summaryrefslogtreecommitdiffstats
path: root/Wrappers
diff options
context:
space:
mode:
authorDaniil Kazantsev <dkazanc@hotmail.com>2018-01-26 12:11:07 +0000
committerDaniil Kazantsev <dkazanc@hotmail.com>2018-01-26 12:11:07 +0000
commitbc286e76483c366ba221ce79349a277fb6db32ed (patch)
treeea80e42f3c902e7586bbad4553d5b69d1f0f06bc /Wrappers
parent7edf78f4733379ddc093dc37650f5886bb03d98b (diff)
downloadregularization-bc286e76483c366ba221ce79349a277fb6db32ed.tar.gz
regularization-bc286e76483c366ba221ce79349a277fb6db32ed.tar.bz2
regularization-bc286e76483c366ba221ce79349a277fb6db32ed.tar.xz
regularization-bc286e76483c366ba221ce79349a277fb6db32ed.zip
ROF TV regularizer added #22
Diffstat (limited to 'Wrappers')
-rw-r--r--Wrappers/Matlab/mex_compile/compile_mex.m3
-rw-r--r--Wrappers/Matlab/mex_compile/regularizers_CPU/ROF_TV.c106
2 files changed, 108 insertions, 1 deletions
diff --git a/Wrappers/Matlab/mex_compile/compile_mex.m b/Wrappers/Matlab/mex_compile/compile_mex.m
index e1debf3..ee85b49 100644
--- a/Wrappers/Matlab/mex_compile/compile_mex.m
+++ b/Wrappers/Matlab/mex_compile/compile_mex.m
@@ -7,13 +7,14 @@ cd regularizers_CPU/
% compile C regularizers
+mex ROF_TV.c ROF_TV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
mex LLT_model.c LLT_model_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
mex FGP_TV.c FGP_TV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
mex SplitBregman_TV.c SplitBregman_TV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
mex TGV_PD.c TGV_PD_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
mex PatchBased_Regul.c PatchBased_Regul_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
-delete LLT_model_core.c LLT_model_core.h FGP_TV_core.c FGP_TV_core.h SplitBregman_TV_core.c SplitBregman_TV_core.h TGV_PD_core.c TGV_PD_core.h PatchBased_Regul_core.c PatchBased_Regul_core.h utils.c utils.h CCPiDefines.h
+delete ROF_TV_core.c ROF_TV_core.h LLT_model_core.c LLT_model_core.h FGP_TV_core.c FGP_TV_core.h SplitBregman_TV_core.c SplitBregman_TV_core.h TGV_PD_core.c TGV_PD_core.h PatchBased_Regul_core.c PatchBased_Regul_core.h utils.c utils.h CCPiDefines.h
% compile CUDA-based regularizers
%cd regularizers_GPU/
diff --git a/Wrappers/Matlab/mex_compile/regularizers_CPU/ROF_TV.c b/Wrappers/Matlab/mex_compile/regularizers_CPU/ROF_TV.c
new file mode 100644
index 0000000..a800add
--- /dev/null
+++ b/Wrappers/Matlab/mex_compile/regularizers_CPU/ROF_TV.c
@@ -0,0 +1,106 @@
+/*
+ * This work is part of the Core Imaging Library developed by
+ * Visual Analytics and Imaging System Group of the Science Technology
+ * Facilities Council, STFC
+ *
+ * Copyright 2017 Daniil Kazantsev
+ * Copyright 2017 Srikanth Nagella, Edoardo Pasca
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ * http://www.apache.org/licenses/LICENSE-2.0
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+#include "matrix.h"
+#include "mex.h"
+#include "ROF_TV_core.h"
+
+/* C-OMP implementation of ROF-TV denoising/regularization model [1] (2D/3D case)
+ *
+ * Input Parameters:
+ * 1. Noisy image/volume [REQUIRED]
+ * 2. lambda - regularization parameter [REQUIRED]
+ * 3. tau - marching step for explicit scheme, ~0.001 is recommended [REQUIRED]
+ * 4. Number of iterations, for explicit scheme >= 150 is recommended [REQUIRED]
+ *
+ * Output:
+ * [1] Regularized image/volume
+ *
+ * This function is based on the paper by
+ * [1] Rudin, Osher, Fatemi, "Nonlinear Total Variation based noise removal algorithms"
+ * compile: mex ROF_TV.c ROF_TV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
+ * D. Kazantsev, 2016-18
+ */
+
+void mexFunction(
+ int nlhs, mxArray *plhs[],
+ int nrhs, const mxArray *prhs[])
+
+{
+ int i, number_of_dims, iter_numb, dimX, dimY, dimZ;
+ const int *dim_array;
+ float *A, *B, *D1, *D2, *D3, lambda, tau;
+
+ dim_array = mxGetDimensions(prhs[0]);
+ number_of_dims = mxGetNumberOfDimensions(prhs[0]);
+
+ /*Handling Matlab input data*/
+ A = (float *) mxGetData(prhs[0]);
+ lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */
+ tau = (float) mxGetScalar(prhs[2]); /* marching step parameter */
+ iter_numb = (int) mxGetScalar(prhs[3]); /* iterations number */
+
+ if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
+ /*Handling Matlab output data*/
+ dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
+
+ /* output arrays*/
+ if (number_of_dims == 2) {
+ dimZ = 0; /*2D case*/
+ B = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ D1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ D2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+
+ /* copy into B */
+ copyIm(A, B, dimX, dimY, 1);
+
+ /* start TV iterations */
+ for(i=0; i < iter_numb; i++) {
+
+ /* calculate differences */
+ D1_func(B, D1, dimX, dimY, dimZ);
+ D2_func(B, D2, dimX, dimY, dimZ);
+
+ /* calculate divergence and image update*/
+ TV_main(D1, D2, D2, B, A, lambda, tau, dimX, dimY, dimZ);
+ }
+ }
+
+ if (number_of_dims == 3) {
+ B = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ D1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ D2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ D3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+
+ /* copy into B */
+ copyIm(A, B, dimX, dimY, dimZ);
+
+ /* start TV iterations */
+ for(i=0; i < iter_numb; i++) {
+
+ /* calculate differences */
+ D1_func(B, D1, dimX, dimY, dimZ);
+ D2_func(B, D2, dimX, dimY, dimZ);
+ D3_func(B, D3, dimX, dimY, dimZ);
+
+ /* calculate divergence and image update*/
+ TV_main(D1, D2, D3, B, A, lambda, tau, dimX, dimY, dimZ);
+ }
+ }
+
+}