diff options
author | Daniil Kazantsev <dkazanc@hotmail.com> | 2017-07-03 22:35:23 +0100 |
---|---|---|
committer | Daniil Kazantsev <dkazanc@hotmail.com> | 2017-07-03 22:35:23 +0100 |
commit | 329a104d4cb5ba50a59fb80e58de0453ba49f075 (patch) | |
tree | 278a879fb4000c488b3e07dbd6cac6bb9d9aeb7e /demos | |
parent | e55c200119ebf9fd42755cb2fea7c3d286ffe96b (diff) | |
download | regularization-329a104d4cb5ba50a59fb80e58de0453ba49f075.tar.gz regularization-329a104d4cb5ba50a59fb80e58de0453ba49f075.tar.bz2 regularization-329a104d4cb5ba50a59fb80e58de0453ba49f075.tar.xz regularization-329a104d4cb5ba50a59fb80e58de0453ba49f075.zip |
Major reorganization, updated routines
Diffstat (limited to 'demos')
-rw-r--r-- | demos/Demo1.m | 174 | ||||
-rw-r--r-- | demos/DemoRD1.m | 100 | ||||
-rw-r--r-- | demos/DemoRD2.m | 126 |
3 files changed, 400 insertions, 0 deletions
diff --git a/demos/Demo1.m b/demos/Demo1.m new file mode 100644 index 0000000..486b97c --- /dev/null +++ b/demos/Demo1.m @@ -0,0 +1,174 @@ +% Demonstration of tomographic reconstruction from noisy and corrupted by
+% artifacts undersampled projection data using Students't penalty
+% Optimisation problem is solved using FISTA algorithm (see Beck & Teboulle)
+
+% see Readme file for instructions
+%%
+% compile MEX-files ones
+% cd ..
+% cd main_func
+% compile_mex
+% cd ..
+% cd demos
+%%
+
+close all;clc;clear all;
+% adding paths
+addpath('../data/');
+addpath('../main_func/');
+addpath('../supp/');
+
+load phantom_bone512.mat % load the phantom
+load my_red_yellowMAP.mat % load the colormap
+% load sino1.mat; % load noisy sinogram
+
+N = 512; % the size of the tomographic image NxN
+theta = 1:1:180; % acquisition angles (in parallel beam from 0 to Pi)
+theta_rad = theta*(pi/180); % conversion to radians
+P = 2*ceil(N/sqrt(2))+1; % the size of the detector array
+ROI = find(phantom > 0);
+
+% using ASTRA to set the projection geometry
+% potentially parallel geometry can be replaced with a divergent one
+Z_slices = 1;
+det_row_count = Z_slices;
+proj_geom = astra_create_proj_geom('parallel3d', 1, 1, det_row_count, P, theta_rad);
+vol_geom = astra_create_vol_geom(N,N,Z_slices);
+
+zing_rings_add; % generating data, adding zingers and stripes
+%%
+fprintf('%s\n', 'Direct reconstruction using FBP...');
+FBP_1 = iradon(sino_zing_rings', theta, N);
+
+fprintf('%s %.4f\n', 'RMSE for FBP reconstruction:', RMSE(FBP_1(:), phantom(:)));
+
+figure(1);
+subplot_tight(1,2,1, [0.05 0.05]); imshow(FBP_1,[0 0.6]); title('FBP reconstruction of noisy and corrupted by artifacts sinogram'); colorbar;
+subplot_tight(1,2,2, [0.05 0.05]); imshow((phantom - FBP_1).^2,[0 0.1]); title('residual: (ideal phantom - FBP)^2'); colorbar;
+colormap(cmapnew);
+
+%%
+fprintf('%s\n', 'Reconstruction using FISTA-PWLS without regularization...');
+clear params
+% define parameters
+params.proj_geom = proj_geom; % pass geometry to the function
+params.vol_geom = vol_geom;
+params.sino = sino_zing_rings; % sinogram
+params.iterFISTA = 45; %max number of outer iterations
+params.X_ideal = phantom; % ideal phantom
+params.ROI = ROI; % phantom region-of-interest
+params.show = 1; % visualize reconstruction on each iteration
+params.slice = 1; params.maxvalplot = 0.6;
+params.weights = Dweights; % statistical weighting
+tic; [X_FISTA, output] = FISTA_REC(params); toc;
+
+fprintf('%s %.4f\n', 'Min RMSE for FISTA-PWLS reconstruction is:', min(error_FISTA(:)));
+error_FISTA = output.Resid_error; obj_FISTA = output.objective;
+
+figure(2); clf
+%set(gcf, 'Position', get(0,'Screensize'));
