summaryrefslogtreecommitdiffstats
path: root/Wrappers
diff options
context:
space:
mode:
authorDaniil Kazantsev <dkazanc@hotmail.com>2018-05-23 15:41:35 +0100
committerDaniil Kazantsev <dkazanc@hotmail.com>2018-05-23 15:41:35 +0100
commite53d631a2d0c34915459028e3db64153c3a936c3 (patch)
tree86601c3ccf2c3b21a307e484b9cf35f1bd364fed /Wrappers
parent601cd64a26786cf27a4ea1083bca146094909799 (diff)
downloadregularization-e53d631a2d0c34915459028e3db64153c3a936c3.tar.gz
regularization-e53d631a2d0c34915459028e3db64153c3a936c3.tar.bz2
regularization-e53d631a2d0c34915459028e3db64153c3a936c3.tar.xz
regularization-e53d631a2d0c34915459028e3db64153c3a936c3.zip
TGV for CPU and GPU added with demos
Diffstat (limited to 'Wrappers')
-rw-r--r--Wrappers/Matlab/demos/demoMatlab_denoise.m42
-rw-r--r--Wrappers/Matlab/mex_compile/compileCPU_mex_Linux.m5
-rw-r--r--Wrappers/Matlab/mex_compile/compileCPU_mex_WINDOWS.m9
-rw-r--r--Wrappers/Matlab/mex_compile/compileGPU_mex.m6
-rw-r--r--Wrappers/Matlab/mex_compile/regularisers_CPU/TGV.c78
-rw-r--r--Wrappers/Matlab/mex_compile/regularisers_GPU/TGV_GPU.cpp78
-rw-r--r--Wrappers/Python/ccpi/filters/regularisers.py24
-rw-r--r--Wrappers/Python/demos/demo_cpu_regularisers.py67
-rw-r--r--Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py106
-rw-r--r--Wrappers/Python/demos/demo_gpu_regularisers.py70
-rw-r--r--Wrappers/Python/setup-regularisers.py.in1
-rw-r--r--Wrappers/Python/src/cpu_regularisers.pyx34
-rw-r--r--Wrappers/Python/src/gpu_regularisers.pyx34
13 files changed, 516 insertions, 38 deletions
diff --git a/Wrappers/Matlab/demos/demoMatlab_denoise.m b/Wrappers/Matlab/demos/demoMatlab_denoise.m
index 8289f41..3f0ca54 100644
--- a/Wrappers/Matlab/demos/demoMatlab_denoise.m
+++ b/Wrappers/Matlab/demos/demoMatlab_denoise.m
@@ -1,9 +1,11 @@
% Image (2D) denoising demo using CCPi-RGL
clear; close all
-Path1 = sprintf(['..' filesep 'mex_compile' filesep 'installed'], 1i);
-Path2 = sprintf(['..' filesep '..' filesep '..' filesep 'data' filesep], 1i);
-addpath(Path1);
-addpath(Path2);
+fsep = '/';
+
+Path1 = sprintf(['..' fsep 'mex_compile' fsep 'installed'], 1i);
+Path2 = sprintf(['..' fsep '..' fsep '..' fsep 'data' fsep], 1i);
+Path3 = sprintf(['..' fsep 'supp'], 1i);
+addpath(Path1); addpath(Path2); addpath(Path3);
Im = double(imread('lena_gray_512.tif'))/255; % loading image
u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
@@ -16,6 +18,8 @@ tau_rof = 0.0025; % time-marching constant
iter_rof = 750; % number of ROF iterations
tic; u_rof = ROF_TV(single(u0), lambda_reg, iter_rof, tau_rof); toc;
energyfunc_val_rof = TV_energy(single(u_rof),single(u0),lambda_reg, 1); % get energy function value
+rmseROF = (RMSE(u_rof(:),Im(:)));
+fprintf('%s %f \n', 'RMSE error for ROF-TV is:', rmseROF);
figure; imshow(u_rof, [0 1]); title('ROF-TV denoised image (CPU)');
%%
% fprintf('Denoise using the ROF-TV model (GPU) \n');
@@ -29,6 +33,8 @@ iter_fgp = 1000; % number of FGP iterations
epsil_tol = 1.0e-06; % tolerance
tic; u_fgp = FGP_TV(single(u0), lambda_reg, iter_fgp, epsil_tol); toc;
energyfunc_val_fgp = TV_energy(single(u_fgp),single(u0),lambda_reg, 1); % get energy function value
+rmseFGP = (RMSE(u_fgp(:),Im(:)));
+fprintf('%s %f \n', 'RMSE error for FGP-TV is:', rmseFGP);
figure; imshow(u_fgp, [0 1]); title('FGP-TV denoised image (CPU)');
%%
@@ -43,6 +49,8 @@ iter_sb = 150; % number of SB iterations
epsil_tol = 1.0e-06; % tolerance
tic; u_sb = SB_TV(single(u0), lambda_reg, iter_sb, epsil_tol); toc;
energyfunc_val_sb = TV_energy(single(u_sb),single(u0),lambda_reg, 1); % get energy function value
+rmseSB = (RMSE(u_sb(:),Im(:)));
+fprintf('%s %f \n', 'RMSE error for SB-TV is:', rmseSB);
figure; imshow(u_sb, [0 1]); title('SB-TV denoised image (CPU)');
%%
% fprintf('Denoise using the SB-TV model (GPU) \n');
@@ -51,12 +59,34 @@ figure; imshow(u_sb, [0 1]); title('SB-TV denoised image (CPU)');
% tic; u_sbG = SB_TV_GPU(single(u0), lambda_reg, iter_sb, epsil_tol); toc;
% figure; imshow(u_sbG, [0 1]); title('SB-TV denoised image (GPU)');
%%
+fprintf('Denoise using the TGV model (CPU) \n');
+lambda_TGV = 0.04; % regularisation parameter
+alpha1 = 1; % parameter to control the first-order term
+alpha0 = 0.7; % parameter to control the second-order term
+iter_TGV = 500; % number of Primal-Dual iterations for TGV
+tic; u_tgv = TGV(single(u0), lambda_TGV, alpha1, alpha0, iter_TGV); toc;
+rmseTGV = (RMSE(u_tgv(:),Im(:)));
+fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV);
+figure; imshow(u_tgv, [0 1]); title('TGV denoised image (CPU)');
+%%
+% fprintf('Denoise using the TGV model (GPU) \n');
