- int nonneg,
- int printM):
-
- cdef long dims[3]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- dims[2] = inputData.shape[2]
-
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
- np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
-
- # Running CUDA code here
- if (dTV_FGP_GPU_main(&inputData[0,0,0], &refdata[0,0,0], &outputData[0,0,0],
- regularisation_parameter ,
- iterations,
- tolerance_param,
- eta_const,
- methodTV,
- nonneg,
- printM,
- dims[2], dims[1], dims[0])==0):
- return outputData;
- else:
- raise ValueError(CUDAErrorMessage);
-
-
-#****************************************************************#
-#***************Nonlinear (Isotropic) Diffusion******************#
-#****************************************************************#
-def NDF_GPU_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- float regularisation_parameter,
- float edge_parameter,
- int iterationsNumb,
- float time_marching_parameter,
- int penalty_type):
- cdef long dims[2]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
-
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
- np.zeros([dims[0],dims[1]], dtype='float32')
-
- #rangecheck = penalty_type < 1 and penalty_type > 3
- #if not rangecheck:
-# raise ValueError('Choose penalty type as 1 for Huber, 2 - Perona-Malik, 3 - Tukey Biweight')
-
- # Run Nonlinear Diffusion iterations for 2D data
- # Running CUDA code here
- if (NonlDiff_GPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type, dims[1], dims[0], 1)==0):
- return outputData;
- else:
- raise ValueError(CUDAErrorMessage);
-
-
-def NDF_GPU_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- float regularisation_parameter,
- float edge_parameter,
- int iterationsNumb,
- float time_marching_parameter,
- int penalty_type):
- cdef long dims[3]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- dims[2] = inputData.shape[2]
-
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
- np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
-
- # Run Nonlinear Diffusion iterations for 3D data
- # Running CUDA code here
- if (NonlDiff_GPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type, dims[2], dims[1], dims[0])==0):
- return outputData;
- else:
- raise ValueError(CUDAErrorMessage);
-
-#****************************************************************#
-#************Anisotropic Fourth-Order diffusion******************#
-#****************************************************************#
-def Diff4th_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- float regularisation_parameter,
- float edge_parameter,
- int iterationsNumb,
- float time_marching_parameter):
- cdef long dims[2]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
-
- cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
- np.zeros([dims[0],dims[1]], dtype='float32')
-
- # Run Anisotropic Fourth-Order diffusion for 2D data
- # Running CUDA code here
- if (Diffus4th_GPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, dims[1], dims[0], 1)==0):
- return outputData
- else:
- raise ValueError(CUDAErrorMessage);
-
-
-def Diff4th_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
- float regularisation_parameter,
- float edge_parameter,
- int iterationsNumb,
- float time_marching_parameter):
- cdef long dims[3]
- dims[0] = inputData.shape[0]
- dims[1] = inputData.shape[1]
- dims[2] = inputData.shape[2]
-
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
- np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
-
- # Run Anisotropic Fourth-Order diffusion for 3D data
- # Running CUDA code here
- if (Diffus4th_GPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, dims[2], dims[1], dims[0])==0):
- return outputData;
- else:
- raise ValueError(CUDAErrorMessage);
-
-#****************************************************************#
-#************Patch-based weights pre-selection******************#
-#****************************************************************#
-def PATCHSEL_GPU(inputData, searchwindow, patchwindow, neighbours, edge_parameter):
- if inputData.ndim == 2:
- return PatchSel_2D(inputData, searchwindow, patchwindow, neighbours, edge_parameter)
- elif inputData.ndim == 3:
- return 1
-def PatchSel_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- int searchwindow,
- int patchwindow,
- int neighbours,
- float edge_parameter):
- cdef long dims[3]
- dims[0] = neighbours
- dims[1] = inputData.shape[0]
- dims[2] = inputData.shape[1]
-
- cdef np.ndarray[np.float32_t, ndim=3, mode="c"] Weights = \
- np.zeros([dims[0], dims[1],dims[2]], dtype='float32')
-
- cdef np.ndarray[np.uint16_t, ndim=3, mode="c"] H_i = \
- np.zeros([dims[0], dims[1],dims[2]], dtype='uint16')
-
- cdef np.ndarray[np.uint16_t, ndim=3, mode="c"] H_j = \
- np.zeros([dims[0], dims[1],dims[2]], dtype='uint16')
-
- # Run patch-based weight selection function
- if (PatchSelect_GPU_main(&inputData[0,0], &H_j[0,0,0], &H_i[0,0,0], &Weights[0,0,0], dims[2], dims[1], searchwindow, patchwindow, neighbours, edge_parameter)==0):
- return H_i, H_j, Weights;
- else:
- raise ValueError(CUDAErrorMessage);
-