+subplot_tight(1,2,1, [0.05 0.05]); imshow(X_FISTA,[0 0.6]); title('FISTA-PWLS reconstruction'); colorbar;
+subplot_tight(1,2,2, [0.05 0.05]); imshow((phantom - X_FISTA).^2,[0 0.1]); title('residual'); colorbar;
+colormap(cmapnew);
+figure(3); clf
+subplot_tight(1,2,1, [0.05 0.05]); plot(error_FISTA); title('RMSE plot'); colorbar;
+subplot_tight(1,2,2, [0.05 0.05]); plot(obj_FISTA); title('Objective plot'); colorbar;
+colormap(cmapnew);
+%%
+fprintf('%s\n', 'Reconstruction using FISTA-PWLS-TV...');
+clear params
+% define parameters
+params.proj_geom = proj_geom; % pass geometry to the function
+params.vol_geom = vol_geom;
+params.sino = sino_zing_rings;
+params.iterFISTA = 45; % max number of outer iterations
+params.Regul_LambdaTV = 0.0015; % regularization parameter for TV problem
+params.X_ideal = phantom; % ideal phantom
+params.ROI = ROI; % phantom region-of-interest
+params.weights = Dweights; % statistical weighting
+params.show = 1; % visualize reconstruction on each iteration
+params.slice = 1; params.maxvalplot = 0.6;
+tic; [X_FISTA_TV, output] = FISTA_REC(params); toc;
+
+fprintf('%s %.4f\n', 'Min RMSE for FISTA-PWLS-TV reconstruction is:', min(error_FISTA_TV(:)));
+error_FISTA_TV = output.Resid_error; obj_FISTA_TV = output.objective;
+
+figure(4); clf
+subplot_tight(1,2,1, [0.05 0.05]); imshow(X_FISTA_TV,[0 0.6]); title('FISTA-PWLS-TV reconstruction'); colorbar;
+subplot_tight(1,2,2, [0.05 0.05]); imshow((phantom - X_FISTA_TV).^2,[0 0.1]); title('residual'); colorbar;
+colormap(cmapnew);
+figure(5); clf
+subplot_tight(1,2,1, [0.05 0.05]); plot(error_FISTA_TV); title('RMSE plot'); colorbar;
+subplot_tight(1,2,2, [0.05 0.05]); plot(obj_FISTA_TV); title('Objective plot'); colorbar;
+colormap(cmapnew);
+%%
+fprintf('%s\n', 'Reconstruction using FISTA-GH-TV...');
+clear params
+% define parameters
+params.proj_geom = proj_geom; % pass geometry to the function
+params.vol_geom = vol_geom;
+params.sino = sino_zing_rings;
+params.iterFISTA = 50; % max number of outer iterations
+params.Regul_LambdaTV = 0.0015; % regularization parameter for TV problem
+params.X_ideal = phantom; % ideal phantom
+params.ROI = ROI; % phantom region-of-interest
+params.weights = Dweights; % statistical weighting
+params.Ring_LambdaR_L1 = 0.002; % parameter to sparsify the "rings vector"
+params.Ring_Alpha = 20; % to accelerate ring-removal procedure
+params.show = 0; % visualize reconstruction on each iteration
+params.slice = 1; params.maxvalplot = 0.6;
+tic; [X_FISTA_GH_TV, output] = FISTA_REC(params); toc;
+
+fprintf('%s %.4f\n', 'Min RMSE for FISTA-GH-TV reconstruction is:', min(error_FISTA_GH_TV(:)));
+error_FISTA_GH_TV = output.Resid_error; obj_FISTA_GH_TV = output.objective;
+
+figure(6); clf
+subplot_tight(1,2,1, [0.05 0.05]); imshow(X_FISTA_GH_TV,[0 0.6]); title('FISTA-GH-TV reconstruction'); colorbar;
+subplot_tight(1,2,2, [0.05 0.05]);imshow((phantom - X_FISTA_GH_TV).^2,[0 0.1]); title('residual'); colorbar;
+colormap(cmapnew);
+
+figure(7); clf
+subplot_tight(1,2,1, [0.05 0.05]); plot(error_FISTA_GH_TV); title('RMSE plot'); colorbar;
+subplot_tight(1,2,2, [0.05 0.05]); plot(obj_FISTA_GH_TV); title('Objective plot'); colorbar;
+colormap(cmapnew);
+%%
+fprintf('%s\n', 'Reconstruction using FISTA-Student-TV...');
+clear params
+% define parameters
+params.proj_geom = proj_geom; % pass geometry to the function
+params.vol_geom = vol_geom;
+params.sino = sino_zing_rings;
+params.iterFISTA = 55; % max number of outer iterations