+% lambda_TGV = 0.04; % regularisation parameter
+% alpha1 = 1; % parameter to control the first-order term
+% alpha0 = 0.7; % parameter to control the second-order term
+% iter_TGV = 500; % number of Primal-Dual iterations for TGV
+% tic; u_tgv_gpu = TGV_GPU(single(u0), lambda_TGV, alpha1, alpha0, iter_TGV); toc;
+% rmseTGV_gpu = (RMSE(u_tgv_gpu(:),Im(:)));
+% fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV_gpu);
+% figure; imshow(u_tgv_gpu, [0 1]); title('TGV denoised image (GPU)');
+%%
fprintf('Denoise using Nonlinear-Diffusion model (CPU) \n');
iter_diff = 800; % number of diffusion iterations
lambda_regDiff = 0.025; % regularisation for the diffusivity
sigmaPar = 0.015; % edge-preserving parameter
tau_param = 0.025; % time-marching constant
tic; u_diff = NonlDiff(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc;
+rmseDiffus = (RMSE(u_diff(:),Im(:)));
+fprintf('%s %f \n', 'RMSE error for Nonlinear Diffusion is:', rmseDiffus);
figure; imshow(u_diff, [0 1]); title('Diffusion denoised image (CPU)');
%%
% fprintf('Denoise using Nonlinear-Diffusion model (GPU) \n');
@@ -73,6 +103,8 @@ lambda_regDiff = 3.5; % regularisation for the diffusivity
sigmaPar = 0.02; % edge-preserving parameter
tau_param = 0.0015; % time-marching constant
tic; u_diff4 = Diffusion_4thO(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc;
+rmseDiffHO = (RMSE(u_diff4(:),Im(:)));
+fprintf('%s %f \n', 'RMSE error for Fourth-order anisotropic diffusion is:', rmseDiffHO);
figure; imshow(u_diff4, [0 1]); title('Diffusion 4thO denoised image (CPU)');
%%
% fprintf('Denoise using Fourth-order anisotropic diffusion model (GPU) \n');
@@ -95,6 +127,8 @@ iter_fgp = 1000; % number of FGP iterations
epsil_tol = 1.0e-06; % tolerance
eta = 0.2; % Reference image gradient smoothing constant
tic; u_fgp_dtv = FGP_dTV(single(u0), single(u_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc;
+rmse_dTV= (RMSE(u_fgp_dtv(:),Im(:)));
+fprintf('%s %f \n', 'RMSE error for Directional Total Variation (dTV) is:', rmse_dTV);
figure; imshow(u_fgp_dtv, [0 1]); title('FGP-dTV denoised image (CPU)');
%%
% fprintf('Denoise using the FGP-dTV model (GPU) \n');
diff --git a/Wrappers/Matlab/mex_compile/compileCPU_mex_Linux.m b/Wrappers/Matlab/mex_compile/compileCPU_mex_Linux.m
index 82b681a..8acc1b7 100644
--- a/Wrappers/Matlab/mex_compile/compileCPU_mex_Linux.m
+++ b/Wrappers/Matlab/mex_compile/compileCPU_mex_Linux.m
@@ -36,6 +36,9 @@ movefile('NonlDiff.mex*',Pathmove);
mex Diffusion_4thO.c Diffus4th_order_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
movefile('Diffusion_4thO.mex*',Pathmove);
+mex TGV.c TGV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
+movefile('TGV.mex*',Pathmove);
+
mex TV_energy.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
movefile('TV_energy.mex*',Pathmove);
@@ -46,7 +49,7 @@ movefile('NonlDiff_Inp.mex*',Pathmove);
mex NonlocalMarching_Inpaint.c NonlocalMarching_Inpaint_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
movefile('NonlocalMarching_Inpaint.mex*',Pathmove);
-delete SB_TV_core* ROF_TV_core* FGP_TV_core* FGP_dTV_core* TNV_core* utils* Diffusion_core* Diffus4th_order_core* CCPiDefines.h
+delete SB_TV_core* ROF_TV_core* FGP_TV_core* FGP_dTV_core* TNV_core* utils* Diffusion_core* Diffus4th_order_core* TGV_core* CCPiDefines.h
delete Diffusion_Inpaint_core* NonlocalMarching_Inpaint_core*
fprintf('%s \n', 'Regularisers successfully compiled!');
diff --git a/Wrappers/Matlab/mex_compile/compileCPU_mex_WINDOWS.m b/Wrappers/Matlab/mex_compile/compileCPU_mex_WINDOWS.m
index 629a346..ea1ad7d 100644
--- a/Wrappers/Matlab/mex_compile/compileCPU_mex_WINDOWS.m
+++ b/Wrappers/Matlab/mex_compile/compileCPU_mex_WINDOWS.m
@@ -44,6 +44,9 @@ movefile('NonlDiff.mex*',Pathmove);
mex Diffusion_4thO.c Diffus4th_order_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99"
movefile('Diffusion_4thO.mex*',Pathmove);
+mex TGV.c TGV_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99"
+movefile('TGV.mex*',Pathmove);
+
mex TV_energy.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99"
movefile('TV_energy.mex*',Pathmove);
@@ -54,7 +57,7 @@ movefile('NonlDiff_Inp.mex*',Pathmove);
mex NonlocalMarching_Inpaint.c NonlocalMarching_Inpaint_core.c utils.c COMPFLAGS="\$COMPFLAGS -fopenmp -Wall -std=c99"
movefile('NonlocalMarching_Inpaint.mex*',Pathmove);
-delete SB_TV_core* ROF_TV_core* FGP_TV_core* FGP_dTV_core* TNV_core* utils* Diffusion_core* Diffus4th_order_core* CCPiDefines.h
+delete SB_TV_core* ROF_TV_core* FGP_TV_core* FGP_dTV_core* TNV_core* utils* Diffusion_core* Diffus4th_order_core* TGV_core* CCPiDefines.h