+params.L_const = 0.1; % Lipshitz constant (can be chosen manually to accelerate convergence)
+params.Regul_LambdaTV = 0.00152; % regularization parameter for TV problem
+params.X_ideal = phantom; % ideal phantom
+params.ROI = ROI; % phantom region-of-interest
+params.weights = Dweights; % statistical weighting
+params.fidelity = 'student'; % selecting students t fidelity
+params.show = 1; % visualize reconstruction on each iteration
+params.slice = 1; params.maxvalplot = 0.6;
+params.initilize = 1; % warm start with SIRT
+tic; [X_FISTA_student_TV, output] = FISTA_REC(params); toc;
+
+fprintf('%s %.4f\n', 'Min RMSE for FISTA-Student-TV reconstruction is:', min(error_FISTA_student_TV(:)));
+error_FISTA_student_TV = output.Resid_error; obj_FISTA_student_TV = output.objective;
+
+figure(8);
+set(gcf, 'Position', get(0,'Screensize'));
+subplot_tight(1,2,1, [0.05 0.05]); imshow(X_FISTA_student_TV,[0 0.6]); title('FISTA-Student-TV reconstruction'); colorbar;
+subplot_tight(1,2,2, [0.05 0.05]); imshow((phantom - X_FISTA_student_TV).^2,[0 0.1]); title('residual'); colorbar;
+colormap(cmapnew);
+
+figure(9);
+subplot_tight(1,2,1, [0.05 0.05]); plot(error_FISTA_student_TV); title('RMSE plot'); colorbar;
+subplot_tight(1,2,2, [0.05 0.05]); plot(obj_FISTA_student_TV); title('Objective plot'); colorbar;
+colormap(cmapnew);
+%%
+% print all RMSE's
+fprintf('%s\n', '--------------------------------------------');
+fprintf('%s %.4f\n', 'RMSE for FBP reconstruction:', RMSE(FBP_1(:), phantom(:)));
+fprintf('%s %.4f\n', 'Min RMSE for FISTA-PWLS reconstruction:', min(error_FISTA(:)));
+fprintf('%s %.4f\n', 'Min RMSE for FISTA-PWLS-TV reconstruction:', min(error_FISTA_TV(:)));
+fprintf('%s %.4f\n', 'Min RMSE for FISTA-GH-TV reconstruction:', min(error_FISTA_GH_TV(:)));
+fprintf('%s %.4f\n', 'Min RMSE for FISTA-Student-TV reconstruction:', min(error_FISTA_student_TV(:)));
+%
\ No newline at end of file diff --git a/demos/DemoRD1.m b/demos/DemoRD1.m new file mode 100644 index 0000000..c25bb3e --- /dev/null +++ b/demos/DemoRD1.m @@ -0,0 +1,100 @@ +% Demonstration of tomographic reconstruction from neutron tomography +% dataset (basalt sample) using Student t data fidelity +clear all +close all + +% adding paths +addpath('../data/'); +addpath('../main_func/'); +addpath('../supp/'); + +load('sino_basalt.mat') % load real neutron data + +size_det = size(sino_basalt, 1); % detector size +angSize = size(sino_basalt,2); % angles dim +recon_size = 650; % reconstruction size + +FBP = iradon(sino_basalt, rad2deg(angles),recon_size); +figure; imshow(FBP , [0, 0.45]); title ('FBP reconstruction'); +%% +% set projection/reconstruction geometry here +Z_slices = 1; +det_row_count = Z_slices; +proj_geom = astra_create_proj_geom('parallel3d', 1, 1, det_row_count, size_det, angles); +vol_geom = astra_create_vol_geom(recon_size,recon_size,Z_slices); +%% +fprintf('%s\n', 'Reconstruction using FISTA-LS without regularization...'); +clear params +params.proj_geom = proj_geom; % pass geometry to the function +params.vol_geom = vol_geom; +params.sino = sino_basalt; +params.iterFISTA = 50; +params.show = 0; +params.maxvalplot = 0.6; params.slice = 1; + +tic; [X_fista] = FISTA_REC(params); toc; +figure; imshow(X_fista , [0, 0.45]); title ('FISTA-LS reconstruction'); +%% +fprintf('%s\n', 'Reconstruction using FISTA-LS-TV...'); +clear params +params.proj_geom = proj_geom; % pass geometry to the function +params.vol_geom = vol_geom; +params.sino = sino_basalt; +params.iterFISTA = 60; +params.Regul_LambdaTV = 0.0003; % TV regularization parameter +params.show = 0; +params.maxvalplot = 0.6; params.slice = 1; + +tic; [X_fista_TV] = FISTA_REC(params); toc; +figure; imshow(X_fista_TV , [0, 0.45]); title ('FISTA-LS-TV reconstruction'); +%% +%% +fprintf('%s\n', 'Reconstruction using FISTA-GH-TV...'); +clear params +params.proj_geom = proj_geom; % pass geometry to the function +params.vol_geom = vol_geom; +params.sino = sino_basalt; +params.iterFISTA = 60; +params.Regul_LambdaTV = 0.0003; % TV regularization parameter +params.Ring_LambdaR_L1 = 0.001; % Soft-Thresh L1 ring variable parameter +params.Ring_Alpha = 20; % acceleration for ring variable +params.show = 0; +params.maxvalplot = 0.6; params.slice = 1; + +tic; [X_fista_GH_TV] = FISTA_REC(params); toc; +figure; imshow(X_fista_GH_TV , [0, 0.45]); title ('FISTA-GH-TV reconstruction'); +%% +%% +fprintf('%s\n', 'Reconstruction using FISTA-Student-TV...'); +clear params +params.proj_geom = proj_geom; % pass geometry to the function +params.vol_geom = vol_geom; +params.sino = sino_basalt; +params.iterFISTA = 50; +params.L_const = 3500; % Lipshitz constant +params.Regul_LambdaTV = 0.0003; % TV regularization parameter +params.fidelity = 'student'; % choosing Student t penalty +params.show = 1; +params.initilize = 1; % warm start with SIRT +params.maxvalplot = 0.6; params.slice = 1; + +tic; [X_fistaStudentTV] = FISTA_REC(params); toc; +figure; imshow(X_fistaStudentTV , [0, 0.45]); title ('FISTA-Student-TV reconstruction'); +%% + +fprintf('%s\n', 'Segmentation using OTSU method ...'); +level = graythresh(X_fista); +Segm_FISTA = im2bw(X_fista,level); +figure; imshow(Segm_FISTA, []); title ('Segmented FISTA-LS reconstruction'); + +level = graythresh(X_fista_TV); +Segm_FISTA_TV = im2bw(X_fista_TV,level); +figure; imshow(Segm_FISTA_TV, []); title ('Segmented FISTA-LS-TV reconstruction'); + +level = graythresh(X_fista_GH_TV); +BW_FISTA_GH_TV = im2bw(X_fista_GH_TV,level); +figure; imshow(BW_FISTA_GH_TV, []); title ('Segmented FISTA-GH-TV reconstruction'); + +level = graythresh(X_fistaStudentTV); +BW_FISTA_Student_TV = im2bw(X_fistaStudentTV,level); +figure; imshow(BW_FISTA_Student_TV, []); title ('Segmented FISTA-Student-LS reconstruction');
\ No newline at end of file diff --git a/demos/DemoRD2.m b/demos/DemoRD2.m new file mode 100644 index 0000000..ab4da96 --- /dev/null +++ b/demos/DemoRD2.m @@ -0,0 +1,126 @@ +% Demonstration of tomographic 3D reconstruction from X-ray synchrotron +% dataset (dendrites) using various data fidelities +% warning: can take up to 15-20 minutes to run for the whole 3D data +clear all +close all +%% +% % adding paths +addpath('../data/'); +addpath('../main_func/'); +addpath('../supp/'); + +load('DendrRawData.mat') % load raw data of 3D dendritic set +angles_rad = angles*(pi/180); % conversion to radians +size_det = size(data_raw3D,1); % detectors dim +angSize = size(data_raw3D, 2); % angles dim +slices_tot = size(data_raw3D, 3); % no of slices +recon_size = 950; % reconstruction size + +Sino3D = zeros(size_det, angSize, slices_tot, 'single'); % log-corrected sino +% normalizing the data +for jj = 1:slices_tot + sino = data_raw3D(:,:,jj); + for ii = 1:angSize + Sino3D(:,ii,jj) = log((flats_ar(:,jj)-darks_ar(:,jj))./(single(sino(:,ii)) - darks_ar(:,jj))); + end +end + +Sino3D = Sino3D.