delete Diffusion_Inpaint_core* NonlocalMarching_Inpaint_core*
fprintf('%s \n', 'Regularisers successfully compiled!');
%%
@@ -82,13 +85,15 @@ fprintf('%s \n', 'Regularisers successfully compiled!');
% movefile('NonlDiff.mex*',Pathmove);
% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" Diffusion_4thO.c Diffus4th_order_core.c utils.c
% movefile('Diffusion_4thO.mex*',Pathmove);
+% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" TGV.c TGV_core.c utils.c
+% movefile('TGV.mex*',Pathmove);
% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" TV_energy.c utils.c
% movefile('TV_energy.mex*',Pathmove);
% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" NonlDiff_Inp.c Diffusion_Inpaint_core.c utils.c
% movefile('NonlDiff_Inp.mex*',Pathmove);
% mex C:\TDMGCC\lib\gcc\x86_64-w64-mingw32\5.1.0\libgomp.a CXXFLAGS="$CXXFLAGS -std=c++11 -fopenmp" NonlocalMarching_Inpaint.c NonlocalMarching_Inpaint_core.c utils.c
% movefile('NonlocalMarching_Inpaint.mex*',Pathmove);
-% delete SB_TV_core* ROF_TV_core* FGP_TV_core* FGP_dTV_core* TNV_core* utils* Diffusion_core* Diffus4th_order_core* CCPiDefines.h
+% delete SB_TV_core* ROF_TV_core* FGP_TV_core* FGP_dTV_core* TNV_core* utils* Diffusion_core* Diffus4th_order_core* TGV_core* CCPiDefines.h
% delete Diffusion_Inpaint_core* NonlocalMarching_Inpaint_core*
% fprintf('%s \n', 'Regularisers successfully compiled!');
%%
diff --git a/Wrappers/Matlab/mex_compile/compileGPU_mex.m b/Wrappers/Matlab/mex_compile/compileGPU_mex.m
index a4a636e..003c6ec 100644
--- a/Wrappers/Matlab/mex_compile/compileGPU_mex.m
+++ b/Wrappers/Matlab/mex_compile/compileGPU_mex.m
@@ -37,6 +37,10 @@ movefile('FGP_TV_GPU.mex*',Pathmove);
mex -g -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart -lcufft -lmwgpu SB_TV_GPU.cpp TV_SB_GPU_core.o
movefile('SB_TV_GPU.mex*',Pathmove);
+!/usr/local/cuda/bin/nvcc -O0 -c TGV_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/
+mex -g -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart -lcufft -lmwgpu TGV_GPU.cpp TGV_GPU_core.o
+movefile('TGV_GPU.mex*',Pathmove);
+
!/usr/local/cuda/bin/nvcc -O0 -c dTV_FGP_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/
mex -g -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart -lcufft -lmwgpu FGP_dTV_GPU.cpp dTV_FGP_GPU_core.o
movefile('FGP_dTV_GPU.mex*',Pathmove);
@@ -49,7 +53,7 @@ movefile('NonlDiff_GPU.mex*',Pathmove);
mex -g -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart -lcufft -lmwgpu Diffusion_4thO_GPU.cpp Diffus_4thO_GPU_core.o
movefile('Diffusion_4thO_GPU.mex*',Pathmove);
-delete TV_ROF_GPU_core* TV_FGP_GPU_core* TV_SB_GPU_core* dTV_FGP_GPU_core* NonlDiff_GPU_core* Diffus_4thO_GPU_core* CCPiDefines.h
+delete TV_ROF_GPU_core* TV_FGP_GPU_core* TV_SB_GPU_core* dTV_FGP_GPU_core* NonlDiff_GPU_core* Diffus_4thO_GPU_core* TGV_GPU_core* CCPiDefines.h
fprintf('%s \n', 'All successfully compiled!');
pathA2 = sprintf(['..' fsep '..' fsep], 1i);
diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/TGV.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/TGV.c
new file mode 100644
index 0000000..9516869
--- /dev/null
+++ b/Wrappers/Matlab/mex_compile/regularisers_CPU/TGV.c
@@ -0,0 +1,78 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazantsev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+#include "mex.h"
+#include "TGV_core.h"
+
+/* C-OMP implementation of Primal-Dual denoising method for
+ * Total Generilized Variation (TGV)-L2 model [1] (2D case only)
+ *
+ * Input Parameters:
+ * 1. Noisy image (2D) (required)
+ * 2. lambda - regularisation parameter (required)
+ * 3. parameter to control the first-order term (alpha1) (default - 1)
+ * 4. parameter to control the second-order term (alpha0) (default - 0.5)
+ * 5. Number of Chambolle-Pock (Primal-Dual) iterations (default is 300)
+ * 6. Lipshitz constant (default is 12)
+ *
+ * Output:
+ * Filtered/regulariaed image
+ *
+ * References:
+ * [1] K. Bredies "Total Generalized Variation"
+ */
+
+void mexFunction(
+ int nlhs, mxArray *plhs[],
+ int nrhs, const mxArray *prhs[])
+
+{
+ int number_of_dims, iter, dimX, dimY;
+ const int *dim_array;
+ float *Input, *Output=NULL, lambda, alpha0, alpha1, L2;
+
+ number_of_dims = mxGetNumberOfDimensions(prhs[0]);
+ dim_array = mxGetDimensions(prhs[0]);
+
+ /*Handling Matlab input data*/
+ if ((nrhs < 2) || (nrhs > 6)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D), Regularisation parameter, alpha0, alpha1, iterations number, Lipshitz Constant");
+
+ Input = (float *) mxGetData(prhs[0]); /*noisy image (2D) */
+ lambda = (float) mxGetScalar(prhs[1]); /* regularisation parameter */