*1000; +Weights3D = single(data_raw3D); % weights for PW model +clear data_raw3D +%% +% set projection/reconstruction geometry here +Z_slices = 20; +det_row_count = Z_slices; +proj_geom = astra_create_proj_geom('parallel3d', 1, 1, det_row_count, size_det, angles_rad); +vol_geom = astra_create_vol_geom(recon_size,recon_size,Z_slices); +%% +fprintf('%s\n', 'Reconstruction using FBP...'); +FBP = iradon(Sino3D(:,:,10), angles,recon_size); +figure; imshow(FBP , [0, 3]); title ('FBP reconstruction'); +%% +fprintf('%s\n', 'Reconstruction using FISTA-PWLS without regularization...'); +clear params +params.proj_geom = proj_geom; % pass geometry to the function +params.vol_geom = vol_geom; +params.sino = Sino3D; +params.L_const = 7.6789e+08; % found quickly for one slice first +params.iterFISTA = 30; +params.weights = Weights3D; +params.show = 1; +params.maxvalplot = 2.5; params.slice = 4; + +tic; [X_fista, output] = FISTA_REC(params); toc; +figure; imshow(X_fista(:,:,1) , [0, 2.5]); title ('FISTA-PWLS reconstruction'); +%% +fprintf('%s\n', 'Reconstruction using FISTA-PWLS-TV...'); +clear params +params.proj_geom = proj_geom; % pass geometry to the function +params.vol_geom = vol_geom; +params.sino = Sino3D; +params.iterFISTA = 40; +params.L_const = 7.6789e+08; +params.Regul_LambdaTV = 0.005; % TV regularization parameter for FISTA-TV +params.weights = Weights3D; +params.show = 1; +params.maxvalplot = 2.5; params.slice = 10; + +tic; [X_fista_TV] = FISTA_REC(params); toc; +figure; imshow(X_fista_TV(:,:,1) , [0, 2.5]); title ('FISTA-PWLS-TV reconstruction'); +%% +%% +fprintf('%s\n', 'Reconstruction using FISTA-GH-TV...'); +clear params +params.proj_geom = proj_geom; % pass geometry to the function +params.vol_geom = vol_geom; +params.sino = Sino3D; +params.iterFISTA = 40; +params.Regul_LambdaTV = 0.005; % TV regularization parameter for FISTA-TV +params.Ring_LambdaR_L1 = 0.002; % Soft-Thresh L1 ring variable parameter +params.Ring_Alpha = 21; % to boost ring removal procedure +params.weights = Weights3D; +params.show = 1; +params.maxvalplot = 2.5; params.slice = 10; + +tic; [X_fista_GH_TV] = FISTA_REC(params); toc; +figure; imshow(X_fista_GH_TV(:,:,1) , [0, 2.5]); title ('FISTA-GH-TV reconstruction'); +%% +%% +fprintf('%s\n', 'Reconstruction using FISTA-GH-TV-LLT...'); +clear params +params.proj_geom = proj_geom; % pass geometry to the function +params.vol_geom = vol_geom; +params.sino = Sino3D; +params.iterFISTA = 40; +params.Regul_LambdaTV = 0.005; % TV regularization parameter for FISTA-TV +params.Regul_LambdaHO = 200; % regularization parameter for LLT problem +params.Regul_tauHO = 0.0005; % time-step parameter for the explicit scheme +params.Regul_iterHO = 250; % the max number of TV iterations +params.Ring_LambdaR_L1 = 0.002; % Soft-Thresh L1 ring variable parameter +params.Ring_Alpha = 21; % to boost ring removal procedure +params.weights = Weights3D; +params.show = 1; +params.maxvalplot = 2.5; params.slice = 10; + +tic; [X_fista_GH_TVLLT] = FISTA_REC(params); toc; +figure; imshow(X_fista_GH_TVLLT(:,:,1) , [0, 2.5]); title ('FISTA-GH-TV-LLT reconstruction'); +%% +%% +% fprintf('%s\n', 'Reconstruction using FISTA-Student-TV...'); +% clear params +% params.sino = Sino3D(:,:,10); +% params.N = recon_size; +% params.angles = angles_rad; +% params.iterFISTA = 100; +% params.L_const = 0.01; % Lipshitz constant +% params.lambdaTV = 0.006; % TV regularization parameter for FISTA-TV +% params.tol = 1.0e-04; +% params.iterTV = 20; +% params.fidelity = 'student'; % choosing Student t penalty +% params.weights = Weights3D(:,:,10); +% params.show = 0; +% params.maxvalplot = 2.5; params.slice = 1; +% +% tic; [X_fistaStudentTV] = FISTA_REC(params); toc; +% figure; imshow(X_fistaStudentTV(:,:,1), [0, 2.5]); title ('FISTA-Student-TV reconstruction'); +%% |