+ alpha1 = 1.0f; /* parameter to control the first-order term */
+ alpha0 = 0.5f; /* parameter to control the second-order term */
+ iter = 300; /* Iterations number */
+ L2 = 12.0f; /* Lipshitz constant */
+
+ if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
+ if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5) || (nrhs == 6)) alpha1 = (float) mxGetScalar(prhs[2]); /* parameter to control the first-order term */
+ if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6)) alpha0 = (float) mxGetScalar(prhs[3]); /* parameter to control the second-order term */
+ if ((nrhs == 5) || (nrhs == 6)) iter = (int) mxGetScalar(prhs[4]); /* Iterations number */
+ if (nrhs == 6) L2 = (float) mxGetScalar(prhs[5]); /* Lipshitz constant */
+
+ /*Handling Matlab output data*/
+ dimX = dim_array[0]; dimY = dim_array[1];
+
+ if (number_of_dims == 2) {
+ Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ /* running the function */
+ TGV_main(Input, Output, lambda, alpha1, alpha0, iter, L2, dimX, dimY);
+ }
+ if (number_of_dims == 3) {mexErrMsgTxt("Only 2D images accepted");}
+}
diff --git a/Wrappers/Matlab/mex_compile/regularisers_GPU/TGV_GPU.cpp b/Wrappers/Matlab/mex_compile/regularisers_GPU/TGV_GPU.cpp
new file mode 100644
index 0000000..5a0df5b
--- /dev/null
+++ b/Wrappers/Matlab/mex_compile/regularisers_GPU/TGV_GPU.cpp
@@ -0,0 +1,78 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazantsev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+#include "mex.h"
+#include "TGV_GPU_core.h"
+
+/* CUDA implementation of Primal-Dual denoising method for
+ * Total Generilized Variation (TGV)-L2 model [1] (2D case only)
+ *
+ * Input Parameters:
+ * 1. Noisy image (2D) (required)
+ * 2. lambda - regularisation parameter (required)
+ * 3. parameter to control the first-order term (alpha1) (default - 1)
+ * 4. parameter to control the second-order term (alpha0) (default - 0.5)
+ * 5. Number of Chambolle-Pock (Primal-Dual) iterations (default is 300)
+ * 6. Lipshitz constant (default is 12)
+ *
+ * Output:
+ * Filtered/regulariaed image
+ *
+ * References:
+ * [1] K. Bredies "Total Generalized Variation"
+ */
+
+void mexFunction(
+ int nlhs, mxArray *plhs[],
+ int nrhs, const mxArray *prhs[])
+
+{
+ int number_of_dims, iter, dimX, dimY;
+ const int *dim_array;
+ float *Input, *Output=NULL, lambda, alpha0, alpha1, L2;
+
+ number_of_dims = mxGetNumberOfDimensions(prhs[0]);
+ dim_array = mxGetDimensions(prhs[0]);
+
+ /*Handling Matlab input data*/
+ if ((nrhs < 2) || (nrhs > 6)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D), Regularisation parameter, alpha0, alpha1, iterations number, Lipshitz Constant");
+
+ Input = (float *) mxGetData(prhs[0]); /*noisy image (2D) */
+ lambda = (float) mxGetScalar(prhs[1]); /* regularisation parameter */
+ alpha1 = 1.0f; /* parameter to control the first-order term */
+ alpha0 = 0.5f; /* parameter to control the second-order term */
+ iter = 300; /* Iterations number */
+ L2 = 12.0f; /* Lipshitz constant */
+
+ if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
+ if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5) || (nrhs == 6)) alpha1 = (float) mxGetScalar(prhs[2]); /* parameter to control the first-order term */
+ if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6)) alpha0 = (float) mxGetScalar(prhs[3]); /* parameter to control the second-order term */
+ if ((nrhs == 5) || (nrhs == 6)) iter = (int) mxGetScalar(prhs[4]); /* Iterations number */
+ if (nrhs == 6) L2 = (float) mxGetScalar(prhs[5]); /* Lipshitz constant */
+
+ /*Handling Matlab output data*/
+ dimX = dim_array[0]; dimY = dim_array[1];
+
+ if (number_of_dims == 2) {
+ Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ /* running the function */
+ TGV_GPU_main(Input, Output, lambda, alpha1, alpha0, iter, L2, dimX, dimY);
+ }
+ if (number_of_dims == 3) {mexErrMsgTxt("Only 2D images accepted");}
+}
diff --git a/Wrappers/Python/ccpi/filters/regularisers.py b/Wrappers/Python/ccpi/filters/regularisers.py
index 0b79dac..0e435a6 100644
--- a/Wrappers/Python/ccpi/filters/regularisers.py
+++ b/Wrappers/Python/ccpi/filters/regularisers.py
@@ -2,8 +2,8 @@
script which assigns a proper device core function based on a flag ('cpu' or 'gpu')
"""
-from ccpi.filters.cpu_regularisers import TV_ROF_CPU, TV_FGP_CPU, TV_SB_CPU, dTV_FGP_CPU, TNV_CPU, NDF_CPU, Diff4th_CPU
-from ccpi.filters.gpu_regularisers import TV_ROF_GPU, TV_FGP_GPU, TV_SB_GPU, dTV_FGP_GPU, NDF_GPU, Diff4th_GPU
+from ccpi.filters.cpu_regularisers import TV_ROF_CPU, TV_FGP_CPU, TV_SB_CPU, dTV_FGP_CPU, TNV_CPU, NDF_CPU, Diff4th_CPU, TGV_CPU
+from ccpi.filters.gpu_regularisers import TV_ROF_GPU, TV_FGP_GPU, TV_SB_GPU, dTV_FGP_GPU, NDF_GPU, Diff4th_GPU, TGV_GPU
from ccpi.filters.cpu_regularisers import NDF_INPAINT_CPU, NVM_INPAINT_CPU
def ROF_TV(inputData, regularisation_parameter, iterations,
@@ -128,6 +128,26 @@ def DIFF4th(inputData, regularisation_parameter, edge_parameter, iterations,
else:
raise ValueError('Unknown device {0}. Expecting gpu or cpu'\
.format(device))
+def TGV(inputData, regularisation_parameter, alpha1, alpha0, iterations,
+ LipshitzConst, device='cpu'):
+ if device == 'cpu':
+ return TGV_CPU(inputData,
+ regularisation_parameter,
+ alpha1,
+ alpha0,
+ iterations,
+ LipshitzConst)
+ elif device == 'gpu':
+ return TGV_GPU(inputData,
+ regularisation_parameter,
+ alpha1,
+ alpha0,
+ iterations,
+ LipshitzConst)
+ else:
+ raise ValueError('Unknown device {0}. Expecting gpu or cpu'\
+ .format(device))
+
def NDF_INP(inputData, maskData, regularisation_parameter, edge_parameter, iterations,
time_marching_parameter, penalty_type):
return NDF_INPAINT_CPU(inputData, maskData, regularisation_parameter,
diff --git a/Wrappers/Python/demos/demo_cpu_regularisers.py b/Wrappers/Python/demos/demo_cpu_regularisers.py
index ff500ae..5c20244 100644
--- a/Wrappers/Python/demos/demo_cpu_regularisers.py
+++ b/Wrappers/Python/demos/demo_cpu_regularisers.py
@@ -12,7 +12,7 @@ import matplotlib.pyplot as plt
import numpy as np
import os
import timeit
-from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, FGP_dTV, TNV, NDF, DIFF4th
+from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, FGP_dTV, TNV, NDF, DIFF4th
from qualitymetrics import rmse
###############################################################################
def printParametersToString(pars):
@@ -74,7 +74,7 @@ print ("_______________ROF-TV (2D)_________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(1)
+fig = plt.figure()
plt.suptitle('Performance of ROF-TV regulariser using the CPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy Image')
@@ -109,13 +109,13 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
imgplot = plt.imshow(rof_cpu, cmap="gray")
plt.title('{}'.format('CPU results'))
-
+#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("_______________FGP-TV (2D)__________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(2)
+fig = plt.figure()
plt.suptitle('Performance of FGP-TV regulariser using the CPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy Image')
@@ -159,12 +159,13 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
imgplot = plt.imshow(fgp_cpu, cmap="gray")
plt.title('{}'.format('CPU results'))
+#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("_______________SB-TV (2D)__________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(3)
+fig = plt.figure()
plt.suptitle('Performance of SB-TV regulariser using the CPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy Image')
@@ -205,14 +206,62 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
verticalalignment='top', bbox=props)
imgplot = plt.imshow(sb_cpu, cmap="gray")
plt.title('{}'.format('CPU results'))
+#%%
+
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("_____Total Generalised Variation (2D)______")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of TGV regulariser using the CPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+# set parameters
+pars = {'algorithm' : TGV, \
+ 'input' : u0,\
+ 'regularisation_parameter':0.04, \
+ 'alpha1':1.0,\
+ 'alpha0':0.7,\
+ 'number_of_iterations' :250 ,\
+ 'LipshitzConstant' :12 ,\
+ }
+
+print ("#############TGV CPU####################")
+start_time = timeit.default_timer()
+tgv_cpu = TGV(pars['input'],
+ pars['regularisation_parameter'],
+ pars['alpha1'],
+ pars['alpha0'],
+ pars['number_of_iterations'],
+ pars['LipshitzConstant'],'cpu')
+
+
+rms = rmse(Im, tgv_cpu)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(tgv_cpu, cmap="gray")
+plt.title('{}'.format('CPU results'))
+#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("________________NDF (2D)___________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(4)
+fig = plt.figure()
plt.suptitle('Performance of NDF regulariser using the CPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy Image')
@@ -259,7 +308,7 @@ print ("___Anisotropic Diffusion 4th Order (2D)____")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(5)
+fig = plt.figure()
plt.suptitle('Performance of DIFF4th regulariser using the CPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy Image')
@@ -304,7 +353,7 @@ print ("_____________FGP-dTV (2D)__________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(6)
+fig = plt.figure()
plt.suptitle('Performance of FGP-dTV regulariser using the CPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy Image')
@@ -356,7 +405,7 @@ print ("__________Total nuclear Variation__________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(7)
+fig = plt.figure()
plt.suptitle('Performance of TNV regulariser using the CPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy Image')
diff --git a/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py b/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py
index 4611522..46b8ffc 100644
--- a/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py
+++ b/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py
@@ -12,7 +12,7 @@ import matplotlib.pyplot as plt
import numpy as np
import os
import timeit
-from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, FGP_dTV, NDF, DIFF4th
+from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, FGP_dTV, NDF, DIFF4th
from qualitymetrics import rmse
###############################################################################
def printParametersToString(pars):
@@ -50,12 +50,13 @@ u_ref = Im + np.random.normal(loc = 0 ,
u0 = u0.astype('float32')
u_ref = u_ref.astype('float32')
+#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("____________ROF-TV bench___________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(1)
+fig = plt.figure()
plt.suptitle('Comparison of ROF-TV regulariser using CPU and GPU implementations')
a=fig.add_subplot(1,4,1)
a.set_title('Noisy Image')
@@ -90,7 +91,6 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
imgplot = plt.imshow(rof_cpu, cmap="gray")
plt.title('{}'.format('CPU results'))
-
print ("##############ROF TV GPU##################")
start_time = timeit.default_timer()
rof_gpu = ROF_TV(pars['input'],
@@ -128,12 +128,13 @@ if (diff_im.sum() > 1):
else:
print ("Arrays match")
+#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("____________FGP-TV bench___________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(2)
+fig = plt.figure()
plt.suptitle('Comparison of FGP-TV regulariser using CPU and GPU implementations')
a=fig.add_subplot(1,4,1)
a.set_title('Noisy Image')
@@ -218,12 +219,13 @@ if (diff_im.sum() > 1):
else:
print ("Arrays match")
+#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("____________SB-TV bench___________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(3)
+fig = plt.figure()
plt.suptitle('Comparison of SB-TV regulariser using CPU and GPU implementations')
a=fig.add_subplot(1,4,1)
a.set_title('Noisy Image')
@@ -303,14 +305,98 @@ if (diff_im.sum() > 1):
print ("Arrays do not match!")
else:
print ("Arrays match")
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("____________TGV bench___________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure()
+plt.suptitle('Comparison of TGV regulariser using CPU and GPU implementations')
+a=fig.add_subplot(1,4,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+# set parameters
+pars = {'algorithm' : TGV, \
+ 'input' : u0,\
+ 'regularisation_parameter':0.04, \
+ 'alpha1':1.0,\
+ 'alpha0':0.7,\
+ 'number_of_iterations' :250 ,\
+ 'LipshitzConstant' :12 ,\
+ }
+
+print ("#############TGV CPU####################")
+start_time = timeit.default_timer()
+tgv_cpu = TGV(pars['input'],
+ pars['regularisation_parameter'],
+ pars['alpha1'],
+ pars['alpha0'],
+ pars['number_of_iterations'],
+ pars['LipshitzConstant'],'cpu')
+
+rms = rmse(Im, tgv_cpu)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,4,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(tgv_cpu, cmap="gray")
+plt.title('{}'.format('CPU results'))
+
+print ("##############SB TV GPU##################")
+start_time = timeit.default_timer()
+tgv_gpu = TGV(pars['input'],
+ pars['regularisation_parameter'],
+ pars['alpha1'],
+ pars['alpha0'],
+ pars['number_of_iterations'],
+ pars['LipshitzConstant'],'gpu')
+
+rms = rmse(Im, tgv_gpu)
+pars['rmse'] = rms
+pars['algorithm'] = TGV
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,4,3)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(tgv_gpu, cmap="gray")
+plt.title('{}'.format('GPU results'))
+print ("--------Compare the results--------")
+tolerance = 1e-05
+diff_im = np.zeros(np.shape(tgv_gpu))
+diff_im = abs(tgv_cpu - tgv_gpu)
+diff_im[diff_im > tolerance] = 1
+a=fig.add_subplot(1,4,4)
+imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray")
+plt.title('{}'.format('Pixels larger threshold difference'))
+if (diff_im.sum() > 1):
+ print ("Arrays do not match!")
+else:
+ print ("Arrays match")
+#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("_______________NDF bench___________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(4)
+fig = plt.figure()
plt.suptitle('Comparison of NDF regulariser using CPU and GPU implementations')
a=fig.add_subplot(1,4,1)
a.set_title('Noisy Image')
@@ -390,13 +476,13 @@ if (diff_im.sum() > 1):
else:
print ("Arrays match")
-
+#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("___Anisotropic Diffusion 4th Order (2D)____")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(5)
+fig = plt.figure()
plt.suptitle('Comparison of Diff4th regulariser using CPU and GPU implementations')
a=fig.add_subplot(1,4,1)
a.set_title('Noisy Image')
@@ -472,12 +558,13 @@ if (diff_im.sum() > 1):
else:
print ("Arrays match")
+#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("____________FGP-dTV bench___________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(6)
+fig = plt.figure()
plt.suptitle('Comparison of FGP-dTV regulariser using CPU and GPU implementations')
a=fig.add_subplot(1,4,1)
a.set_title('Noisy Image')
@@ -565,3 +652,4 @@ if (diff_im.sum() > 1):
print ("Arrays do not match!")
else:
print ("Arrays match")
+#%% \ No newline at end of file
diff --git a/Wrappers/Python/demos/demo_gpu_regularisers.py b/Wrappers/Python/demos/demo_gpu_regularisers.py
index 3179428..792a019 100644
--- a/Wrappers/Python/demos/demo_gpu_regularisers.py
+++ b/Wrappers/Python/demos/demo_gpu_regularisers.py
@@ -12,7 +12,7 @@ import matplotlib.pyplot as plt
import numpy as np
import os
import timeit
-from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, FGP_dTV, NDF, DIFF4th
+from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, FGP_dTV, NDF, DIFF4th
from qualitymetrics import rmse
###############################################################################
def printParametersToString(pars):
@@ -66,13 +66,14 @@ Im2[:,0:M] = Im[:,0:M]
Im = Im2
del Im2
"""
+#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("____________ROF-TV regulariser_____________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(1)
+fig = plt.figure()
plt.suptitle('Performance of the ROF-TV regulariser using the GPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy Image')
@@ -108,13 +109,13 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
imgplot = plt.imshow(rof_gpu, cmap="gray")
plt.title('{}'.format('GPU results'))
-
+#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("____________FGP-TV regulariser_____________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(2)
+fig = plt.figure()
plt.suptitle('Performance of the FGP-TV regulariser using the GPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy Image')
@@ -157,13 +158,13 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
imgplot = plt.imshow(fgp_gpu, cmap="gray")
plt.title('{}'.format('GPU results'))
-
+#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("____________SB-TV regulariser______________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(3)
+fig = plt.figure()
plt.suptitle('Performance of the SB-TV regulariser using the GPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy Image')
@@ -203,14 +204,62 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
verticalalignment='top', bbox=props)
imgplot = plt.imshow(sb_gpu, cmap="gray")
plt.title('{}'.format('GPU results'))
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("_____Total Generalised Variation (2D)______")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+## plot
+fig = plt.figure()
+plt.suptitle('Performance of TGV regulariser using the GPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+# set parameters
+pars = {'algorithm' : TGV, \
+ 'input' : u0,\
+ 'regularisation_parameter':0.04, \
+ 'alpha1':1.0,\
+ 'alpha0':0.7,\
+ 'number_of_iterations' :250 ,\
+ 'LipshitzConstant' :12 ,\
+ }
+
+print ("#############TGV CPU####################")
+start_time = timeit.default_timer()
+tgv_gpu = TGV(pars['input'],
+ pars['regularisation_parameter'],
+ pars['alpha1'],
+ pars['alpha0'],
+ pars['number_of_iterations'],
+ pars['LipshitzConstant'],'gpu')
+
+
+rms = rmse(Im, tgv_gpu)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(tgv_gpu, cmap="gray")
+plt.title('{}'.format('GPU results'))
+
+#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("_______________NDF regulariser_____________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(4)
+fig = plt.figure()
plt.suptitle('Performance of the NDF regulariser using the GPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy Image')
@@ -251,13 +300,13 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
imgplot = plt.imshow(ndf_gpu, cmap="gray")
plt.title('{}'.format('GPU results'))
-
+#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("___Anisotropic Diffusion 4th Order (2D)____")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(5)
+fig = plt.figure()
plt.suptitle('Performance of DIFF4th regulariser using the GPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy Image')
@@ -296,12 +345,13 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
imgplot = plt.imshow(diff4_gpu, cmap="gray")
plt.title('{}'.format('GPU results'))
+#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("____________FGP-dTV bench___________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(6)
+fig = plt.figure()
plt.suptitle('Performance of the FGP-dTV regulariser using the GPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy Image')
diff --git a/Wrappers/Python/setup-regularisers.py.in b/Wrappers/Python/setup-regularisers.py.in
index 76dfecf..89ebaf9 100644
--- a/Wrappers/Python/setup-regularisers.py.in
+++ b/Wrappers/Python/setup-regularisers.py.in
@@ -38,6 +38,7 @@ extra_include_dirs += [os.path.join(".." , ".." , "Core"),
os.path.join(".." , ".." , "Core", "regularisers_GPU" , "TV_FGP" ) ,
os.path.join(".." , ".." , "Core", "regularisers_GPU" , "TV_ROF" ) ,
os.path.join(".." , ".." , "Core", "regularisers_GPU" , "TV_SB" ) ,
+ os.path.join(".." , ".." , "Core", "regularisers_GPU" , "TGV" ) ,
os.path.join(".." , ".." , "Core", "regularisers_GPU" , "NDF" ) ,
os.path.join(".." , ".." , "Core", "regularisers_GPU" , "dTV_FGP" ) ,
os.path.join(".." , ".." , "Core", "regularisers_GPU" , "DIFF4th" ) ,
diff --git a/Wrappers/Python/src/cpu_regularisers.pyx b/Wrappers/Python/src/cpu_regularisers.pyx
index bdb1eff..cf81bec 100644
--- a/Wrappers/Python/src/cpu_regularisers.pyx
+++ b/Wrappers/Python/src/cpu_regularisers.pyx
@@ -21,6 +21,7 @@ cimport numpy as np
cdef extern float TV_ROF_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float tau, int dimX, int dimY, int dimZ);
cdef extern float TV_FGP_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ);
cdef extern float SB_TV_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int printM, int dimX, int dimY, int dimZ);
+cdef extern float TGV_main(float *Input, float *Output, float lambdaPar, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY);
cdef extern float Diffusion_CPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int dimX, int dimY, int dimZ);
cdef extern float Diffus4th_CPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int dimX, int dimY, int dimZ);
cdef extern float TNV_CPU_main(float *Input, float *u, float lambdaPar, int maxIter, float tol, int dimX, int dimY, int dimZ);
@@ -189,6 +190,39 @@ def TV_SB_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
printM,
dims[2], dims[1], dims[0])
return outputData
+
+#***************************************************************#
+#***************** Total Generalised Variation *****************#
+#***************************************************************#
+def TGV_CPU(inputData, regularisation_parameter, alpha1, alpha0, iterations, LipshitzConst):
+ if inputData.ndim == 2:
+ return TGV_2D(inputData, regularisation_parameter, alpha1, alpha0, iterations, LipshitzConst)
+ elif inputData.ndim == 3:
+ return 0
+
+def TGV_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
+ float regularisation_parameter,
+ float alpha1,
+ float alpha0,
+ int iterationsNumb,
+ float LipshitzConst):
+
+ cdef long dims[2]
+ dims[0] = inputData.shape[0]
+ dims[1] = inputData.shape[1]
+
+ cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
+ np.zeros([dims[0],dims[1]], dtype='float32')
+
+ #/* Run TGV iterations for 2D data */
+ TGV_main(&inputData[0,0], &outputData[0,0], regularisation_parameter,
+ alpha1,
+ alpha0,
+ iterationsNumb,
+ LipshitzConst,
+ dims[1],dims[0])
+ return outputData
+
#****************************************************************#
#**************Directional Total-variation FGP ******************#
#****************************************************************#
diff --git a/Wrappers/Python/src/gpu_regularisers.pyx b/Wrappers/Python/src/gpu_regularisers.pyx
index b67e62b..4a202d7 100644
--- a/Wrappers/Python/src/gpu_regularisers.pyx
+++ b/Wrappers/Python/src/gpu_regularisers.pyx
@@ -21,6 +21,7 @@ cimport numpy as np
cdef extern void TV_ROF_GPU_main(float* Input, float* Output, float lambdaPar, int iter, float tau, int N, int M, int Z);
cdef extern void TV_FGP_GPU_main(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int nonneg, int printM, int N, int M, int Z);
cdef extern void TV_SB_GPU_main(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int printM, int N, int M, int Z);
+cdef extern void TGV_GPU_main(float *Input, float *Output, float lambdaPar, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY);
cdef extern void NonlDiff_GPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int N, int M, int Z);
cdef extern void dTV_FGP_GPU_main(float *Input, float *InputRef, float *Output, float lambdaPar, int iterationsNumb, float epsil, float eta, int methodTV, int nonneg, int printM, int N, int M, int Z);
cdef extern void Diffus4th_GPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int N, int M, int Z);
@@ -86,6 +87,12 @@ def TV_SB_GPU(inputData,
tolerance_param,
methodTV,
printM)
+# Total Generilised Variation (TGV)
+def TGV_GPU(inputData, regularisation_parameter, alpha1, alpha0, iterations, LipshitzConst):
+ if inputData.ndim == 2:
+ return TGV2D(inputData, regularisation_parameter, alpha1, alpha0, iterations, LipshitzConst)
+ elif inputData.ndim == 3:
+ return 0
# Directional Total-variation Fast-Gradient-Projection (FGP)
def dTV_FGP_GPU(inputData,
refdata,
@@ -315,6 +322,33 @@ def SBTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
dims[2], dims[1], dims[0]);
return outputData
+
+#***************************************************************#
+#***************** Total Generalised Variation *****************#
+#***************************************************************#
+def TGV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
+ float regularisation_parameter,
+ float alpha1,
+ float alpha0,
+ int iterationsNumb,
+ float LipshitzConst):
+
+ cdef long dims[2]
+ dims[0] = inputData.shape[0]
+ dims[1] = inputData.shape[1]
+
+ cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
+ np.zeros([dims[0],dims[1]], dtype='float32')
+
+ #/* Run TGV iterations for 2D data */
+ TGV_GPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameter,
+ alpha1,
+ alpha0,
+ iterationsNumb,
+ LipshitzConst,
+ dims[1],dims[0])
+ return outputData
+
#****************************************************************#
#**************Directional Total-variation FGP ******************#
#****************************************************************#